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Ultralong spin decoherence times in graphene quantum dots with a small number of nuclear spins
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We study the dynamics of an electron spin in a graphene quantum dot, which is interacting with a bath of less
than ten nuclear spins via the anisotropic hyperfine interaction. Due to substantial progress in the fabrication of
graphene quantum dots, the consideration of such a small number of nuclear spins is experimentally relevant.
This choice allows us to use exact diagonalization to calculate the long-time average of the electron spin as well
as its decoherence time. We investigate the dependence of spin observables on the initial states of nuclear spins
and on the position of nuclear spins in the quantum dot. Moreover, we analyze the effects of the anisotropy of the
hyperfine interaction for different orientations of the spin quantization axis with respect to the graphene plane.
Interestingly, we then predict remarkable long decoherence times of more than 10 ms in the limit of few nuclear
spins.
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I. INTRODUCTION

In recent years, spin qubits hosted in solid state nanos-
tructures have been under extensive research due to their
possible applications in quantum information processing
and computation. Among the host materials of spin qubits,
quite different approaches can be found, for instance, III-V
semiconductor and carbon nanotube quantum dots1 (QD) as
well as nitrogen vacancies in diamond.2 These host materials
show promising prospects but, unfortunately, also come with
certain drawbacks.

A precise control of the qubit state is the major advantage
of III-V-semiconductor QDs based on Al(Ga)As heterostruc-
tures. Preparation and readout of the qubit with high fidelity via
electrostatical gates has been demonstrated in many ground-
breaking experiments.3–13 However, the disadvantage of this
material system is the presence of many nuclear spins inherent
to the atoms of group III and group V elements of the periodic
table. These nuclear spins give rise to a fast decoherence of the
electron spin.14,15 Elaborate design of experiments including
pulse sequences and methods to polarize the nuclear spins16–21

such as dynamic nuclear polarization may help to compensate
the effect of the spin bath. Nevertheless, it seems desirable to
reduce the number of nuclear spins, which can be achieved on
the basis of other host materials.

Obvious candidates are carbon and silicon, since their spin
carrying isotopes have only very low natural abundances
of about 1% and 5%, respectively. In silicon, the qubits
can be fabricated22,23 either using donor impurities or by
confining a single electron via electro-statical gates. However,
a controlled localization of the donor impurities is still a
challenging task and electrostatically confined Si QDs often
involve nanostructures with other materials like Ge, which
potentially introduce additional nuclear spins.23 Carbon based
QDs can be realized by confining an electron spin in carbon
nanotubes24–31 (CNT) via electrical gates allowing for a good
control in the few electron regime. However, the curvature of
the CNTs gives rise to a sizable spin-orbit coupling, yet another
intrinsic source of decoherence to the electron spin. A different
approach to a carbon based QD is the use of nitrogen vacancies

in diamonds,2,32–35 which show tremendously long coherence
times. Unfortunately, control and readout of the qubit have to
be done optically, which is disadvantageous for the realization
of future on-chip electric circuits.

These examples illustrate a more general issue of designing
qubits, where an easy (electric) control and scalability seem
to compete with noiseless environments and, hence, long
decoherence times. A system potentially providing the best
of both worlds is a graphene QD,36,37 which offers very
interesting electronic properties38 and a small spin-orbit
coupling,39–42 as well as the possibility to control the number
of nuclear spins by isotopic purification.25,43,44 Moreover, the
hyperfine interaction between the remaining nuclear spins
and the electron spin is much smaller than in GaAs or
Si. Additionally, the hyperfine interaction in graphene is
anisotropic, which could provide interesting applications as
we discuss at the end of this article.

Experimentally, graphene QDs are, for instance, realized
by confining electrons with gates in bilayer graphene45,46 and
graphene nanoribbons,47,48 respectively, or by etching the QD
structure out of graphene flakes.49–59 Typical diameters are
of the order of tens to hundreds of nanometers resulting in
K = 15 to 1500 nuclear spins assuming a natural abundance
of spin carrying 13C of 1%. Thus reducing the abundance of
13C by only two orders of magnitude leads to very small spin
baths even in the case of rather large QDs. Recently, ultrasmall
graphene QDs with diameters in the 1-nm range were made
by electroburning.60 Altogether, these considerations show
that the study of few nuclear spin models with K < 10 as
considered in this work is highly relevant for future research
in the field.

In this paper, we aim to set the basis for forthcoming
investigations of the spin dynamics in graphene nanostruc-
tures. Besides quantum information theory, especially ongoing
research on magnetism on edges61–66 and vacancies67,68 in
graphene can benefit from a detailed knowledge of the
properties of the anisotropic hyperfine interaction (AHI).
Moreover, we intend to complement our previous analytic
study69 of the electron spin dynamics. Considering a large
nuclear spin bath, we investigated the coherence of the electron
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spin in a non-Markovian approach using a generalized master
equation. In this work, however, we were limited to large
external magnetic fields in order to justify the perturbative
treatment of the hyperfine interaction.

Since we restrict ourselves to less than ten nuclear spins
in the present work, we can apply exact diagonalization to
the hyperfine Hamiltonian, which offers a powerful tool to
investigate the dynamics of the electron spin for a wide
parameter regime.14,70–77 In particular, we analyze the role of
the number of nuclear spins K , their position within the QD,
as well as their initial spin state. Thereby, we use the
long-time average 〈Sz〉T of the longitudinal electron spin and
its decoherence time TD to quantify the influence of these
different aspects. Moreover, we investigate the dependence
of 〈Sz〉T and TD on the orientation of the spin quantization
axis with respect to the graphene plane. For the long-time
average, we find a continuous crossover from a initial state
dominated regime for K < 5 to a regime more affected by
the configuration of the nuclear spins for K > 6 where the
relative positions of the nuclear spins with respect to each
other matter. As we will show below, this behavior can be
understood by an analysis of the Hilbert space dimensions
as well as of the spatial distribution of the nuclear spins
in the QD. Besides this regime change, a growing nuclear
spin bath suppresses fluctuations around the long-time average
more and more effectively, while the average itself is almost
constant for all K < 9 with 〈Sz〉T ≈ �/4 in the out-of-plane
orientation and 〈Sz〉T ≈ 0 in the in-plane case. By resolving
the orientation dependence in more detail, we find good
agreement with 〈Sz〉T (β) = 〈Sz〉T (0) cos(β)2, where β = 0
and β = π/2 correspond to the out-of-plane and in-plane
orientation, respectively, cf. Fig. 1(a).

