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Efficient modal-expansion discrete-dipole approximation: Application to the simulation of optical
extinction and electron energy-loss spectroscopies
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An efficient procedure is introduced for the calculation of the optical response of individual and coupled
metallic nanoparticles in the framework of the discrete-dipole approximation (DDA). We introduce a modal
expansion in the basis set of discrete dipoles and show that a few suitably selected modes are sufficient to
compute optical spectra with reasonable accuracy, thus reducing the required numerical effort relative to other
DDA approaches. Our method offers a natural framework for the study of localized plasmon modes, including
plasmon hybridization. As a proof of concept, we investigate optical extinction and electron energy-loss spectra
of monomers, dimers, and quadrumers formed by flat silver squares. This method should find application to the
previously prohibited simulation of complex particle arrays.
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I. INTRODUCTION

Metallic nanoparticles have been recognized as excel-
lent tools to manipulate light at the nanoscale, enabling
deep-subwavelength optical confinement and extreme electro-
magnetic field enhancement.1 This has triggered a massive
amount of work in search of applications to ultrasensitive
molecular detection,2,3 improved photovoltaics,4 surface-
enhanced spectroscopies,5–7 and optical signal processing,8,9

among other feats. The optical properties underlying these
applications are associated with plasmons supported by the
nanoparticles, which emerge as strong spectral features in
the UV–near-infrared (UV–NIR) spectral range and consist of
collective oscillations of valence electrons.10 The frequency,
width, and optical strength of plasmons are strongly depen-
dent on the nanoparticle morphology, size, composition, and
environment.11–13 Particles of small size compared with the
light wavelength are especially important, as they can support
strong dipolar modes, whereas higher-order modes become
relatively dark.

Aside from isolated nanoparticles, coupled systems such
as dimers,14 trimers,15 and arrays of nanoparticles16 have
also been investigated and their plasmon modes found to be
describable within a hybridization scheme of the modes of
the individual nanoparticles.17 This has revealed the existence
of so-called bright and dark modes, depending on their
ability to couple to light.18 For example, when the plasmons
of assembled small nanoparticles combine in such a way
that the total dipole moment vanishes, the interaction with
light is weak (actually, zero in the small-particle limit), thus
producing no features in the optical spectra. An effective way
of resolving such dark modes is by exciting them with a
focused electron beam. The excited plasmons leave a trace
in the electrons as specific energy losses, which can be
measured by means of an electron microscope equipped with
an electron spectrometer.19,20 The small spatial extension
of the electromagnetic field associated with a fast electron
enables a local interaction with the nanoparticles, giving
rise to the excitation of some plasmons, depending on the
electron trajectory.21 Alternatively, dark modes can also

be excited by breaking the symmetry of the system, so
that they become brighter, as demonstrated using nanorod
dimers.19,22 Incidentally, coupled systems are good candidates
for sensing applications, using some of the properties of Fano
resonances,23–25 as recently shown by optical and electron
energy-loss (EEL) experiments.26,27

In this work, we focus on the simulation of optical extinction
and EEL spectra of isolated and coupled metallic particles
as a proof of principle of our approach. Although several
methods already exist for performing such calculations, they
suffer from various drawbacks. For instance, the bound-
ary element method (BEM) requires us to parametrize the
boundaries between different materials12,28 and this can be
a complicated task for complex structures. Also, the finite
difference in the time domain (FDTD) approach becomes very
inefficient for large systems consisting of sparse distributions
of materials (e.g., distant particles, narrow wires, etc.), as it
relies on three-dimensional (3D) parametrization of space,
including empty regions.29,30 Multiple-scattering T -matrix
techniques31,32 are limited to simple particles (e.g., spheres)
and have severe constraints regarding their arrangement (e.g.,
multipolar expansions converge very weakly for intertwined
objects). In contrast, the discrete-dipole approximation33,34

(DDA) is a volume method that is well adapted for describing
complex shapes, including sparse systems, although the
calculation time grows rapidly for systems consisting of many
particles. Our goal here is to develop an efficient procedure
to compute optical extinction and EEL spectra for clusters
of arbitrarily shaped particles. We accomplish this task by
using an eigenvector expansion of the physical quantities
entering the DDA formalism, instead of directly solving the
complete self-consistent coupled-dipoles equation. We find
that this expansion can be truncated to a few terms compared
with the complete basis set containing thousands of vectors,
provided those terms are carefully chosen, as prescribed below.
The response of the whole system is then obtained by adding
interaction terms that account for multiple scattering between
the particles. In this way, the numerical size of the problem
is considerably reduced, particularly in large systems formed
by several particles. The eigenmode decomposition draws its
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strength from the fact that it provides a natural framework for
describing plasmon-mode hybridization. We provide a proof
of concept of this eigenvector expansion (EVE) method by
calculating EEL and optical extinction spectra of isolated and
coupled silver nanosquares, the results of which are validated
by comparison with those obtained from the full DDA.

