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Metal nanofilm in strong ultrafast optical fields
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We predict that a metal nanofilm subjected to an ultrashort (near-single oscillation) optical pulse of a high
field amplitude �3 V/Å at normal incidence undergoes an ultrafast (at subcycle times �1 fs) transition to a state
resembling semimetal. Its reflectivity is greatly reduced, while its transmissivity and the optical field inside the
metal are greatly increased. Despite the metal being a centrosymmetric medium, the strong pulse causes net
charge transfer in the direction determined by the carrier envelope phase (CEP) of the pulse, which is opposite
to the direction of the maximum field.
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I. INTRODUCTION

The behavior of solids in strong ultrafast optical fields
has recently attracted a great deal of attention.1–11 Such
fields produce nonperturbative effects on solids, among which
are ultrafast optical breakdown,1 attosecond ionization,3,4

metallization of dielectric nanofilms,6,9 optical field-effect re-
versible subfemtosecond currents in dielectrics,10 and electron
tunneling from surfaces.2,7,8 For dielectrics, when optical field
is applied with frequency �ω low enough compared with the
band gap �vc between the valence and conduction bands,
mostly adiabatic processes take place such as Wannier-Stark
(WS) localization and formation of the WS ladder of levels12,13

separated by the Bloch frequency14 ωB = |e|Fa/�, where e is
electron charge, F is the magnitude of the field, and a is the
lattice constant. Only when the field F exceeds the critical field
Fc = �vc/(|e|a) ∼ 2.5 V/Å (for � ∼ 10 eV and a ∼ 4 Å),
the band gap is overcome by the WS splitting, and the diabatic
coupling of the valence and conduction band becomes strong,
which can lead, in particular, to optical breakdown.10

In contrast, this paper deals with strong optical fields
applied to good (plasmonic) metals where there is no band
gap at the Fermi surface, and, consequently, no adiabaticity
for relatively low fields. In such a case, there are a high
optical conductivity and a skin layer with a depth ls ∼ 25 nm.15

Consequently, for metal thickness h � ls , most of the incident
radiation energy is reflected. Interaction of the radiation with
the metal becomes adiabatic only when the optical field is
strong enough so ωB � ω. The plasmonic metal behavior
seizes and WS localization12,13 is established when, during
a quarter optical period T/4 = π/(2ω), an electron acquires
momentum π |e|FT/4 that exceeds the width 2π�/a of the
Brillouin zone. This condition is satisfied and the strong-field
regime for the metal sets on when the optical field F �Fc,
where the critical field Fc ∼ 4�ω/(|e|a) ≈ 2.6 V/Å for
�ω = 1.55 eV.

To elaborate in brief, for F � Fc, the electrons during a
quarter optical cycle accelerate to the Brillouin zone boundary,
experiencing the Bragg reflections and, consequently, strong
dephasing. This seizes the electron translational motion and is
the underlying cause of the strong WS localization within
length lWS � a and the Bloch oscillations. The different
electron wave packets are all identical in shape and localized

at each unit cell, their spectrum is discrete with energies
spaced by |eF | a = �ωB , forming the so-called WS ladder.
Since ωB � ω, the field-induced adiabaticity sets in, and the
dynamics is driven by the instantaneous optical field.

As a consequence of the adiabaticity, in this strong-field
regime, the optical properties of the metal differ dramatically
from those at low to moderate fields, becoming reminiscent of a
semimetal. The latter is a solid with a very small or nonexisting
band gap between the valence and conduction bands and a
negligible density of electronic states at the Fermi level. For the
metal in the strong field, the plasmonic properties and strong
reflection associated with the skin effect are suppressed during
subcycle time intervals. Light transmission through the metal
is increased and the optical absorption in the metal is reduced
at very high fields. Ultrafast behavior of the metal is radically
changed: both the reflection and transmission exhibit subcycle
Bloch oscillations with period τB ∼ 2π/ωB ; τB ∼ 0.7 fs for
F = 2.6 V/Å. The strong optical field is predicted to cause
ultrafast response of the metal, which adiabatically follows
the instantaneous pulse field. Under these conditions, the
Bloch oscillations are predicted to manifest themselves in
natural metals, while earlier such oscillations were observed
only in artificial semiconductor superlattices.16–18 These
predicted strong-field effects open up routes toward using
metals as active elements for deep ultrafast modulation of
optical fields in contrast to perturbative modulation in active
plasmonics.19

II. MODEL AND MAIN EQUATIONS

Consider an ultrashort optical pulse incident normally on a
metal nanofilm. Propagation of such a pulse is described by the
Maxwell equations where dielectric polarization is determined
by quantum dynamics of electrons, which is self-consistently
determined by the Schrödinger equation in the presence of the
electric field inside the metal.