Evidently, the decoherence time TD strongly depends
on the number of nuclear spins K . We observe that the
configuration of the nuclear spins is decisive even for very
small numbers of nuclear spins, whereas the initial states play

only a minor role. Depending on the relative positions of
the nuclei, the decoherence times may deviate over several
orders of magnitude. This behavior can be traced back to
changes of the spectrum of eigenvalues of the full Hamiltonian.
Moreover, the decoherence times significantly differ between
out-of-plane and in-plane orientation. For K = 3 and β = 0,
the majority of investigated configurations show very long
decoherence times above 10 ms where, in many cases, even
no decoherence at all was found. For β = π/2, in contrast,
we always find decoherence, which predominantly occurs
within 500 μs. With increasing bath size, the decoherence
times decrease for both orientations of the quantization axis.
Then, decoherence times below 500 μs are most common.

The article is organized as follows. In Sec. II, we explain
our model of the QD and discuss all relevant interactions of
the spins with each other. Subsequently, in Sec. III, we present
the method used to obtain both the long-time average of the
electron spin and its decoherence times. All results are shown
and analyzed in Sec. IV. Based on a summary in Sec. V, we
give an outlook on possible applications of few nuclear spin
graphene QDs and on interesting future projects in this field.

II. MODEL

We study the spin dynamics in a graphene quantum dot,
where one electron spin is in contact with a bath of nuclear
spins hosted by the 13C atoms. Due to the confinement, the
electron can occupy a discrete spectrum of bound states,
with an energy splitting between different states.36,78–82 If the
temperature is small compared to the level spacing �E of
these bound-state energies, the electron resides in the ground
state, which we describe by an envelope function φ(�r). Hence
the probability to find the electron in a certain region of the QD
can be described by its absolute square |φ(�r)|2. In this paper,
we define the “center” of the dot as the region around �rmax,
where the envelope function is maximal |φ(�rmax)|2. Far away
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FIG. 1. (Color online) (a) The graphene [(x1,x2,x3)] and quantization axis [(x,y,z)] reference frames. (b) A graphene QD (red sites) for a
Gaussian envelope function with K = 10 uniformly random distributed 13C atoms (blue squares) carrying a nuclear spin 1/2. The extent of
the dot over the graphene lattice is defined via the electron envelope function, where all sites within the dot obey the cutoff relation defined in
Eq. (2). (c) The envelope function for fixed x1 = 0 and x1 = 22 aNN , respectively. The dashed line indicates the cutoff defined in Eq. (2).
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from this center, the envelope function has to vanish:

|φ(�rmax + ��r)|2 → 0 for |��r| → ∞ . (1)

In this work, we model a graphene QD by the set of atomic
sites {�rk}Nsites

i=1 obeying

|φ(�ri)|2
|φ(�rmax)|2 > C , (2)

where C = 10−6 is a constant cutoff. A plot of a QD realized
in this way is shown in Fig. 1. The choice of this finite system
of discrete sites �ri imposes a normalization condition

Nsites∑
i=1

|φ(�ri)|2 = 1 , (3)

since we want to find the electron with probability 1 some-
where within the dot. Effectively, we ignore everything outside
the barrier defined by the cutoff, which is justified by the
vanishing probability to find the electron there. This choice will
become more clear when we discuss the hyperfine interaction
between the electron and a single nuclear spin below.

A possible choice for the envelope function is a Gaussian

φ(�r) = φ0 exp

[
−1

2

(
r

R

)2]
= φ(r) , (4)

where r = |�r| is the absolute value of the electron position and
the norm φ0 is chosen to satisfy the normalization condition in
Eq. (3). This assumption is also in agreement with a recent
experiment investigating the wave function of a graphene
QD with soft confinement.83 Note that the envelope function
is not the exact electron wave function, but should give
a good approximation to the precise solution. This can be
seen, for instance, in graphene QDs based on semiconducting
armchair nanoribbons.36 The most important aspects, which
are captured by this specific choice, are the absence of nodes
in the ground state, a peak of the wave function in the center
as well as a strong decay at the edges of the dot, which is
illustrated by Fig. 1(c).

Having defined the shape of our dot, we are now able to
introduce the nuclear spins present in the system. Since we
do not have further knowledge about the distribution of 13C
within the dot, we randomly place the nuclear spins on the
sites defined by Eq. (2), where each site is chosen with equal
probability. An example of a configuration of ten nuclear spins
is shown in Fig. 1.

We now proceed to the interactions between the nuclear
spins and the electron spin and between themselves. The most
relevant spin-spin interaction in our system is the hyperfine
interaction between the electron spin �S and K nuclear spins �Ik

located at sites �rk ,

ĤHI = AHI

K∑
k=1

∑
μ,ν

←→
A μν |φ(�rk)|2 ŜμÎk,ν , (5)

where the indices μ and ν run over spatial coordinates x,y,z.
The energy scale of this interaction is given by AHI = 0.6 μeV
and

←→
A μν is a spherical tensor84 of rank 2, which takes

into account the anisotropy of the hyperfine interaction in
graphene.85 Remarkably, this interaction is strongly modulated

by the envelope function, a fact which arises from the on-site
nature of the hyperfine interaction. Thus, making the boundary
of the dot smooth by taking a very small cutoff C → 0 in
Eq. (2), would only add vanishingly small contributions to the
interaction in Eq. (5). Therefore we choose a small, but finite
cutoff for simplicity.

Besides the anisotropic hyperfine interaction (AHI), there
is also a dipole-dipole interaction between pairs of nuclear
spins. In the parameter regime considered in this work,
this interaction, however, is about five orders of magnitude
smaller than the AHI and, thus, neglected. We also proved its
irrelevance by a numerical study, which we will not present
here.