II. DESCRIPTION OF THE METHOD

This section is divided in two parts: the DDA is first
reviewed and the EVE formalism is introduced afterwards.

A. Discrete-dipole approximation

In the DDA,33 a particle is described as a set of N interacting
polarizable elements arranged on a cubic lattice. We work in
the frequency domain ω, and thus, an overall exp(−iωt) time
dependence is assumed. The dipole moment pj of the element
located at rj is proportional to the local field at this position:

pj ≡ p(rj ) = αj Eloc
j , (1)

where αj is the polarizability of the element, which is related
to the dielectric function εj of the material via the Clausius-
Mossotti relation35

αj = 3V

4

εj − 1

εj + 2
. (2)

Here, V is the volume of the element. The local field at rj is
given by the superposition of the applied external field and the
sum of the scattered fields coming from the other dipoles, so
that Eq. (1) becomes

pj = αj

⎡
⎣Eext

j +
N∑

n�=j

Tjnpn

⎤
⎦ , (3)

where Tjn is the dipole-dipole interaction matrix, which we
can write as

Tjn = eikrjn

rjn

[
k2

(
I3x3 − rjn ⊗ rjn

r2
jn

)

− 1 − ikrjn

r2
jn

(
I3x3 − 3

rjn ⊗ rjn

r2
jn

)]
, (4)

k = 2π
λ

, rjn = rj − rn, rjn = |rjn|, and ⊗ is the dyadic
product.35 Traditionally, the 3N × 3N system of equations (3)
is solved numerically via either direct inversion (DI) or
iterative techniques (IT), such as conjugate gradient, for a
given external field.34

To get the optical response of the nanoparticles, the external
field is set to a plane wave

Eext
j = E0e

ik.rj , (5)

and the extinction cross section is then given by33

Cext(ω) = 4πk

|E0|2
N∑

j=1

Im
{
Eext,∗

j · pj

}
. (6)

Likewise, for a beam of fast electrons traveling along the z

direction with velocity v and impact parameter rq in the x-y

plane, the external field supplied by the electron (i.e., the ω

component of this field) has the following components:34

Eext
j,x = −eω

2πε0v2γ
eiω

zj

v
dj,x

dj

K1

(
ωdj

γ v

)
,

Eext
j,y = −eω

2πε0v2γ
eiω

zj

v
dj,y

dj

K1

(
ωdj

γ v

)
, (7)

Eext
j,z = − −eω

2πε0v2γ 2
eiω

zj

v iK0

(
ωdj

γ v

)
,

where e is the elementary charge, dj = rj − rq , γ =√
1 − ( v

c
)2, and Km is the modified Bessel function of order

m. The loss probability reduces to34

�loss(ω) = 1

π�2

N∑
j=1

Im
{
Eext,∗

j · pj

}
. (8)

We use Eqs. (6) and (8) to render the spectra shown in the
following.

B. Eigenvector expansion method

The main idea of the EVE method is to use a set of
eigenvectors as a basis to expand the physical quantities instead
of directly solving Eq. (3). The choice of these eigenvectors is
then at the core of EVE because it conditions the convergence
of the method. The reason why we introduce this approach
is that it leads to an efficient way to calculate the response
properties of coupled metallic nanoparticles compared with
standard DDA, as discussed hereafter.

Let us define the propagator matrix M of a particle as

M =

⎡
⎢⎣

1
α1

I3x3 . . . −T1N

...
. . .

...
−TN1 . . . 1

αN
I3x3

⎤
⎥⎦ , (9)

and rewrite Eq. (3) in the form

M|P〉 = |Eext〉, (10)

where |Eext〉 and |P〉 are vectors of dimension 3N that contain
the applied field and the dipole moment for each discretization
element of the particle. Let now |ql〉 be an eigenvector of Q
(i.e., Q|ql〉 = ql|ql〉), the “geometric matrix” defined as the
electrostatic limit (kr → 0) of M with null trace

Q = M|kr→0 −

⎡
⎢⎣

1
α1

I3x3 . . . 0
...

. . .
...