We neglect the short-range Coulomb scattering of electrons,
which determines plasmonic relaxation in metals, because
its characteristic time τs for good plasmonic metals is
known to significantly exceed the length of our optical pulse
(e.g., τs = 10–50 fs for gold and silver).15 This “instanta-
neous freedom” approximation worked very well describing

1098-0121/2013/88(24)/245438(7) 245438-1 ©2013 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.88.245438


VADYM APALKOV AND MARK I. STOCKMAN PHYSICAL REVIEW B 88, 245438 (2013)

field-induced currents and attosecond phenomena in di-
electrics in strong ultrafast fields,10,11 where the maximum
conduction-band electron concentration was, in fact, on the
same order as in metals. Note that the long-range Coulomb
interaction is taken into account electrodynamically through
the self-consistent macroscopic electric field inside the metal.

We solved numerically a coupled system of the Maxwell
and Schrödinger equations using the finite difference time
domain (FDTD) method20,21 for a finite-size system with
the absorbing boundary conditions for Maxwell equations.
The tight-binding model was used in the solution of the
Schrödinger equation. The size of the computational space
in the direction of propagation of the pulse (z direction) was
6000 nm. The metal film was placed at the midplane of the
system, i.e., at z = 0. In our numerical solution of the Maxwell
equations, we assumed that the spatial step was 1 nm and the
time step was 0.7 attoseconds (1 as = 10−18 s). The optical
pulse was generated at the left boundary and propagated along
the positive direction of the z axis with the polarization of the
electric field along the x axis.

To avoid optical damage and effects of electron-electron and
electron-phonon scattering (dephasing and dissipation), we
need as short pulses as possible. We assume a single-oscillation
pulse form:

Fx(t) = F0e
−u2

(1 − 2u2), (1)

where F0 is the amplitude, which is related to power P =
cF 2

0 /4π , where c is speed of light, u = t/τ , and τ is the pulse
length, which is set τ = 1 fs in our calculations. Such a pulse
possesses zero area, � = 0, where � = ∫ ∞

−∞ Fx(t)dt . This
pulse is an idealization of the pulses that have recently been
used in experiments,10,11 which can be called “1 1

2 -oscillation”
pulses, where only the central, high-amplitude oscillation is
effective due to the strong nonlinearity of the system.

The metal is described by one-particle Schrödinger equa-
tion with Hamiltonian

H = p2

2m
+ V (r) + eFx(z,t)x, (2)

where V (r) is the periodic crystal potential, and Fx(z,t) is the
optical electric field inside the metal, which is found from the
solution of the Maxwell equations. Without the optical field,
the electron system has the standard band structure. Below, we
consider one conduction band (CB, or sp band for silver) and
one valence band (VB, or d band for silver).

We assume that the periodic potential V (r) is separable in all
three directions, x, y, and z, with period a. Correspondingly,
the electron wave functions factorize, and the energies are
additive. For each band, the energy dispersion law along
one direction, has the tight-binding form.22,23 Considering
the x direction, Eα(k) = εα + �α

2 cos(ka), where α = c or
v for CB and VB, respectively, �α is the width of band
α, and εα is the band offset. In the absence of the optical
field, the wave functions satisfy the Bloch theorem, ψαk(x) =

1
2π

eikxuαk(x), where uαk(x + a) = uαk(z) are periodic unit-
cell Bloch functions, and k is the (pseudo) wave vector.