Since external magnetic fields allow to manipulate spins
experimentally, we include a Zeeman-Hamiltonian to account
for this:

ĤZE = �γSBzŜz + �γ13C Bz

K∑
k=1

Îk,z ≈ AZEŜz , (6)

where we used the fact that the electron gyromagnetic ratio
γS = 1.76 × 1011 s−1T−1 is much larger than the gyromag-
netic ratio of the nuclear spins γ13C = 6.73 × 107 s−1T−1 to
justify the right-hand side of Eq. (6).

In the presence of an external magnetic field, an interplay of
the spin orbit coupling with acoustic phonons can lead to spin
relaxation times T1 ranging from milliseconds to seconds86–89

for small external magnetic fields. The exact value of T1

significantly varies with the spectrum of the phonons, which
depends on the details of the dot nanostructure. Providing
that the graphene flake is flat throughout the spatial extent of
the QD, however, the spin orbit interaction should be small.
Thus this assumption justifies to neglect the influence of the
spin-orbit interaction on our problem.

In the following, we aim to simulate a model experiment
consisting of a preparation of the spins and the actual
measurement of the spin dynamics. For the preparation, one
can think of two different scenarios. First, the states of both
the electron spin and the nuclear spins can be prepared in
the presence of a strong external magnetic field B0 	 K

AHI|φ(rmax)|2/�γS = K |φ(rmax)|2 5.7 mT, which imprints a
well defined quantization axis. At the beginning of the actual
measurement, this field is turned off or reduced to a finite value
and the time evolution of the quantity of interest is recorded.
However, since the tuning of magnetic fields is typically slow,
this preparation scheme might not be adequate for a real
experiment and we have to look for other solutions. In this
case, we can think of injecting a spin polarized electron via a
spin dependent tunneling process from a normal lead or via a
spin conserving tunneling process from a spin polarized lead.

Anyhow, in both considered scenarios our system features
two natural reference frames, the first defined by the graphene
plane and the second one by the quantization axis of the
electron as depicted in Fig. 1(a). In order to clarify the
notation, the graphene coordinate system (GCS) is written
as �̃v = (ṽx1 ,ṽx2 ,ṽx3 ) with all objects being marked with a tilde,
whereas a vector in the quantization axis coordinate system
(QCS) is labeled by �v = (vx,vy,vz), cf. Fig. 1. If one chooses,
without loss of generality, the x2 and y axes to coincide, both
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coordinate systems are connected via a rotation D̂(β) by an
angle β around this common axis.

Due to the symmetries of the carbon orbitals,85 the spherical
tensor

←→
A μν of the AHI in Eq. (5) takes its simplest form in

the GCS, namely,

←→̃
A =

⎛
⎜⎝

− 1
2 0 0

0 − 1
2 0

0 0 1

⎞
⎟⎠ , (7)

while the spin operators, Ŝμ and Îk,ν , and the spin states are
most conveniently defined in the QCS.

In the main part of this work, we are interested in the
time-dependent expectation value of an arbitrary operator Ô,

〈O〉(t) = 〈ψ0| Û †(t) Ô Û (t) |ψ0〉 , (8)

where |ψ0〉 describes the initial state of the total spin system
and Û (t) = exp(−i�−1t Ĥ ) is the time evolution operator
determined by the total Hamiltonian Ĥ = ĤHI + ĤZE. Note
that this is the total Hamiltonian with respect to the QCS,
where the Zeeman Hamiltonian is always diagonal and the
AHI Hamiltonian is obtained from its simple GCS form ˆ̃HHI

by

ĤHI = D̂(β) ˆ̃HHID̂
†(β) . (9)

Likewise, we could keep the Hamiltonian fixed in its GCS
form and instead transform the operators Ô and ĤZE as well as
the initial state |ψ0〉 from the QCS to the GCS. For technical
reasons, however, we choose to transform the Hamiltonian,
while keeping the operator and the initial state fixed for
arbitrary β.

III. METHOD

In order to numerically compute the time evolution in
Eq. (8), we need a basis to represent the state of our system
and the operators acting on it. A natural choice for N = 1 + K

spins is given by the tensor product states of the electron spin
and the nuclear spin eigenstates

|n〉 = ∣∣mn
S

〉 ⊗
K⊗

k=1

∣∣mn
k

〉 = | ⇓↑↓↓↑ · · · 〉 , (10)

where the electron spin is represented by |mn
S〉, mn

S =⇓ , ⇑ and
the nuclear spin states by |mn

k〉, mn
k =↓ , ↑. For convenience,

we have ordered the nuclear spins |mn
Sm

n
Kmn

K−1 . . . 〉 according
to the value of the envelope function at the corresponding site:

|φ(rK )|2 � |φ(rK−1)|2 � · · · . (11)

Within this basis, an arbitrary state is given by a linear
superposition of these 2N states

|ψ〉 =
2N −1∑
n=0

αn|n〉,
2N −1∑
n=0

|αn|2 = 1 (12)

with complex coefficients αn, while all operators are rep-
resented by 2N × 2N matrices. By diagonalizing the total
Hamiltonian M̂ĤM̂† = diag(λ0,λ1, . . . ,λ2N−1), we are able

to re-express the time evolution operator

V̂ (t) = M̂Û (t)M̂† = diag[exp(−i�−1λ0 t), . . . ] , (13)

where M̂ is an unitary operator formed by the eigenvectors of
Ĥ and the λn are the corresponding eigenvalues. Finally, we
rewrite Eq. (8) and find

〈O〉(t) = 〈ψ0|M̂† V̂ †(t) M̂ Ô M̂† V̂ (t) M̂ |ψ0〉 , (14)

which we will evaluate for different parameter regimes in the
following section. The numerical diagonalization is performed
using the EIGEN90 package for C++.

As one can notice from the explanations above, we deal
with a quite big parameter space in which we can analyze
the outcome of Eq. (14). First, we control the shape of the
dot by means of the envelope function |φ(r)|2, secondly the
number of nuclear spins K is variable and finally these spins
can have different positions or configurations C within the dot.
All of these parameters change the AHI Hamiltonian in Eq. (5).
Moreover, we will investigate different initial states |ψ0〉 of the
electron and the nuclear spins affecting Eq. (14). Additionally,
the eigenvector matrix M̂ , appearing in this equation is a
function of the twisting angle β between the GCS and the
QCS. Note that the spectrum of eigenvalues λn is unaffected
by a change of β. Finally, we can also modify the absolute value
of the external magnetic field, which we will parametrize by
the resulting Zeeman energy of the electron AZE.

