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Image charge effects in the nonequilibrium Anderson-Holstein model
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Image charge effects in nanoscale junctions with strong electron-phonon coupling open the way to unexplored
physical scenarios. We propose a simple and still accurate many-body approach to deal with the simultaneous
occurrence of the Franck-Condon blockade and the screening-induced enhancement of the polaron mobility. A
transparent analytic expression for the polaron decay rate is derived and the dependence on the strength and
range of the screening is highlighted. This allows us to interpret and explain several transient and steady-state
features of the electrical current. Remarkably, we find that the competition between the charge blocking due to the
electron-phonon interaction and the charge deblocking due to the image charges gives rise to a novel mechanism
of negative differential conductance. An experimental setup to observe this phenomenon is discussed.
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I. INTRODUCTION

The excitation of quantized vibrational modes due to
passage of electrons in a molecular junction is at the origin of
a variety of intriguing transport phenomena.1 In the polaronic
(strong coupling) regime electrons are blocked by the Franck-
Condon effect and tunneling occurs via excitations of coher-
ent many-phonon states.2,3 This remarkable charge-transfer
process engenders vibrational sidebands in the differential
conductance dI/dV , as recently observed in state-of-the-art
experiments on carbon nanotube quantum dots (QDs).4 A
proper treatment of Coulomb charging and nuclear trapping
already explains several features of the measured dI/dV .
Nevertheless, low-dimensional leads screen a charged QD
by accumulating holes (image charges5–10) in a considerably
extended portion nearby the contacts, thus enhancing the
electrical current to a large extent (Coulomb deblocking).11–14

A quantitative assessment of screening effects in polaronic
transport is therefore necessary before an exhaustive interpre-
tation of the experimental outcomes can be given.

This paper contains methodological and conceptual ad-
vances on the transport properties of screened polarons. We
put forward a simple and still accurate method to calculate
the relaxation dynamics as well as the steady-state charac-
teristics of biased and/or gated QDs. The key quantity is
the polaron decay rate for which we derive a transparent
analytic expression, highlighting the impact of the electron-
electron (ee) interaction on systems with electron-phonon (ep)
coupling. So far numerical simulations have been limited
to ep interacting systems and, for all available data, we
find excellent agreement.15–18 In particular the extraordinary
long-transient dynamics recently discovered in Ref. 16 is
faithfully reproduced. The simultaneous presence of ee and
ep interactions opens new scenarios. Relaxation still occurs
through a long-lasting sequence of blocking-deblocking events
but the distinctive spikes in the transient current become much
more pronounced. Noteworthily, the Coulomb deblocking
has unexpected repercussions on the steady state. Besides a
substantial raising of the phonon-assisted current steps, regions
of negative differential conductance (NDC) are found in the
dI/dV . The NDC is neither related to the asymmetry of

the junction,19,20 nor to the finite bandwidth of the leads,21

local charging effects,3 or range of the tunneling amplitude,22

and disappears if the ep and ee interactions are considered
separately. This novel mechanism, which is of interest on
its own, complements the current understanding19 of NDC
observed in QDs.4

The paper is organized as follows. In Sec. II we intro-
duce the model Hamiltonian and work out its low-energy
expression. Section III contains a detailed presentation of the
theoretical framework. We use the bosonization technique and
the Lang-Firsov transformation to rewrite the original Hamil-
tonian in a form suited to deal with the ee and ep interactions
nonperturbatively. Then, we derive the equations of motion for
the QD Green’s function and propose an accurate truncation
scheme for their solution. Here we show that polaronic and
image charge effects can be incorporated into a correlated
embedding self-energy which we calculate analytically. The
equations of motion for the Green’s function, also known
as the Kadanoff-Baym equations, are solved numerically in
Sec. IV to extract the transient current. For vanishing ee
interactions the accuracy of the approach is demonstrated by
comparing the results with exact numerical data.16 We provide
a real-time picture of the Franck-Condon blockade (FCB)
and show how the screening changes the FCB scenario. In
Sec. V we focus on the steady-state regime. We benchmark
the results against available (zero ee interaction) numerically
exact I-V characteristics15 and find good agreement in this
case too. In Sec. VI we extend the steady-state analysis and
calculate the differential conductance dI/dV as a function
of bias and gate voltage. The screening gives rise to regions
of NDC similar to those observed in carbon nanotube (CNT)
QDs. In Sec. VII we generalize the theory to systems with
long-range screening and study the impact of the screening
length on the I-V characteristic. The technical details of this
generalization are presented in an Appendix. A summary and
the main conclusions of this work are drawn in Sec. VIII.