In the presence of the optical field, Fx(z,t), we solve the
time-dependent Schrödinger equation for an infinite crystal
to find the polarization (currents) needed for the Maxwell

equations. The finite thickness of the metal nanofilm is taken
into account by the Maxwell boundary conditions imposed on
the electrodynamic problem at the two surfaces of the metal.
Thus we neglect the spatial dispersion of the metal optical
response and the surface states at the metal surfaces. Such
an approximation is commonly used in metal nanoplasmonics
where it is shown to work very well for metal thickness h � lnl,
where nonlocality length lnl ∼ vF /ω ∼ 1 nm, and vF is the
Fermi velocity.15

Capitalizing on the assumed separability of the crystal
potential, we solve the time-dependent Schrödinger equation
in the x direction of the optical field polarization (the
propagation direction of the electromagnetic wave is z). Note
that the three-dimensional nature of the crystal is still important
to have the correct density of electronic states and electron
concentrations in the bands of the crystal. We express the
general solution of the Schrödinger equation in the basis of
the Bloch functions as


(x,z,t) =
√

a

2π

∑
α=v,c

∫ π/a

−π/a

dkφα(k,z,t)ψαk(x), (3)

where φα(k,z,t) can be expressed in term of the Houston
functions24 �(H )

αq (k,z,t),

φα(k,z,t) =
∑

q

β̂α(q,z,t)�(H )
αq (k,z,t), (4)

�(H )
αq (k,z,t)

= δ̃(k − kT (q,t))

× exp

(
−i

{
t
εα

�
+ �α

2�

∫ t

−∞
dt1 cos [kT (q,t1)a]

})
. (5)

Here, the time-dependent wave vector is defined as

kT (q,t) = q + e

�

∫ t

−∞
Fx(z,t1)dt1 (6)

and δ̃(k) = ∑
n δ(k + 2πn/a), where n = 0,±1, . . . and δ(k)

is the Dirac δ function. The Houston functions are exact
solutions of the time-dependent Schrödinger equation for a
single band with the Bloch function ψαq(x) as the initial
condition at t = −∞.

Expansion coefficients β̂α(q,z,t) satisfy the equations

dβ̂α(q,z,t)

dt
= −i

Fx(z,t)

�

∑
α′ �=α

Qαα′ (q,z,t)β̂α′ (q,z,t),

where we denoted

Qαα′(q,z,t)

= Zαα′ exp

{
i

[
t
εα − εα′

�

+�α−�α′

2�

∫ t

−∞
dt1 cos

(
q+ea

�

∫ t1

−∞
Fx(z,t2)dt2

)]}
,

Zαα′ = e

a

∫ a

−a

dzuαk(z)∗i
∂

∂k
uα′k(z). (7)
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Here, uαk(z) are periodic unit-cell Bloch functions, and dipole
matrix elements Zαα′ describe diabatic coupling of VB and
CB in optical field.

The electric current generated by electron dynamics in the
optical-pulse electric field has two contributions, interband and
intraband, and is expressed as

Jx = J inter
x + J intra

x . (8)

The interband current is

J inter
x (z,t) = ∂P inter

x (z,t)/∂t, (9)

where P inter
x (z,t) is the interband polarization, which has the

following form:

P inter
x (z,t) = 1

2πa3

∫ π

−π

dq
∑

μ=v,c

fμ(q)

× [B(μ)†(q,z,t)Q̂(q,z,t)B(μ)(q,z,t)], (10)

where Q̂ is a matrix with elements (7) Qαα′ , andB(μ) = (β̂v,β̂c)
is a two-component vector, which is determined by the solution
of Eq. (7) with the following initial conditions: B(v) = (1,0)
and B(c) = (0,1). Here, fμ(q) is the Fermi factor, which is 1
for initially occupied states, i.e., fμ=v(q) = 1 and fμ=c(|q| <

kF ) = 1, where kF is the Fermi wave vector, and it is zero
otherwise. The intraband current is due to shifting of electrons
in space and is expressed as

J intra
x (z,t) = 1

2πa3

∫ π

−π

dq sin [kT (q,t)a]

×
∑

μ=v,c

fμ(q)

[ ∑
α=v,c

B(μ)†
α (q,z,t)

�α

2�
B(μ)

α (q,z,t)

]
.

(11)

We use the tight-binding model parameters describing the
band structure of silver: εv = −4.1 eV, εc = 0 eV, �v =
0.82 eV, and �c = −9.1 eV. We choose Zvc = 0.7e Å.25 The
thickness of the film is set h = 25 nm.