IV. RESULTS

In this section, we present our findings for the model
system defined above. All calculations were carried out using
an envelope function of the Gaussian type in Eq. (4) with
R = 7 aNN and a cutoff C = 10−6. This corresponds to a
dot with diameter D ≈ 7.2 nm containing Nsites ≈ 103 carbon
atoms, such that K = 9 atoms correspond to the natural
abundance nI = 0.01 of 13C. In order to investigate the
impact of different initial states, we choose random complex
(RC) initial states.14,70 These states were created by drawing
complex coefficients αn from Re[αn],Im[αn] ∈ [−1,1] with
equal probability and normalizing them according to Eq. (12).
Moreover, we choose the electron spin always to point down
resulting in initial states consisting of |⇓ . . . 〉 states only,
which means that αn = 0 for n � 2K .

In order to determine qualitatively and quantitatively the
impacts of the parameters, we investigate the time dependent
expectation value 〈Sz〉(t) of the longitudinal electron spin
component, which is calculated using Eq. (14). A typical time
evolution of 〈Sz〉(t) is plotted in Fig. 2. Within the decoherence
time TD , the initial amplitude of the electron spin of �/2 decays
to its long-time average value, where still finite oscillations and
beatings occur. This can be traced back to the finite size of the
spin bath considered here.

Its long-time average value is calculated by

〈Sz〉T = 1

NT

NT∑
s=0

〈Sz〉(Tmin + s �T ) , (15)

where we average over NT = (Tmax − Tmin)/�T time steps of
width �T . In order to investigate the oscillations of 〈Sz〉(t)
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FIG. 2. (Color online) Exemplary time evolution of the longi-
tudinal electron spin component 〈Sz〉(t) as a function of time for
out-of-plane orientation β = 0, cf. Fig. 1(a). For a certain range of
time [Tmin,Tmax] using a resolution �T , we calculate the long-time
average 〈Sz〉T and the standard deviation σSz

and find the maximal
deviation �Sz around this value. These quantities as well as the
details of the oscillations including the beating structure depend on
the choice of the parameters. The decoherence time TD is determined
by a constant threshold CS .

quantitatively, we consider the standard deviation

σSz
=

√√√√ 1

NT

NT∑
s=0

[〈Sz〉(Tmin + s �T ) − 〈Sz〉T ]2 (16)

as well as the sample range

�Sz = max
t∈[Tmin,Tmax]

[〈Sz〉(t)] − min
t∈[Tmin,Tmax]

[〈Sz〉(t)] . (17)

The latter quantity is a measure for the occurrence of
oscillations with a big amplitude which originate from either
recurrences of the signal, beatings or an entire lack of
decoherence. While for beatings one expects rather small
sample ranges �Sz < Sz(0), the former two cases should give
values on the order of the initial amplitude, �Sz ∼ O(Sz(0))
in the out-of-plane case β = 0 and �Sz ∼ 2 O(Sz(0)) in the
in-plane case β = π/2.

Besides these quantities characterizing the long-time aver-
age of the electron spin, we are also interested in the amount of
time it takes to decohere the system. In order to be independent
from specific models of the decay, such as exponential or
power-law decoherence, and to account for the characteristics
of the numerics, we find this decoherence time TD by the first
minimum exceeding a certain threshold CS . For clarity, CS is
also illustrated in Fig. 2. This approach is similar to the one
used in Ref. 77 to find the decoherence times. Of course, the
choice of this constant CS changes the value of TD . However,
its order of magnitude and its dependence on the different
parameters is rather independent from a specific choice as
long as CS is not too close to 〈Sz〉T , which we confirmed for
different values of CS .

In the following, we analyze both the decoherence time
and the long-time average of the longitudinal electron spin
component for different parameter sets. For each number
K of nuclear spins, many initial states and configurations
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FIG. 3. (Color online) Plot of the long-time average 〈Sz〉T for
out-of-plane orientation β = 0 and K = 3 and 6 nuclear spins without
an external magnetic field. We considered 51 different RC initial states
and 51 random configurations. For both numbers of nuclear spins,
the electron spin looses roughly one half of its amplitude to 〈Sz〉T ≈
−0.22 �. The horizontal stripes for K = 3 indicate the importance
of the initial states for few nuclear spins, while configurations seem
less relevant signaled by weaker vertical structures. This changes for
K = 6 nuclear spins, where the configurations dominate over initial
states indicated by the vertical structures in the right plot.

are created and labeled by numbers 0,1,2 . . . for later
comparison of the results. Note that for different nuclear spin
numbers K , these labels describe different initial states and
configurations. Moreover, we concentrate on two orientations
of the quantization axis, namely out-of-plane orientation for
β = 0 and in-plane orientation with β = π

2 .
We investigated the effect of finite magnetic fields for

exemplary initial states, configurations and K = 2,4,6 nuclear
spins, where we varied the resulting Zeeman constant from
AZE/AHI � 1 to AZE/AHI 	 1. For increasing AZE, we find a
continuous crossover to a perfect alignment of the electron spin
in the case of a very strong magnetic field. In the following,
we put AZE = 0 because we would like to better understand
the low-magnetic field behavior of the spin dynamics in the
presence of the AHI.

A. Dependence of the long-time average on different initial
states, configurations, and the number of nuclear spins

First, we investigate the consequences of both different
RC initial states and different configurations of the nuclei
within the dot. We calculated 〈Sz〉T , σSz

and, �Sz for
different parameter sets and found stable results for Tmin =
0.5 × 109τHI, Tmax = 1.5 × 109τHI, and �T = 104τHI with
τHI = �/AHI ≈ 1 ns. In Fig. 3, we plot the long-time average
〈Sz〉T as a function of different RC states and configurations
for K = 3 and 6, respectively, in out-of-plane orientation. The
color map in Fig. 4 was created for the same parameters with
in-plane orientation.