0 . . . 1
αN

I3x3

⎤
⎥⎦ . (11)

Because this matrix is symmetric, one can use these vectors as
a complete set of orthonormal basis functions and write

|Eext〉 =
lmax∑
l=1

el|ql〉, (12)

|P〉 =
lmax∑
l=1

pl|ql〉. (13)
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Inserting these expressions in (10) and projecting on 〈ql|, we
obtain

lmax∑
l′=1

mll′pl′ = el, (14)

where mll′ = 〈ql|M|ql′ 〉. Because the eigenvectors form a
complete basis set, the expansion coefficient pl can then be
calculated from this equation noticing that el = 〈ql|Eext〉. One
could have thought to use the eigenvectors of the propagator
matrix but, as it is not Hermitian, they do not form a complete
set of orthonormal functions and hence are not appropriate to
our problem. Furthermore, it is numerically more efficient to
diagonalize a real symmetric matrix (i.e., Q) than a complex
one.

At this point, two main advantages of EVE can already be
mentioned:

(1) It is possible to truncate the order of expansion lmax

to a number that is much smaller than 3N (for instance, in
the following we use lmax = 3 for a system of N = 3600
dipoles). To this purpose, one needs to choose carefully the
lmax eigenvectors that will be used in Eq. (13). In this paper,
they are the ones that give the largest values of |el/ql|.
Although this criterion may seem somewhat arbitrary, the
physical justification is that it represents the probability for
the ω component of the external field to excite the eigenmode,
taking into account the symmetry properties of the field and
the particle (i.e., el) and some kind of “intrinsic polarizability”
of the eigenmode (i.e., 1/ql). The criterion can then be seen as
a way to choose the eigenvectors that are the most excitable
by a given external field.

(2) It can be easily generalized to clusters of interacting
particles. Indeed, each particle μ of a cluster can be described
by its own propagator matrix Mμ, so that Eq. (10) becomes

Mμ|Pμ〉 = |Eext,μ〉 +
∑
ν �=μ

�μν |Pν〉, (15)

with 
μν given by

�μν =

⎡
⎢⎣

−Tμν

11 . . . −Tμν

1Nν

...
. . .

...
−Tμν

Nμ1 . . . −Tμν

NμNν

⎤
⎥⎦ , (16)

where Tμν

ij is the dipole-dipole interaction matrix that connects
the dipole component j of particle ν to the dipole component
i of particle μ. Using the same expansion as in Eqs. (12)
and (13) and projecting Eq. (15) on 〈qμ

l |, the following system
of equations is obtained:

lmax∑
l′=1

m
μ

ll′p
μ

ll′ = e
μ

l +
∑
ν �=μ

lmax∑
l′′=1

λ
μν

ll′′ p
ν
l′′ , (17)

where m
μ

ll′ = 〈qμ

l |Mμ|qμ

l′ 〉 and λ
μν

ll′′ = 〈qμ

l |
μν |qν
l′′ 〉 is an in-

terparticle coupling coefficient. This system can be solved
with standard iterative techniques once all the eigenvalues and
eigenvectors of each particle are known.

The formulation of EVE for several particles has some
advantages compared with standard DDA. First, the geometric
matrix (11) of a particle depends only on the relative positions
of the dipoles and is completely independent of their absolute

positions and orientations. The geometric matrix is also
frequency independent and its diagonalization has to be made
one time for all the spectrum and, once this step is completed,
the resulting eigenvectors can be stored and reutilized in any
further calculations (for which particles can be translated or
rotated). These ones are chosen as in the isolated particle case:
for each particle μ, only the first lmax eigenvectors that yield
the largest values of |eμ

l /q
μ

l | are retained.
Additionally, the algorithm is less computationally de-

manding than traditional DDA approaches. For example, let
us consider a cluster of Npart identical particles described by
Ndip dipoles. The computational demand scales as (NpartNdip)3

for direct inversion, whereas it scales as Nit(NpartNdip)2 for
iterative techniques (for instance, conjugate gradient), where
Nit is the number of iterations needed to achieve convergence.
In contrast, the EVE algorithm consists of two different
parts: inversion of the propagator matrix, which scales as
N3

dip, and calculation of coupling terms, which requires
l2
max(NpartNdip)2 operations, where lmax is the expansion order.

The complexity of the EVE method is then roughly given by
N3

dip + l2
max(NpartNdip)2, and the dominant term depends on the

size of the cluster and the expansion order. For clusters formed
by many particles, we have ratios γ EVE/DI ≈ l2

max/NpartNdip

between EVE and direct inversion and γ EVE/IT ≈ l2
max/Nit

between EVE and iterative techniques. Obviously, these ratios
can be substantially lower than 1 depending on the choice of
parameters.