Although the lattice constant of the silver 3D crystal is
a0 ≈ 4.1 Å, it does not determine the lattice constant a of the
1D model used in our calculations. The lattice constant of
such an effective 1D model is equal to the period of the 3D
lattice in the direction of the electric field of the pulse. This
period is defined as the distance between the corresponding
crystallographic planes normal to the field direction. The 1D
periods are achieved along the high-symmetry directions of
the crystal. For such directions, we can define the effective
lattice constant as a = π/ks , where ks is the wave vector
corresponding to a high-symmetry point of the first Brillouin-
zone boundary. For the face centered cubic (fCC) crystal of
silver, we choose ks = √

3π/a0, which corresponds to the L

point of the Brillouin zone. The corresponding 1D lattice
constant is a = a0/

√
3 ≈ 2.4 Å. This value is used in our

calculations.

III. RESULTS AND DISCUSSION

In Fig. 1(a), the spatial distribution of the pulse electric
field is shown for the reflected (to the left of the nanofilm)
and transmitted (to the right) pulses. For a relatively small
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FIG. 1. (Color online) Reflected and transmitted pulses. (a) Spa-
tial distributions of the electric field as functions of the propagation
coordinate z shown for different values of F0. The metal film of
thickness 25 nm is placed at the center (z = 0) and depicted as the
red stripe. The distribution of electric field consists of the reflected
(to the left) and transmitted (to the right) pulses propagating in the
opposite directions. The size of the computational field in the z

direction is 6000 nm. (b) Spectral intensities of reflected, transmitted,
and sum pulses for F0 = 7.7 V/Å as functions of optical frequency
f = ω/(2π ). The transmitted- and sum-pulse spectra are arbitrarily
normalized to unity maximum. The reflected pulse spectrum is
normalized by the same coefficient as the transmitted one. Fragments
of the curves at f > 2 PHz are also shown with the ×10 magnification
as indicated on the graph.

field amplitudes, F0 = 1.7 V/Å < Fc, the nanofilm behaves
as a regular metal with a pronounced skin effect and strong
reflection of the incident pulse. With increasing the field, F0 =
4.3 V/Å � Fc, the response of the electron system is highly
nonlinear, and the metal film becomes relatively transparent.
Both the reflected and transmitted pulses are strongly reshaped
compared to the incident pulse. As the pulse peak field further
increased to F0 = 6.0 and 7.7 V/Å, the film transparency is
further increased, in a sharp contrast to the metallic behavior.
There are pronounced subperiod oscillations in the pulse shape
for both the reflected and transmitted fields, which are due to
the Bloch oscillations.

Importantly, in Fig. 1(a), there are nonzero pulse areas,
�(t,r) = ∫ ∞

−∞ F (z(t,r),t)dt �= 0, where t and r correspond to
the transmission and reflection, and z(t) > 0 and z(r) < 0. This
is due to nonlinearity of the field interaction with the metal.
In contrast, the area of the incident laser pulse of Eq. (1) is
exactly zero. When the absorption in the matter is small, which
is the case presently, then |�(r) + �(t)| 
 |�(r)| + |�(t)|. This
implies that the nonlinearity of the metal nanofilm separates
the zero-area laser pulse into the transmitted and reflected
pulses with the nonzero and approximately opposite areas.
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The nonzero area pulses do not contradict Maxwell equa-
tions, and fundamentally they can exist. For instance, for an
optically-linear uniform medium, a plane wave with fields
Ex = Hy = f (z − tc), where f is an arbitrary function, and c

is speed of light, is a general solution of the Maxwell equations.
Experimentally, near unipolar, half-cycle electromagnetic
pulses were generated by aperiodic acceleration of electrons
in photoconductive switches in terahertz domain.26,27 Such
pulses accelerate and transfer momentum and energy to free
and quasifree electrons such as those in Rydberg states.26,27

The magnitudes and signs of the predominant fields for both
transmission and reflection are determined by carrier-envelope
phase ϕCE of the excitation pulse, as characteristic for nonlinear
effects in a few-oscillation fields, cf. Refs. 10 and 11. Our laser-
source pulses possess ϕCE = 0, see Eq. (1), and nonlinearity
is such that both absorbance and reflectance decrease with the
field (cf. Fig. 3 below); consequently, �(t) > 0 and �(r) < 0.
For ϕCE = π , the sign of the dominant field would change to
the opposite yielding �(t) < 0 and �(r) > 0. For ϕCE = ±π/2,
both the transmitted and reflected pulses have zero areas.