For a small number of nuclear spins K = 3 and β = 0, we
observe strong fluctuations for both different RC states and
different configurations around an average value of 〈Sz〉T ≈
−0.22 � as depicted in the color map of Fig. 3. The horizontal
stripes dominate over the vertical structures indicating, that
the choice of the RC initial states has a greater influence on
the results than the spatial configuration of the nuclear spins
within the dot.
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FIG. 4. (Color online) Same plot as in Fig. 3 but for in-plane
orientation β = π/2. For all parameters, the long-time average of the
longitudinal electron spin component sharply saturates at 〈Sz〉T ≈ 0.
In contrast to the out-of-plane case, the results seem independent of
the initial state even in the few spin regime. For certain configurations,
however, we find a non-negligible dependence on the initial state.

Moreover, we find large oscillations around this long-time
average value for many configurations and initial states.
This results in both sizable sample ranges �Sz and standard
deviations σSz

. By averaging over all 51 × 51 results, we
find 〈〈Sz〉T 〉 = (−0.22 ± 0.06) �, 〈σSz

〉 = (0.13 ± 0.04) �, and
〈�Sz〉 = (0.52 ± 0.11) �, which is also shown in Fig. 5. The
large average value of the sample range 〈�Sz〉 shows that
for most cases analyzed, there was at least one big change in
amplitude. However, no total spin flip to +�/2 is achieved. The
occurrence of sizable standard deviations indicates that there
are on average many of these events. Thus in the few nuclear
spin regime, coherent oscillations of the electron spin are the
dominant dynamics, where recurrences of the initial value take
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FIG. 5. (Color online) Plot of the long-time average 〈Sz〉T , the
standard deviation σSz

and, the sample range �Sz as a function of the
number of nuclear spins K for in-plane (β = π/2, red) and out-of-
plane orientation (β = 0, black). The values are obtained by averaging
over 51 RC initial states and 51 different configurations, see Figs. 3
and 4. Error bars are given by the standard deviation with respect to
averaging over all 51 × 51 results. While the long-time average is
almost constant, the averaged standard deviation σSz

as well as the
averaged sample range �Sz strongly decrease for larger K indicating
the reduction of fluctuations and of the occurrence of beating or
recurrence events.

place with a period TP = �/ maxi(|λi |) ∼ �/(AHI |φ(rK )|2) �
100 ns.

If we consider a larger environment of nuclear spins as
presented in Fig. 3 with K = 6, the behavior of the long-time
average changes. First of all, the result is much more uniform
with respect to both the RC initial states and the configurations.
In addition, the remaining differences in 〈Sz〉T depend on the
configurations rather than on the initial states, which is obvious
from the vertical lines present in this color map. Averaging
over all 51 × 51 results gives 〈〈Sz〉T 〉 = (−0.22 ± 0.02) �,
which is essentially the same as for K = 3. However, the
standard deviation 〈σSz

〉 = (0.06 ± 0.03) � and the sample
range �Sz = (0.37 ± 0.06) � clearly decrease. We confirmed
this trend of decreasing fluctuations by repeating the above
averaging procedure for other numbers of nuclear spins. These
results are presented as a function of K in Fig. 5. While
the long-time average value is constant, both the standard
deviation and the sample range become smaller. Especially, the
pronounced decay of the sample range clearly indicates that
recurrences occur much less and, hence, that the corresponding
recurrence times are increasing with more nuclear spins.

Thus the major effect of an increased number of nuclear
spins is to suppress the oscillations around the long-time av-
erage and changing the system from an initial state dominated
regime to a regime where the configuration of the nuclear spins
is important. This behavior can be understood by analyzing
the impact of the nuclear spin number on the dimension of the
Hilbert space and on the strength of the hyperfine interaction.

For a small number of nuclear spins, the dimension of the
corresponding Hilbert space D = 2K+1 is small and, hence,
we draw our RC initial states from a rather limited set, where
individual single product states |n〉 lead to very different dy-
namics of the electron spin. Due to the combination of only 2K

states |n〉 to a RC initial state, it is not unlikely that one of these
states dominates over the rest leading to rather diverse results.

By increasing K and, thus, the Hilbert space dimension this
situation is changed. Since the individual state | ⇓ . . . ↑↓〉
of nuclear spins at the border of the dot is almost irrelevant
due to a small |φ(�rk)|2, groups of effectively equivalent states
are superposed. Thus a more effective averaging is achieved
suppressing the dependence on a specific initial state. As a
consequence, it is very unlikely for a single state to dominate
over the rest.

The coupling strength of nuclei is the key in understanding
the dependence of the results on the configuration. Its energy
scale is given by the product AHI |φ(rK )|2 of the hyperfine
coupling constant and the maximal value of the envelope
function at the sites of the nuclear spins. For a small number
K , the probability to find two or more nuclear spins, which
couple almost equally with the electron spin, is low due to the
large gradient of the envelope function. Hence, effectively only
one nuclear spin strongly interacts with the electron leading to
simple oscillations. This behavior can be also easily derived
by diagonalizing the resulting, effective 4 × 4 matrix of the
AHI Hamiltonian given in Eq. (5). In doing so, one finds
a discrete spectrum of frequencies given by the degenerate
eigenvalues {λi} = {−1/2,0,1/4,1/4} AHI| φ(rK )|2. This fact
is responsible for the rather uniform dynamics with respect to
different configurations in a small K regime.
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FIG. 6. (Color online) (a) Eigenvalues λi of the AHI Hamil-
tonian for for K = 6 nuclear spins and configuration C = 10 in
normalized units of AHI |φ(rK )|2. (b) Eigenvalues λi for K = 6
and C = 3. (c) Number of distinct eigenvalues λi as a function of
the relative probabilities |φ(rK−1)|2/|φ(rK )|2 and |φ(rK−2)|2/|φ(rK )|2
for K = 6 nuclear spins. If both |φ(rK−1)|2/φ(rK )|2 ≈ 1 and
|φ(rK−2)|2/φ(rK )|2 ≈ 1, at least three nuclear spins are strongly
interacting with the electron spin causing a spectrum with many
different eigenvalues as depicted in (b). If only the most central
nuclear spin couples strongly to the electron spin (lower left part),
the spectrum is highly degenerate showing only three different
eigenvalues as shown in (a). The upper limit for the number of 15 has
no deeper meaning besides distinguishing both types of spectra.