II. LOW-ENERGY HAMILTONIAN

We consider a single-level QD symmetrically connected
to two one-dimensional leads of length L = Na, with a the
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lattice spacing and N the number of lead sites. Electrons on
the QD are coupled to a vibrational mode and, at the same
time, to electrons in the leads. The Hamiltonian reads

Ĥ = −tw

N∑
α,j=1

(d̂†
αj d̂αj+1 + H.c.) + Tl

∑
α

(d̂†
α1d̂ + H.c.)

+εd n̂d + ω0â
†â + λn̂d (â† + â) + Un̂d

∑
α

n̂α1, (1)

where the fermion operators d̂αj (d̂†
αj ) and d̂ (d̂†) destroy

(create) an electron in the j th site of the α = L,R lead
and in the QD, respectively, while the boson operator â (â†)
destroys (creates) the local vibrational quanta.23 The electron
occupation number operators are defined as n̂d = d̂†d̂ and
n̂αj = d̂

†
αj d̂αj . In Eq. (1) tw is the (positive) nearest-neighbor

hopping in the leads, Tl is the dot-lead tunneling amplitude,
εd is the gate voltage, ω0 is the phonon frequency, λ is the
electron-phonon coupling, and U is the QD-lead Coulomb
repulsion. The system is driven out of equilibrium by the
sudden switch-on of an external bias ĤV = ∑

α VαN̂α , with
N̂α = ∑

j n̂αj the total number of electrons in lead α and V =
VL − VR the voltage drop. We observe that the Hamiltonian
Ĥ reduces to the interacting resonant level model12–14,24

for λ = 0 and to the Anderson-Holstein model15–17,25–27 for
U = 0. In a recent work Maier and Komnik studied the
nonequilibrium steady-state properties of Ĥ at the Toulouse
point.28 Here we go beyond their investigation by considering
arbitrary couplings U and λ and by extending the analysis to
the transient regime.

As we are mainly interested in the small bias behavior,
V � tw, we derive the low-energy form of Eq. (1) following
Ref. 29. In the limit N → ∞ the Hamiltonian of lead α [first
term in Eq. (1)] reads

Ĥα =
∫ π/a

0

dk

2π
εkψ̂

†
αkψ̂αk, (2)

where εk = −2tw cos(ka), and the fermion operators

ψ̂αk = 2
√

a

∞∑
j=1

sin(kja)d̂αj (3)

satisfy the anticommutation rules {ψ̂αk,ψ̂
†
α′k′ } = 2πδαα′δ(k −

k′). If V is much smaller than the bandwidth 4tw then only
electrons with momentum k close to the Fermi momentum
kF = π/(2a) contribute to the transport properties. Therefore
we linearize the spectrum εk � vF k, with vF = 2twa the
Fermi velocity, around kF and extend to ±∞ the integration
limits so that Ĥα = ∫

dk
2π

vF k ψ̂
†
αkF +kψ̂αkF +k . Introducing the

field operators ψ̂α(x) = ∫
dk
2π

eikxψ̂αkF +k we find the Dirac
Hamiltonian

Ĥα = −ivF

∫
dx ψ̂†

α(x)∂xψ̂α(x). (4)

In order to complete the low-energy mapping we have to work
out the low-energy form of the tunneling and interaction part
of Ĥ . This requires one to find a relation between the lattice

operator d̂αj and the field operator ψ̂α(x). We have

d̂αj = √
a

∫ π/a

0

dk

π
ψαk sin(kja)

� √
a

∫ ∞

−∞

dk

π
ψ̂αkF +k sin[(kF + k)ja]. (5)

For j = 1 we can further approximate the right-hand side as

d̂α1 � √
a

∫ ∞

−∞

dk

π
ψ̂αkF +k sin

(
π

2
+ ka

)
� 2

√
aψ̂α(0). (6)

Taking into account that n̂α1 = d̂
†
α1d̂α1 and collecting the pieces

together we end up with the low-energy Hamiltonian

Ĥ = −ivF

∑
α

∫ ∞

−∞
dx ψ̂†

α(x)∂xψ̂α(x)

+εd n̂d + ω0â
†â + tl

∑
α

[ψ̂†
α(0)d̂ + H.c.]