The present effect can be used to generate near-half-cycle
pulses in the near-infrared, visible, and near-ultraviolet spectral
regions, in contrast to the previous studies26,27 limited to the
terahertz band. With regard to this, we need to emphasize
two points. (i) Based on a very short pulse duration, our
theory does not include relaxation, which on longer times
would cause opposite currents and, correspondingly, tend to
make the electromagnetic pulses closer to zero-area ones.
However, these longer-time currents will generally be not
exactly time-reversed with respect to the currents during the
pulse due to nonlinearity and frequency dispersion of the
metal’s optical responses. In particular, these currents will
occur without a strong external driving field, unfold on a longer
time scale, and be subject to and limited by the dissipation
(electron-electron and electron-phonon relaxation). Therefore
the nonzero area of the pulses may be expected to persist even
after the relaxation. (ii) Due to the presence of low (ideally,
zero) frequency components in the spectra of the unidirectional
pulses, they will rapidly diffract. Therefore they should be
observed and used close to the generating (i.e., irradiated) area
of the metal nanofilm, i.e., at distances on the order or less
than the size of this area.

In Fig. 1(b), we display spectral intensities of the transmit-
ted and reflected pulses I (t,r)(f ) = |F (t,r)

f |2, where subscript
f indicates Fourier transform in terms of linear frequency
f = ω/(2π ). For f = 0, I (t,r)(0) = [�(t,r)]2 �= 0, in accord
with the nonzero pulse areas.

Besides peaks at the carrier frequency, f ≈ 0.25 PHz,
in Fig. 1(b) there are peaks approximately at the third
harmonic frequency, f ≈ 0.75 PHz, which are due to the
strong nonlinearity. There are also appreciable peaks at the
Bloch frequency, f ≈ 3.5 PHz, which are shown magnified
by a factor of ×10. Observation of these peaks, which stem
from the Bloch oscillations,14,16–18 would be the first evidence
of the Bloch oscillations in natural crystals as opposed to the
artificial superlattices.

The enhanced transmission of the superstrong optical pulse
is accompanied by an increase of the electric field F metal

inside the metal nanofilm. In Fig. 2, we show the time
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FIG. 2. (Color online) The electric field of the incident pulse
(black lines) and the electric field at the midpoint of the metal film
(red line) are shown for different values of the peak electric field F0

of the incident pulse: (a) F0 = 3.4, (b) 4.3, and (c) 6.0 V/Å. Note that
the pulse areas are nonzero, cf. discussion of Fig. 1, which causes net
current and charge transfer along the metal in the x direction.

evolution of this field at the midplane of the nanofilm in
comparison to the incident pulse. At a near-critical pulse field
F0 = 3.4 V/Å ∼ Fc, see Fig. 2(a), the electric field F metal

inside the metal is much weaker than the incident field. In
contrast, for larger pulse amplitudes (F0 = 4.3 and 6.0 V/Å),
see Figs. 2(b) and 2(c), the electric field F metal becomes
comparable to the incident-pulse electric field. The sharp peaks
and high-frequency oscillations of F metal are due to the Bloch
oscillations, as we discuss below in conjunction with Fig. 4.

The reflectance of the optical pulse (i.e., a fraction of the
reflected pulse energy) is shown in Fig. 3(a) as a function of
F0. Strong suppression of the pulse reflectance for F0 > Fc ∼
3.4 V/Å is clearly visible. The suppression of the reflectance
is correlated with increase of the maximum electric field inside
the nanofilm shown by the red line in Fig. 3(a) as F metal

max /F0.
The strong changes in both the reflectance and the internal
electric field occur at F0 ∼ Fc ∼ 3.4 V/Å.