This situation can of course also occur for larger nuclear
spin environments, as shown in Fig. 6(a) for K = 6. It is,
however, rather the exception from the more probable case of
several nuclei coupling comparably to the electron, where a
almost continuous spectrum is found as depicted in Fig. 6(b).
If we characterize these spectra quantitatively by counting the
number of distinct eigenvalues, i.e., eigenvalues which differ
significantly, we can map the configuration of the nuclei to the
spectra as depicted in Fig. 6(c).

For the in-plane case, our findings are quite different from
the former ones. The electron spin saturates around 〈Sz〉T = 0
for both K = 3 and 6 as shown in Fig. 4. Interestingly,
we find already for K = 3, that this average is reached
very precisely with smaller fluctuations than in the out-of-
plane case. This fact becomes also clear from averaging the
longitudinal electron spin 〈〈Sz〉T 〉 = (0.000 ± 0.004) � over all
results. Moreover, the results are independent from the choice
of the RC initial state. Some single configurations, however,
give rise to deviations from this, where also a dependence on
the initial state is restored. It seems, that this is the case, where
several nuclear spins couple comparably to the electron spin
explaining the sensitivity on initial states. The size of the

fluctuations is on average given by 〈σSz
〉 = (0.15 ± 0.02) �.

The mean value of the sample range of 〈�Sz〉 = (0.92 ±
0.07) � close to 1 indicates, that in most cases, the electron spin
is at least once almost completely flipped to + 1

2 � in contrast
to the out-of-plane orientation. The K = 6 study shows
qualitatively the same result with 〈〈Sz〉T 〉 = (0.000 ± 0.001) �,
where the fluctuations 〈σSz

〉 = (0.057 ± 0.004) � are further
suppressed. Moreover, the appearance of recurrences and total
spin flips is also strongly decreased for K = 6 as is clear
from the sample range 〈�Sz〉 = (0.51 ± 0.09) �. Analyzing
this observable as a function of the number of nuclear spins,
we observe again a prominent suppression of the fluctuations
for growing K as is apparent in Fig. 5.

In order to understand the differences between the in-plane
and out-of-plane dynamics of the electron spin in more detail,
an analytic analysis of the dynamics in the case of only one
nuclear spin is very useful. Calculating the long-time average
analytically for K = 1 yields

〈Sz〉T (β)

= lim
�T →∞

1

2�T

T −�T∫
T +�T

〈Sz〉(t,β)

= −�

4
cos(β)[2ρ↓↓ cos(β) + (ρ↑↓ + ρ↓↑) sin(β)] , (18)

where the initial density matrix

ρ0 = |ψ0〉 〈ψ0| =

⎛
⎜⎜⎜⎝

ρ↓↓ ρ↓↑ 0 0

ρ↑↓ ρ↑↑ 0 0

0 0 0 0

0 0 0 0

⎞
⎟⎟⎟⎠ (19)

is only nonzero for the electron spin pointing down as for
the RC initial states. For more nuclear spins involved, the
resulting equations become much more complicated. However,
for the special case of only one strongly coupling nuclear spin,
the structure of the AHI Hamiltonian remains the same and
Eq. (18) still holds.

We investigated the β dependence of the long-time av-
erage numerically for some configurations and initial states
and K = 2,4,6, and 9 nuclear spins, where we find good
agreement of our results with 〈Sz〉T (β) = 〈Sz〉T (0) cos2(β)
with increasing K . Particularly, we observed this behavior
also for configurations with several nuclear spins coupling
almost equally to the electron spin. As an example, we plot in
Fig. 7 the β dependence of 〈Sz〉T for K = 6 and configuration
C = 3. Its spectrum is shown in Fig. 6(b). This fact is also
supported by our results presented in Figs. 3 and 4, where we
find on average 〈Sz〉T ≈ −0.22 � for β = 0 and 〈Sz〉T ≈ 0 for
β = π/2. The deviation of 〈Sz〉T (β = 0) from −�/4 originates
from the finite time window [Tmin,Tmax] used in the numerical
calculations, which misses recurrences of the full initial value
of 〈Sz〉(t = 0) = −�/2.

From this numerical findings and Eqs. (18) and (19),
we suppose that contributions from the off diagonal parts
cancel each other almost completely and that the elements
of the diagonal parts of the density matrix ρ↓↓,ρ↑↑ have
approximately equal weight of 1/2K , which seems reasonable
for random complex initial states.
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FIG. 7. (Color online) Dependence of the long-time average
〈Sz〉T (β) on the orientation of the quantization axis with respect to
the graphene plane for K = 6 nuclear spins. The example shown
here was calculated for the configuration C = 3, whose continuous
spectrum is presented in Fig. 6(b). The only parameter used to fit the
numerical values to the analytic curve 〈Sz〉T (β) = 〈Sz〉T (0) cos2(β) is
the out-of-plane value 〈Sz〉T (0).

B. Decoherence times

In this section, we want to investigate the decoherence
times of the longitudinal electron spin Sz for different initial
states and different configurations. We chose the threshold to
be always about 0.1 � below the obtained long-time average,
which gives CS = −0.325 � for the out-of-plane case β = 0
and CS = −0.1 � for the in-plane case β = π/2. Moreover,
we used exactly the same initial states and configurations
for all K as for the calculation of the long-time average.
The decoherence times were estimated for times up to
107 τHI ≈ 10 ms with a time resolution �T = 102 τHI, which
yields at least P = 2π/(�T · λmax) ≈ 20 points per period
of the highest absolute frequency maxi(|λi |). For K = 6, we
extended the investigated time regime to 108 τHI ≈ 100 ms
using the same time resolution �T .

As it turns out, the decoherence times obtained by this
method are rather independent from the initial states. Several
factors are important for this fact. First of all, for larger
numbers of nuclei of course the same arguments concerning
the Hilbert space dimensions as for the long-time average hold.
However, we also find for small K only little dependence on the
initial states. One reason for this is probably, that our method is
robust against small changes of the longitudinal electron spin
caused by different initial states, since we measure when the
signal is above a certain threshold, but not how much. Finally,
as we show below, the decoherence seems strongly related
to the presence of many incommensurate frequencies. These
frequencies are proportional to the eigenvalues of the hyperfine
Hamiltonian and, hence, independent from the initial state.