+λn̂d (â† + â) + un̂d

∑
α

n̂α(0), (7)

where nα(x) = ψ̂†
α(x)ψ̂α(x), tl ≡ 2

√
aTl , and u = 4aU . In the

next section we show how to manipulate Eq. (7) to deal with
the ee and ep interactions in a nonperturbative manner.

III. THEORETICAL FRAMEWORK

A. Bosonization and Lang-Firsov transformation

According to the bosonization technique we express the
field operators as30 ψ̂α(x) = ηα√

2πa
e−2

√
π iφ̂α (x), with ηα the

anticommuting Klein factor and boson field

φ̂α(x) = i
∑
q>0

ζq(b̂†αqe
−iqx − H.c.) − √

πxN̂α/L. (8)

In Eq. (8) the quantity ζq = e−aq/2/
√

2Lq and the operators
b̂
†
αq = (2π/Lq)1/2

∫
dk
2π

ψ̂
†
αk+qψ̂αk create particle-hole excita-

tions of momentum q in the leads. Pursuant to the bosonization
the lead density reads n̂α(x) = ψ̂†

α(x)ψ̂α(x) = −∂xφ̂α(x)/
√

π ,
and the Hamiltonian becomes

Ĥ =
∑

α,q>0

vF qb̂†αq b̂αq + εd n̂d + ω0â
†â

+tl
∑

α

[
η†

α√
2π

e−2
√

π
∑

q>0 ζq (b̂†αq−b̂αq )d̂ + H.c.

]

+n̂d

[
λ(â† + â) − u

∑
α,q>0

ζqq√
π

(b̂†αq + b̂αq)

]
. (9)

We can now eliminate the ep and ee coupling [third line of
Eq. (9)] by performing a Lang-Firsov transformation Ĥ ′ =
Û †Ĥ Û . This is achieved by the unitary operator (from now on
sums are over q > 0)

Û = exp

[(
− λ

ω0
(â† − â) +

∑
αq

uζq√
πvF

(b̂†αq − b̂αq)

)
n̂d

]
.

(10)
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In the explicit form of the transformed Hamiltonian

Ĥ ′ =
∑
αq

vF qb̂†αq b̂αq + ω0â
†â + ε̃d n̂d + tl

∑
α

[f̂ †
α0d̂ + H.c.]

(11)
the QD energy ε̃d = εd − λ2

ω0
− u2 ∑

q
e−aq

πvFL is renormalized

by a polaronlike shift and f̂α0 is the screened polaron field

f̂αx = ηα√
2πa

e−(λ/ω0)(â†−â)+2
√

π
∑

βq ζqWαβ (b̂†βqe−iqx−b̂βq eiqx ) (12)

evaluated in x = 0. In this equation WRR = WLL = 1 −
u/(2πvF ) and WRL = WLR = −u/(2πvF ). We emphasize
that even though in this work we consider noninteracting leads
the derivation above can be generalized to Luttinger liquid
leads (for U = 0 this has been done in Refs. 31 and 32).