Notice that although the propagator matrix is frequency
dependent in general electrodynamic problems, this is not the
case when one deals with small homogeneous particles (αi =
α, i = 1, . . . ,N) within the electrostatic limit (kr → 0). In
this case, Eq. (14) reduces to mlpl = el(l = 1, . . . ,lmax) with
ml = ql + 1/α, hence decreasing the computational cost of
the EVE method.

III. RESULTS AND DISCUSSION

We present here testing results for the EVE method applied
to isolated and coupled flat silver square nanoparticles of
24-nm side length (in the x and y directions) and 6-nm
height (in the z direction). An individual particle is described
by 3600 dipoles, and because of its small size compared
with the light wavelength, we work within the electrostatic
limit. The dielectric function of silver is taken from tabulated
data.36

A. Isolated silver square

As a first example, we compare the optical extinction
spectra of an isolated silver square excited by a plane wave
traveling along z and polarized along y that are obtained by
nonretarded EVE (nr-EVE) to the ones given by retarded
and nonretarded DDA (r-DDA and nr-DDA, respectively)
calculations. The results in Fig. 1(a) show that there is a
strong and sharp resonance at 2.13 eV and a small bump at
2.93 eV. The position of the resonances matching with both
retarded and nonretarded DDA reveals that the electrostatic
approximation used with EVE is valid in this context. From
Fig. 1(a), one can see that only one eigenvector is sufficient
to get the correct position of the peaks and that the intensity
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FIG. 1. (Color online) (a) Extinction spectra of an isolated silver
square calculated with retarded (black curve) and nonretarded DDA
(black circle), as well as nonretarded EVE with 1 (red curve), 2
(green curve), 3 (blue curve), and 10 (yellow curve) eigenvectors.
The particle has side length of 24 nm (in the x and y directions)
and 6 nm in height (in the z direction). (b)–(g) Normalized modulus
[(b), (c)] and phase [(e), (f)] maps of the charge integrated along
the z direction (z-IC) for the first two eigenmodes and full DDA
calculation [(d), (g)] of an isolated silver square excited by a plane
wave of 2.13 eV. The integration radius is a = 4 nm. Charge signs
are added to help visualizing the modes.

of the resonances rises as the expansion order is increased.
Furthermore, the contribution of a given term of the expansion
to the total intensity becomes smaller and smaller as its order is
high, a behavior that is expected in any convergent expansion
method. If the intensity of the 2.13-eV resonance converges
quite rapidly with the expansion order, this is not so true for the
2.93-eV resonance as can be seen from the zoom in Fig. 1(a).
This behavior is due to the more complicated geometry of this
mode and will be explained hereafter when EEL calculations
will be performed. The fact remains that, in the following, we
will always use a basis set of three eigenvectors as it is a good
compromise between accuracy and calculation time.

These eigenvectors can be seen as some “geometrical
eigenmodes” of the particles and they are chosen depending
on how they will interact with the external field. A way to get a
representation of these eigenmodes is to plot the modulus (the
intensity) and the phase [the signs which are opposite (even)

for phase delay of π (2π ) between two points] of the charge
integrated along the z direction. Indeed, because the particle
is too thin in this direction for retardation to occur, there will
be no phase change from one side to the other. The z-direction
integrated charge (z-IC) at frequency ω is defined as

Qz(x,y; ω) =
∫ h

0
q(x,y,z; ω)dz, (18)

with h being the thickness of the particle. The charge q(r; ω)
at a point r = (x,y,z) can be obtained by integrating the
charge density in a volume V ′ around this point, i.e., q(r; ω) =∫
V ′ ρ(r′; ω)dV ′, where the charge density is related to the

polarization through ρ(r; ω) = −∇ · P(r; ω).35 In the frame
of DDA, if one takes V ′ as a spherical volume of radius a,
Eq. (18) becomes

Qz(xj ,yj ; ω) = h

T

T∑
t=1

q(xj ,yj ,zt ; ω), (19)

with q(rj ; ω) = − 4πa3

3N ′V

∑N ′
n=1 ∇n · pn, T and N ′ being the

number of dipoles along the thickness of the particle and in
the volume V ′, respectively.

Figures 1(b), 1(c), 1(e), and 1(f) show the normalized
modulus and the phase of the z-IC for the first two eigenmodes
of the silver square at 2.13 eV calculated for a radius of
a = 4 nm. They are degenerated and correspond to modes
where two opposite corners with respect to a diagonal are
excited with the same intensities but opposite charges (due
to the π phase delay). The third mode (not shown) also has
its maximum intensity on two opposite corners with the same
symmetry as the first mode but it has more charge oscillations
in the central part. This feature makes it a higher-eigenvalue
mode and it is then less contributing in the expansion. As
stated by Eq. (13), the dipole moments are formed by a linear
combination of the eigenmodes. It results in a dipolar mode
aligned with the polarization vector (along the y axis) for which
each corner has the same intensity but with opposite sign in
the upper and lower corners as shown in Figs. 1(d) and 1(g).