Therefore, we focus in the following on the consequences of
different configurations on the decoherence times for different
numbers of nuclear spins. In principle, there are two relevant
aspects concerning the positions of the nuclei, the absolute
value of the envelope function |φ(�rK )|2 at the site of the
strongest coupling nuclear spin and the relative position of
the nuclei with respect to each other. The importance of
the former is obvious, since the envelope function sets the
maximal energy scale of the AHI in Eq. (9) to AHI |φ(rK )|2
and, consequently, rescales all times by a factor |φ(rK )|−2.
Therefore, if we want to analyze the influence of the relative
positions, we have normalize the decoherence times according
to TD → TD |φ(rK )|2.
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FIG. 8. (Color online) Normalized decoherence time TD ·
|φ(rK )|2 as a function of 51 RC initial states and 51 random
configurations for K = 6 nuclear spins in in-plane and out-of-plane
orientation. While the decoherence time is almost the same for
different initial states, it strongly depends on the configurations
showing deviations over several orders of magnitude. White spaces
indicate the total lack of decoherence up to absolute times of 0.1 s
given a threshold of CS = −0.325 �. For special configurations,
C = 10, 32, and 35, and β = 0 there is no decoherence at all, but
coherent oscillations of the electron spin.

We begin our discussion with investigating these normal-
ized decoherence times for K = 6 nuclei in more detail and
then turn to absolute decoherence times as a function of K

afterwards.
A color map of the normalized decoherence times for 51

initial states and 51 configurations is shown in Fig. 8. For
the out-of-plane case, we find that the decoherence times are
almost independent of the initial state, but vary over several
orders of magnitude for different configurations. If we plot
the normalized times as a function of the number of distinct
eigenvalues, cf. Fig. 6, we find a direct connection between
these times and the configuration of the nuclei in the dot. As is
clear from Fig. 9, long decoherence times can be only found for

TD > 0.1s
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FIG. 9. (Color online) Normalized decoherence time TD ·
|φ(rK )|2 as a function of the number of distinct eigenvalues of
the AHI Hamiltonian for K = 6 nuclear spins in out-of-plane
orientation. For this plot all out-of-plane results presented in Fig. 8
are considered. Obviously, long decoherence times occur only
for a small number of distinct eigenvalues. Together with the
results of Fig. 6 the importance of the relative coupling strengths
∝|φ(rK−1)|2/|(φ(rK ))|2 , . . . and, hence, of the relative position of
different nuclei becomes evident.
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FIG. 10. (Color online) Relative number of absolute decoherence
times TD falling in a certain time interval [Tmin,Tmax] for different
numbers K of nuclei in in-plane and out-of-plane orientation. For
each K 51 RC initial states and 51 configurations were considered
leading to Ncalc = 2601 calculations in total. (a) In the out-of-plane
case, long decoherence times are clearly dominating for few nuclear
spins. Increasing K leads to a quick decay of the decoherence times
such that short times TD are common. Very short decoherence times
start to become relevant for K > 6. (b) In the in-plane case, even for
few nuclear spins short relaxation times are the rule. For increasing
K , the percentage of short decoherence times is growing further.

the discrete spectra, which are realized if only one nuclear spin
strongly interacts with the electron. The configurations without
any decoherence, which are indicated by white spaces in Fig. 8,
exhibit discrete spectra with the minimal number of distinct
eigenvalues of 3. An example of such a spectrum is shown
in Fig. 6(a). In these cases the dynamics of the longitudinal
electron spin are coherent oscillations, where recurrences
appear with a period of TP = |φ(rK )|−2 τHI � 100 ns. In
contrast to this, short normalized decoherence times are a
consequence of continuous spectra as presented in Fig. 6(b).
Thus, by the configurations studied, we can proof a direct
relation between the relative positions of the nuclear spins and
their relative coupling strengths, respectively, and the order of
magnitude of the decoherence times.

For the in-plane case, the qualitative picture is similar,
however, with shorter normalized decoherence times over all,
such that we find decoherence within the investigated times
for all configurations. In contrast to the out-of-plane case, also
discrete spectra can show rather short decoherence times for
specific configurations. Altogether, this demonstrates a much
faster decoherence due to the broken symmetry in the in-plane
orientation.

Turning from normalized times to absolute decoherence
times, the value of the envelope function |φ(rK )|2 at the site
of the strongest coupling nuclear spins additionally becomes
relevant, since it sets the order of magnitude of all times.
Putting a larger and larger number of nuclear spins on a
QD of constant area increases the average value of |φ(rK )|2,
since it is more likely to find a spin very close to the center.
Moreover, as we discussed above, an increased K makes it
much more probable to have several nuclear spins coupling
almost equally to the electron spin. Altogether, this lets us
expect a prominent decay of long decoherence times as a
function of growing K , which is confirmed by Fig. 10. For
β = 0 and very few nuclear spins K = 3, we find that the
majority of decoherence times is longer than 10 ms, whereas

very short TD are almost completely irrelevant. For K = 8,
the percentages of short and long times are inverse. Now, only
less than 7% of the decoherence times are longer than 10 ms,
while most of the decay of the electron spins takes place within
500 μs. However, for K = 6, surprisingly, still about one-fifth
of the cases shows ultra long decoherence times.

In the in-plane orientation, long decoherence times make
up only a small fraction even for few nuclear spins. Short
decoherence times in the range of 5 μs to 500 μs are
significantly increasing for more spins. Notably, ultrashort
times below 5 μs do not become much more important.

In summary, typical decoherence times are on the order of
ms under ideal conditions of small nuclear spin numbers and
out-of-plane orientation. In the case of such long decoherence
times, of course, other effects like spin orbit coupling could
become relevant. In the presence of acoustic phonons and small
external magnetic fields, this spin orbit coupling86,89 can lead
to spin relaxation times of T1 ∼ 1 ms below the decoherence
times found here.