The absorbance of the metal nanofilm, that is, a frac-
tion of the pulse energy dissipated inside the nanofilm, is
illustrated in Fig. 3(b) as a function of amplitude F0. This
predicted behavior is unusual and nontrivial. At a low pulse
amplitude, the absorbance is understandably low due to the
skin effect since mostly the pulse is reflected back. Then, as
F0 increases, the absorbance increases dramatically reaching
≈4% maximum for F0 ≈ 5 V/Å, which is attributed to the WS
localization leading to the collapse of the metallic conductivity,
consequent suppression of the skin effect, and the resulting
penetration of the field inside the metal—cf. the red line in
panel (a).

With the further increase of F0, the absorbance in Fig. 3(b)
decreases despite the field in the metal staying almost the
same. This is due to two effects. First, for F � Fc, the spacing
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FIG. 3. (Color online) (a) The reflectance of optical pulse (black
line) and the maximum electric field at the midpoint of the nanofilm
(red line) are shown as functions of the peak electric field F0 of the
incident pulse. The maximum electric field in the metal film is shown
in units of the peak electric field F0. (b) The absorbance of the optical
pulse is shown as a function of the peak electric field F0.

between the WS levels increases to yield ωB � ω. This leads
to the adiabaticity of the light-solid interaction, which implies
suppression of the absorbance. Second, the Bloch oscillations,
which develop for the same field strength (see below Fig. 4
and its discussion), break phase φ of the optical polarization
with respect to the excitation field and, consequently, reduce
the work of this field, which is ∝sin φ. Effectively, for
the high fields, the nanofilm is acquiring properties of a
semimetal with a low active conductivity characteristic of
semimetals.

The power density dissipated from a single pulse in the
metal reaches its maximum also at F0 ≈ 5 V/Å. After its
dissipation and thermal equilibration, this causes an estimated
increase of the nanofilm temperature by ∼1500 K. The metal
may not survive such a high-intensity pulse without a damage;
however, this damage will be melting, which occurs long after
the pulse is over. This will not prevent the much faster effects
described from being observable but will require single-shot
experiments. Note that a metal is likely to survive lower-field
pulses with F0 ∼ 2–3 V/Å, which explains the absence of
optical damage of metal electrodes subjected to comparable
pulses in experiments of Ref. 10.

The origin of this highly nonlinear behavior of a metal
film in a strong optical field can be understood from electron
dynamics within a single conduction band. In the optical
field, an electron with initial wave vector q is moving in
the reciprocal space acquiring time-dependent wave vector
kT (q,t)—see Eq. (6). Therefore all electrons are shifted
in the reciprocal space by the same wave vector �q(t) =
e
�

∫ t
Fx(z,t1)dt1, and the net current is generated. For a strong

pulse, the shift, �q, is large and, for F0 � Fc, can become
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FIG. 4. (Color online) Bloch oscillations in the transmitted field
and electron momentum. (a) Electric field distribution in space of the
transmitted optical pulse is shown for different values of F0. (b) The
corresponding dimensionless time-dependent wave vectors in the first
Brillouin zone akT (q = 0,t) as functions of time t . The origin of time
is chosen arbitrary, and the graphs are offset vertically for clarity.

greater than the Brillouin zone extension k = 2π/a, causing
the Bragg reflection of the electrons, which results in the Bloch
oscillations and in the development of the WS localization.

At F0 � Fc, the electron current acquires oscillations at
Bloch frequency ωB � 4ω, which suppresses the susceptibility
at the optical frequency ω. This results in further loss of
the metallic optical properties. Since the electron spectrum
is discrete (the WS ladder) and, consequently, the density of
states at the Fermi level is zero, the metal in strong optical fields
behaves as a semimetal with a relatively high transparency and
a low reflection coefficient. This is not fundamentally different
from dielectrics in similar fields, cf. Refs. 10, 11, and 28,
thus suggesting asymptotically universal behavior of solids in
strong optical fields.

In Fig. 4(a), the spatial distribution of electric field in
the transmitted optical pulse is shown for different values
of amplitude F0. With increasing F0 above the threshold,
Fc ≈ 3.4 V/Å, well pronounced Bloch oscillations develop
in the field distribution. Their total number is proportional
to field amplitude, n ≈ |e|aF0/(2�ω). This is the number
of times that an accelerated electron crosses the Brillouin
zone boundary during quarter-period time T/4, as can be
illustrated by comparison with the temporal dependence of
the electron quasimomentum displayed in Fig. 4(b). These
Bloch oscillations are also visible in the temporal evolution of
electric field inside the metal film—cf. Fig. 2.