It is interesting to perform group-theory analysis to get
information on the symmetries of the modes supported by the
square nanoparticle.37 For this, let us consider it to be two
dimensional (a good approximation due to the small thickness
of the particle) so that the point group is C4v . In analogy
with the tight-binding model used in solid-state physics,38 it
is possible to describe a plasmon mode as a combination of
interacting localized corner states. If |n〉 is the state localized
at corner n [see inset of Fig. 1(a)], a plasmon mode can be
written as |ψ〉 = ∑4

n=1 cn|n〉. The representation of C4v in the
basis set {|n〉} has the following irreducible representations
decomposition: �(n) = A1 ⊕ B2 ⊕ E (see Appendix A). To
each of these irreducible representations correspond the
following linear combinations of the basis functions:

A1 ⇒ |ψA1〉 = 1
2 [|1〉 + |2〉 + |3〉 + |4〉], (20)

B2 ⇒ |ψB2〉 = 1
2 [|1〉 − |2〉 + |3〉 − |4〉], (21)

E ⇒
{∣∣ψE

1

〉 = 1√
2

[|1〉 − |3〉],∣∣ψE
2

〉 = 1√
2

[|2〉 − |4〉]. (22)
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FIG. 2. (Color online) (a) EEL spectra of an isolated silver square
calculated with retarded DDA (solid curves) and nonretarded EVE
with three eigenvectors (circles) for the two representative impact
parameters (in black and red). The particle has side length of 24 nm
and 6 nm in height. (b)–(g) Normalized modulus and phase maps of
the z-IC of the 2.33-eV [(b), (e)], 2.79-eV [(c), (f)], and 2.93-eV [(d),
(g)] modes calculated by nr-EVE. The integration radius is a = 4 nm.
Charge signs are added to help visualizing the modes.

The first one is a one-dimensional totally symmetric com-
bination, the second is one dimensional with a quadrupolar
symmetry where corners have the same intensity but alternate
in sign, and the last one is a two-dimensional combination
with dipolar symmetry along the diagonals. Comparing these
results to the l = 1 and 2 eigenmodes of Fig. 1, it appears
that they correspond exactly to |ψE

1 〉 and |ψE
2 〉 with |n〉 being

basis functions made of a localized “+” charge and that the
resulting dipolar plasmon mode |ψd〉 is given by their sum:
|ψd〉 = |ψE

1 〉 + |ψE
2 〉.

We are now turning our attention to EEL spectra of the
same particle [Fig. 2(a)]. Full r-DDA calculations have been
performed for an electron passing near the middle of an edge
(black curve) or near a corner (red curve). Because of the
localized nature of the excitation, spectra have additional
features that correspond to higher-order modes that can not
be excited optically. Apart from the dipolar mode present at
2.13 eV for both impact parameters, there are also resonances
at 2.33 and 2.79 eV when the electron passes near the corner.
For an electron passing near the middle of an edge, one can

see that the peak at 2.93 eV is much more intense than in the
extinction spectrum. Computing the z-IC gives the signature of
these modes [Figs. 2(b)–2(g)] and they are identified as being
the quadrupolar [Figs. 2(b) and 2(e)], octupolar [Figs. 2(c)
and 2(f)], and edge [Figs. 2(d) and 2(g)] modes, respectively.

The same calculations have been made using the nr-EVE
method with three eigenvectors (black and red circles) that are
not the same as the ones composing the dipolar resonance of
the extinction spectra, their selection depending on a different
external field. For instance, the first eigenmode at 2.33 eV
has quadrupolar symmetry that corresponds to a |ψB2〉 state
where the basis function |n〉 is made of localized “+” charge
and the next two eigenvectors have dipolar symmetry and
higher-order quadrupolar symmetry, respectively (see Fig. 7).
As for the optical spectra, peak positions are identical with
both techniques but, as previously stated, the peaks’ intensities
are not properly evaluated because of the truncation of the
expansion. Therefore, spectra have been renormalized with a
multiplication factor such that the maxima of the spectra are in
coincidence in the figure. It appears that if the 2.33-eV modes
have also the same intensity, this is not the case for the 2.79-
and 2.93-eV modes which are significatively less intense in
nr-EVE. This can be explained by the fact that the geometry of
these modes is more complicated and, as a consequence, inten-
sity is distributed among more eigenmodes (see Figs. 8 and 9).