For larger numbers of nuclear spins and, generally, for
in-plane orientation, decoherence times are smaller, but still
above 5 μs. Typical decoherence times of GaAs QDs under
spin echo4 lie in the T2,echo ∼ 1 μs regime, whereas the
current record of T2,CPMG ≈ 200 μs was measured using the
Carr-Purcell-Meiboom-Gill (CPMG) pulse sequence.10 Pure
dephasing times T ∗

2 are below 50 ns for GaAs. Although all
our estimates for the decoherence times are done for a model
without any effort to improve the coherence of the electron spin
like pulse sequences or strong magnetic fields, in almost all
considered cases, we are above the GaAs spin echo time T2,echo.
For smaller nuclear spin numbers, graphene even outperforms
the CPMG time, which lets us expect very long decoherence
times in graphene QDs when using pulse sequences.

V. SUMMARY AND CONCLUSION

Starting from a generic model of a graphene QD, we studied
the dynamics of the electron spin caused by the hyperfine
interaction with the nuclear spins present in the dot. The
number of nuclei was varied from K = 2 to 9, where the upper
limit corresponds to the natural abundance of spin carrying
13C for the dot size considered in this article. Besides the role
of the number of nuclei, we also investigated the influence
of the initial conditions as well as the impact of different
configurations of the nuclei in the dot. Moreover, we explored
the consequences of the orientation of the spin quantization
axis with respect to the graphene plane. In order to characterize
and quantify these effects, we analyzed both the long-time
average 〈Sz〉T of the longitudinal electron spin component and
its decoherence time TD .

Since nuclear spins are usually very hard to control in
the envisioned experiments, we chose the initial states to be
random complex (RC) superpositions of single product states.
For this class of initial states, we found an appreciable effect on
the long-time average only in the case of very few nuclear spins
with K < 5. Upon increasing the number of nuclear spins, the
effects of quantum parallelism and amplitude averaging14,70

reduce the differences between individual RC initial states
more and more effectively. In this parameter regime, the results
are dominated by the configuration of the nuclear spins within
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the dot, i.e., by their relative positions with respect to each
other. For different configurations, the spectrum of eigenvalues
of the hyperfine interaction varies from a highly discrete one
with many degenerate eigenvalues to a continuous spectrum
with many incommensurate frequencies.

For all K , a pronounced dependence of the long-time aver-
age on the orientation angle β between the spin quantization
axis and the normal vector of the graphene plane was found.
It saturates at approximately one-half of its initial value of
〈Sz〉T ≈ −�/4 for β = 0 and at 〈Sz〉T ≈ 0 in the in-plane case
with β = π/2. While the long-time average of the electron
spin is surprisingly almost constant with respect to K , we
observed a strong reduction of fluctuations around it for larger
nuclear spin baths.

In contrast to the long-time average, the decoherence times
TD never showed a recognizable dependence on the initial
states. Instead, the decoherence times depended decisively
on the configuration of the nuclear spins in the dot. Long
decoherence times were observed for only one nuclear spin
strongly interacting with the electron spin, while several
almost equally coupled nuclei lead to a very fast decoherence.
Moreover, the decoherence times showed a strong dependence
on the number of nuclear spins as well as on the orientation of
the quantization axis. In the out-of-plane case, about 75% of
our results experienced decoherence times longer than Tmax =
10 ms for K = 3. For K = 8, instead, less than 10% showed
no decoherence within this time frame while, in most cases,
the electron spin decayed in less than 500 μs. Considering
the in-plane orientation, already for K = 3 the majority of
investigated initial state/configuration sets decohere within
500 μs.

Although our results were obtained for a specific model of
the graphene quantum dot using a Gaussian envelope function,
they could be generalized quite naturally. In our model, the
QD was comparably small with a sharp boundary. This choice
resulted in a steep envelope function. Physically, this situation
corresponds approximately to an etched QD. Thinking of
larger QDs with smoother boundaries, we expect a flatter enve-
lope function which gives rise to more nuclear spins interacting
comparably with the electron spin. Consequently, it becomes
more likely to end up with rather low fluctuations around the
long-time average and to find quite short decoherence times. In
contrast, the realization of even smaller dots60 with diameters
of about 1 nm causes a very steep envelope function. This case
should result in, at most, one nuclear spin interacting with the
electron spin.

Both scenarios seem experimentally interesting in order
to engineer QDs for different applications. A 13C enriched

QD could potentially be used to prepare the electron spin
very precisely in a certain superposition of spin up and down
for subsequent experiments. A very small QD, in contrast,
could serve as a storage for the electron spin where very long
decoherence times are to be expected.

Besides these technical points, graphene QDs could also
serve as a rich playground to test fundamental aspects of
quantum mechanics and quantum information theory in an
interesting system-bath setup. If we consider the hosted
electron spin as the system, we are able to control both
its spatial size and its state electro-statically. Moreover, the
electron spin can be straightforwardly addressed via external
magnetic fields or in an optical way. In contrast, a direct
preparation of the state of the nuclear spin bath seems
challenging. However, the size of the nuclear spin bath can
be modified systematically by isotopic purification of either
12C or 13C. Finally, as we argued above, the design of the
QD enables the experimentalist to manipulate the strength
as well as the nature of the system-bath interaction. Thus
these considerations render graphene QDs to be a flexible
system-bath realization offering a controllable, fermionic bath
of spin 1/2 nuclei.

Given these opportunities, our setup not only seems very
promising for studying a quantum to classical crossover as
a function of the bath size in a fermionic environment, but
also for more advanced concepts of quantum information
theory such as quantum Darwinism.91 With the notion of
“quantum Darwinism,” W. H. Zurek summarizes his ideas of
emergent classicality in a pure quantum universe, where the
formation of classical and quantum system bath correlations,
as well as the accompanied information exchange matter.
Since measurements are most often indirect, relying on the
environment as a mediator, it seems to be evident that the
environment plays the crucial role in the creation of objective
properties. However, as far as we know, this theory is up to
now tested only in few experiments92,93 in a rather indirect
way. In our opinion, taking advantage of the controllable spin
bath in graphene QDs, this system offers a unique opportunity
to reveal new insights in the role of the environment in the
classical world we experience.
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