The highly nonlinear phenomena excited by strong and
short pulses include a net transfer of charge, �Q, in the
direction of the electric field of the pulse, which is a nonzero
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FIG. 5. (Color online) Excitation pulse waveforms Fx(t,φ) for
F0 = 1 V/Å and four choices of the CEP, φ = 0,π/4,π/2,3π/2
(as indicated).

integral of current Jx ,

�Q =
∫ ∞

−∞
Jx(t)dt = Px(t)|t=∞�S, (12)

where �S is the laser pulse cross section.
The metal fcc lattice is centrosymmetric, and the laser

pulse-field area is zero. In this case, the direction of the charge
transfer is determined by the carrier-envelope phase (CEP),
φ, of the pulse, which defines the direction of the pulse-field
maximum. The pulse of Eq. (1) possesses φ = 0. We introduce
a pulse with an arbitrary CEP using the Hilbert transform
as

Fx(t,φ) = Fx(t) cos φ + F (H )
x (t) sin φ, (13)

F (H )
x (t) = 1

π
P

∫ ∞

−∞

Fx(t ′)
t − t ′

dt ′, (14)

where F (H )
x (t) is the Hilbert transform of the pulse, see Eq. (1).

Resulting pulses are displayed in Fig. 5 for F0 = 1 V/Å and
four choices of the CEP, φ = 0,π/4,π/2,3π/2. Note that the
pulse waveform is an even (symmetric) function for φ = 0 and
odd (antisymmetric) for φ = π/2.

The transferred charge calculated from Eq. (12) is shown in
Fig. 6 as a function of CEP φ of the pulse field, Fx(t,φ). The
result illustrates that the charge transferred is nonzero despite
the zero area of the pulse and the centrosymmetric lattice. Note
that the charge transferred changes its sign when CPE is shifted
by π , i.e., �Q(φ + π ) = −�Q(φ), which is due to a similar
property of the pulse electric field, Fx(t,φ + π ) = −Fx(t,φ)
[see Eq. (13)].

The direction of the charge transfer is correlated with
the direction of the pulse-field maximum. For zero CEP, the
pulse-field maximum in Fig. 5 is positive, i.e., pointing in the
positive direction of the x axis, while the charge transferred
is negative, see Fig. 6. Thus, the net charge is transferred
in the direction opposite to the direction of the pulse-field
maximum.

Such negative correlation between the direction of the
strongest field and the direction of the charge transfer is due to
the fact that the current generated by the pulse is suppressed
at large electric fields, i.e., near the pulse maximum. This
can be interpreted as the metal becoming less conductive,
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FIG. 6. (Color online) Charge transferred as a result of a single
pulse as a function of the carrier-envelope phase (CEP) of the pulse.
The results are shown for three pulse amplitudes F0 as indicated in
the figure using color coding.

semimetallic at high fields. Such behavior is diametrically
opposite to that of dielectrics where charge is transferred in
the direction of the maximum field, cf. Ref. 10. This is due
to dielectrics becoming also semimetallic and, hence, more
conductive in high fields.

IV. CONCLUSION

We have predicted a highly unusual and nontrivial behavior
of metal nanofilms subjected to strong ultrashort (near-single
oscillation) optical pulses with field amplitude �4.3 V/Å
(intensity �5.0 × 1014 W/cm2). This includes such effects as
disappearance of the metallic high reflection (suppression of
the skin effect), a significant increase of transmission of the
pulse energy through the nanofilm, while both the absorbance
and the total energy deposition dramatically decrease at
the high pulse intensity where the Bloch oscillations are
pronounced. The optical field induces a transition to a semi-
metal-like state, which is similar to that of dielectrics in
correspondingly high fields. These phenomena develop at
subcycle times �1 fs and are driven by the field instantaneous
strength. The transmitted and reflected pulses possess nonzero
areas, which will cause net current (charge transfer) in
media they affect. Note that the high intensities and short
durations of the pulses required for the effects discussed in
this article are within the reach of the existing generation
methods.
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