B. Silver square dimer

Coupled particles support more complex modes and this
section will deal with dimers of silver square coupled in
two ways: corner to corner and edge to edge. Calculations
have been performed using the nr-EVE method with three
eigenvectors. They can be compared to r-DDA results gathered
in Appendix C. It is interesting to note that, with these
computational parameters, the complexity ratios are estimated
around γ EVE/DI ≈ 1

800 and γ EVE/IT ≈ 1
6 with an average of

Nit = 60 over a full spectrum.
The corner-to-corner case is considered first and the results

for a 2-nm gap are shown in Fig. 3(a) where the EEL curves
are calculated for impact parameters of corresponding color.
When the electron is passing in the gap between the particles
(black case), two strong peaks are observed at 2.21 and
2.40 eV which correspond to symmetric dipolar and quadrupo-
lar modes, respectively, as can be seen from the z-IC maps
[Figs. 3(c), 3(d), 3(f), and 3(g)]. Both of them are dark
modes because of the vanishing dipole moment carried by the
structure and do not appear in the optical spectrum [blue circles
in Fig. 3(a)]. For an impact parameter situated near a corner on
the dimer axis but not in the gap (red case), the EEL spectrum
has a peak at 1.99 eV which is an antisymmetric dipolar mode
[Figs. 3(b) and 3(e)] that one can observe in the extinction
spectrum. There is also a peak at 2.21 eV corresponding to
the same symmetric dipolar mode mentioned before but no
antisymmetric quadrupolar mode is observed. For a trajectory
that is near a corner that is not on the dimer axis (green case),
no coupling occurs and the spectrum is essentially the same
as the one of an isolated square. Indeed, particles interact with
one another if their near fields overlap, i.e., if they are localized
in the gap between the particles. In the green case, the near
field is localized around the excited corner and its opposite so
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FIG. 3. (Color online) (a) Extinction (blue circles) and EEL
(black and red curves) spectra of a corner-to-corner silver dimer
with 2-nm interparticle gap. The particles have side length of 24 nm
and 6 nm in height. Inset: effect of the interparticle distance on
the position of the excited modes. (b)–(g) Normalized modulus and
phase maps of the z-IC of the 1.99-eV [(b), (e)], 2.21-eV [(c), (f)],
and 2.40-eV [(d), (g)] modes calculated by nr-EVE. The integration
radius is a = 4 nm. Charge signs are added to help visualizing the
modes.

that there is no field in the gap to make coupling possible. On
the other hand, for the black and red trajectories, the near fields
are localized on the corners along the dimer axis (thus in the
gap) and interaction can occur. The effect of the interparticle
distance has also been investigated [inset of Fig. 3(a)]. Two ob-
servations can be made: (1) interaction between dipolar modes
occurs for larger gap than for quadrupolar modes and the shifts
are greater, and (2) symmetric (dark) modes shift to higher
energies while antisymmetric (bright) modes shift to lower
energies. These observations can be explained by the larger
spatial extent of the near field of a dipolar mode compared
to the one of a dark mode. Because of this, the overlapping
between near fields of neighboring dipolar modes of the par-
ticles can occur at larger distances and it decreases as the gap
becomes larger and larger until there is no overlap anymore.

The same calculations have been performed for an edge-to-
edge silver dimer with a 2-nm gap. The results are gathered in
Fig. 4. Two impact parameters passing through the dimer axis
have been considered: one in the gap (black case) and one in the

FIG. 4. (Color online) (a) Extinction (blue circles) and EEL
(black and red curves) spectra of an edge-to-edge silver dimer with
2-nm interparticle gap. The particles have side length of 24 nm and
6 nm in height. Inset: effect of the interparticle distance on the position
of the excited modes. (b)–(g) Normalized modulus and phase maps of
the z-IC of the 1.95-eV [(b), (e)], 2.32 eV [(c), (f)], and 3.09 eV [(d),
(g)] modes calculated by nr-EVE. The integration radius is a = 4 nm.
Charge signs are added to help visualizing the modes.

outside region (red case). In the first case, one can distinguish
two peaks at 2.32 and 3.09 eV for which the z-IC maps show
that they are symmetric dipolar and edge modes, respectively.
For the other trajectory, three resonances appear: an antisym-
metric dipolar mode at 1.95 eV, a symmetric dipolar mode at
2.32 eV, and an edge mode at 2.93 eV. This last mode is equiva-
lent to the one excited in an isolated square. Indeed, the position
of this peak does not change with the gap size as can be seen in
the inset of Fig. 4(a). That means there is no coupling between
the particles and only the nearest particle is excited with
this mode. Compared to the corner-to-corner case, the same
conclusions can be made except that the interaction length
between the dipolar modes is greater when particles are in an
edge-to-edge configuration and that the shifts are also higher
in this case. This is due to the fact that interaction takes place
in two corners instead of one as in the corner-to-corner case.

C. Silver square quadrumers

Because the EVE method is to be more efficient for systems
with many particles, it is now applied to quadrumers of silver
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FIG. 5. (Color online) (a) Extinction (blue circles) and EEL
(black and red curves) spectra of a corner-to-corner silver quadrumer
with 2-nm interparticle gap. The particles have side length of 24 nm
and 6 nm in height. (b)–(g) Normalized modulus and phase maps of
the z-IC of the 2.00-eV [(b), (e)], 2.32-eV [(c), (f)], and 2.95 eV [(d),
(g)] modes calculated by nr-EVE. The integration radius is a = 4 nm.

squares to demonstrate its ability. The complexity ratios can
be estimated around γ EVE/DI ≈ 1

1600 and γ EVE/IT ≈ 1
10 with an

average of Nit = 100 over a full spectrum.. As for the dimers,
two geometries are considered: corner to corner and edge to
edge. In both cases, the particles are arranged on a square
lattice with a 2-nm interparticle distance. To keep the analysis
as simple as possible, only two electron trajectories have been
studied and compared to extinction spectra. One is passing at
the of center of symmetry of the quadrumers and the second
is taken outside the quadrumers and is contained in a mirror
plane of the structure.

Figure 5(a) shows the extinction and EEL spectra of
the corner-to-corner quadrumer. It appears that one strong
resonance is observed at 2.32 eV and a smaller one at 2.95 eV
for an impact parameter positioned at the center of symmetry
(black curve). On the other hand, an intense peak is identified at
2.00 eV and the 2.95-eV resonance becomes more pronounced
when the electron is passing near an edge in the outside
region of the quadrumer (red curve). From the z-IC maps
[Figs. 5(b)–5(g)], it is clear that the 2.00-eV mode is an
antisymmetric dipolar mode [Figs. 5(b) and 5(e)], whereas the

FIG. 6. (Color online) (a) Extinction (blue circles) and EEL
(black and red curves) spectra of an edge-to-edge silver quadrumer
with 2-nm interparticle gap. The particles have side length of 24 nm
and 6 nm in height. (b)–(m) Normalized modulus and phase maps
of the z-IC of the 2.00-eV [(b), (e)], 2.32-eV [(c), (f)], 2.77-eV [(d),
(g)], 1.77-eV [(h), (k)], 2.19-eV [(i), (l)], and 3.00-eV [(j), (m)] modes
calculated by nr-EVE. The integration radius is a = 4 nm.

2.32- and 2.95-eV ones are totally symmetric combinations
of dipolar [Figs. 5(c) and 5(f)] and edge [Figs. 5(d) and 5(g)]
modes, respectively. The former is bright and the latter are
dark as confirmed by the extinction spectrum [blue circles in
Fig. 5(a)].
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Considering now the edge-to-edge case (Fig. 6), EEL
calculations reveal more complex patterns, but three modes
are dominating the spectra. The first one at 2.00 eV is excited
when the electron is passing near one of the outside corners of
the structure (red curve) and correspond to an antisymmetric
dipolar mode that is the same as the one observed in the
dimer case. Indeed, the z-IC map [Figs. 6(b) and 6(e)] shows
that the upper left and lower right nanoparticles are hardly
excited. The other two intense modes appear at 2.32 and
2.77 eV for the trajectory passing through the center of
symmetry (black curve). They are identified as symmetric
combinations of dipolar and quadrupolar modes [Figs. 6(c)
and 6(f) and 6(d) and 6(g), respectively] and hence are
dark. The extinction spectrum [blue circles in Fig. 6(a)]
corroborates these results but one can observe an additional
feature at 2.19 eV. This is a mode for which the upper left and
lower right nanoparticles support in-phase dipolar resonances
aligned with the polarization while the other two squares are
not excited [the exact complementary situation observed at
2.00 eV, see Figs. 6(i) and 6(l)]. It barely appears in the EEL
spectrum (just a small bump in the red curve) because of
the symmetry break introduced in the system by the presence
of the electron. Finally, it worth noting the presence of two
less intense dark modes at 1.77 and 3.00 eV. The latter
is a symmetric combination of octupolar modes [Figs. 6(j)
and 6(m)], whereas the former is made of dipolar modes with a
π -phase delay between the upper and the lower ones [Figs. 6(h)
and 6(k)].

IV. CONCLUSIONS

We have developed an approach to compute optical
extinction and electron energy-loss spectra of isolated and
coupled metallic nanoparticles that is based on an efficient
modification of the DDA. It consists in computing eigenvectors
of a geometric matrix describing the particles instead of
directly solving the full system of equations. These eigen-

FIG. 7. (Color online) Normalized modulus and phase maps of
the z-IC of the first [(a), (d)], second [(b), (e)], and third [(c), (f)]
eigenmodes forming the quadrupolar resonance at 2.33 eV of an
isolated silver square excited by an electron passing near a corner. The
particle has side length of 24 nm and 6 nm in height. The integration
radius is a = 4 nm. Charge signs are added to help visualizing the
modes.

vectors are then used as a truncatable basis to expand the
physical quantities entering the DDA formalism. We have
shown that only a few eigenmodes are needed to obtain
accurate optical extinction and electron energy-loss spectra
of systems made of isolated and coupled flat silver squares. A
correspondence between the eigenvectors and the irreducible
representations of the symmetry group of the square has
been made based upon group theory. With these results, we
demonstrate that our approach introduces a significant gain
in computational efficiency compared with traditional DDA
approaches. Additionally, it provides a natural framework
for the numerical study of plasmons of coupled metallic
nanoparticles.
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APPENDIX A: REDUCTION OF �(n)

The character table of C4v is

C4v E 2C4 C2 2σv 2σd

A1 1 1 1 1 1
A2 1 1 1 −1 −1
B1 1 −1 1 1 −1
B2 1 −1 1 −1 1
E 2 0 −2 0 0

We intend to express �(n) in the form of a direct sum of
irreducible representations (i.e., �(n) = ∑

l⊕ nl�
(l), where �(l)

is an irreducible representation of C4v and nl the number of
times that it appears in the sum). It is given by

nl = 1

g

∑
G

χl,∗(G)χn(G), (A1)

where g is the number of elements in the group, χl(G) is
the character of element G in representation l, and the sum
runs over the elements of the group. The characters of the
representation in the basis set {|n〉} are

χn(E) = 4, χn(C4) = 0, χn(C2) = 0,

χn(σv) = 0, χn(σd ) = 2.

Using Eq. (A1), we obtain the following numbers:

nA1 = 1, nA2 = 0, nB1 = 0,

nB2 = 1, nE = 1,

and �(n) = A1 ⊕ B2 ⊕ E.
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FIG. 8. (Color online) Normalized modulus and phase maps of
the z-IC of the first [(a), (d)], second [(b), (e)], and third [(c), (f)]
eigenmodes forming the octupolar resonance at 2.79 eV of an isolated
silver square excited by an electron passing near a corner. The particle
has side length of 24 nm and 6 nm in height. The integration radius
is a = 4 nm. Charge signs are added to help visualizing the modes.

APPENDIX B: SUPPLEMENTARY INTEGRATED
CHARGE MAPS

This appendix gathers maps of the charge integrated along
the z direction (z-IC) of the first, second, and third eigenmodes
which combined give the quadrupolar (Fig. 7), octupolar
(Fig. 8), and edge (Fig. 9) resonances observed in Fig. 2.
Because the geometry of these resonances is more complex
than in the dipolar case, the peak intensities are distributed
among more eigenmodes, explaining why they are not properly
reproduced in Fig. 2(a).

FIG. 9. (Color online) Normalized modulus and phase maps of
the z-IC of the first [(a), (d)], second [(b), (e)], and third [(c), (f)]
eigenmodes forming the edge resonance at 2.93 eV of an isolated
silver square excited by an electron passing near an edge. The particle
has side length of 24 nm and 6 nm in height. The integration radius
is a = 4 nm. Charge signs are added to help visualizing the modes.

FIG. 10. (Color online) Extinction (blue circles) and EEL (black
and red curves) spectra of a corner-to-corner silver dimer with
2-nm interparticle gap calculated with r-DDA. The particles have
side length of 24 nm and 6 nm in height.

APPENDIX C: SUPPLEMENTARY EXTINCTION AND
EEL SPECTRA OF SILVER SQUARE DIMERS

Here (see Figs. 10 and 11) are gathered the extinction
and EEL spectra of corner-to-corner and edge-to-edge silver
square dimers calculated by retarded DDA. The configurations
are the same as the ones used in Figs. 3 and 4 so the
reader can compare the results obtained by both nr-EVE and
r-DDA.

FIG. 11. (Color online) Extinction (blue circles) and EEL (black
and red curves) spectra of an edge-to-edge silver dimer with 2-nm
interparticle gap calculated with r-DDA. The particles have side
length of 24 nm and 6 nm in height.
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