The advantage of working with the bosonized Hamiltonian
Ĥ ′ is that for tl = 0 the interacting ground state is |�nd

〉 =
|nd〉 ⊗ |0ph〉 ⊗ ∏

αq |0αq〉, where |0ph〉 and |0αq〉 are the vacua

of the boson operators â and b̂αq , respectively, and |nd〉 is the
state of the QD with nd = 0 for ε̃d > 0 or nd = 1 for ε̃d < 0.
In the following we consider the system initially uncontacted
(tl = 0) and then switch on contacts and bias.33

B. Equations of motion

Equation (11) is an exact low-energy mapping of the
original Hamiltonian. Here we present a simple and accurate
truncation scheme to close the equation of motion for the
QD Green’s function. We define the QD Green’s function on
the Keldysh contour35 as G(z,z′) = 1

i
〈T d̂(z)d̂†(z′)〉, where T

is the contour ordering and operators are in the Heisenberg
picture with respect to Ĥ + ĤV (ĤV does not change after the
Lang-Firsov transformation); the average is taken over |�nd

〉.
The QD Green’s function satisfies the equation of motion

(i∂z − ε̃d )G(z,z′) = δ(z,z′) + tl
∑

α

Gα0(z,z′), (13)

where Gαx(z,z′) = 1
i
〈T f̂αx(z)d̂†(z′)〉 is the QD-lead Green’s

function which in turn satisfies

(i∂z + iαvF ∂x − iω0λ∂λ − Vα)Gαx(z,z′)

= tl
∑

β

1

i
〈T [f̂ †

β0d̂ + H.c.,f̂αx](z)d̂†(z′)〉. (14)

In Eq. (14) we took into account the identity

[ω0â
†â,e−(λ/ω0)(â†−â)] = ω0λ∂λe

−(λ/ω0)(â†−â). (15)

The central approximation of our truncation scheme consists
in replacing the average on the right-hand side of Eq. (14)
with 〈(f̂ †

α0f̂αx + f̂αx f̂
†
α0)(z)〉0G(z,z′) where 〈· · · 〉0 signifies

that operators are in the Heisenberg picture with respect to
the uncontacted but biased Hamiltonian. This approximation
corresponds to discard virtual tunneling processes between
two consecutive ep or ee scatterings and, therefore, becomes
exact for tl = 0. Unlike other truncation schemes,36 how-
ever, also the noninteracting case (λ = U = 0) is exactly
recovered.

To solve Eq. (14) we define the Green’s function
gαxαx ′ (z,z′) = 1

i
〈T f̂αx(z)f̂ †

αx ′ (z′)〉0 with equation of motion

(i∂z + ivF ∂x − iω0λ∂λ − Vα)gαxαx ′ (z,z′)

= δ(z,z′)〈(f̂αx f̂
†
αx ′ + f̂

†
αx ′ f̂αx)(z)〉0. (16)

Therefore

Gαx(z,z′) = tl

∫
dz̄ gαxα0(z,z̄)G(z̄,z′) (17)

and inserting this result into Eq. (13) we obtain a closed
equation for the QD Green’s function

(i∂z − ε̃d )G(z,z′) −
∫

dz̄
∑

α

�α(z,z̄)G(z̄,z′) = δ(z,z′).

(18)
In this equation

�α(z,z′) = t2
l gα0α0(z,z′) (19)

is a correlated embedding self-energy whose greater/lesser
Keldysh components are related to the decay rate for an
added/removed polaron. In fact, �>

α (t,t ′) is proportional to
the amplitude for an electron in the QD to tunnel in lead α

at time t ′, explore virtually the lead for a time t − t ′, and
tunnel back to the QD at time t . A similar interpretation
applies to �<

α . Using the Langreth rules35 we convert Eq. (18)
into a coupled system of Kadanoff-Baym equations38–42

which we then solve numerically once an expression for �α

is given.
The Green’s function gαxαx ′ (z,z′) can be calculated analyt-

ically being the average of coherent-state operators over the
bosonic vacua. The greater/lesser Keldysh components read

g
≶
αxαx ′ (t,t ′) = ± iaβ−1e−gege±iω0(t−t ′)

e−iVα (t−t ′)

2π [a ∓ ivF (t − t ′) ± i(x − x ′)]β
, (20)

with ratio g = (λ/ω0)2 and u-dependent exponent β = 1 +
u(u−2πvF )

2π2v2
F

. Inserting this result into Eq. (19) we find

�≶
α (t − t ′) = ± i��e−g

2π

ege±iω0(t−t ′)

[1 ∓ i�(t − t ′)]β
e−iVα (t−t ′), (21)

where � = 2T 2
l /tw = t2

l /vF is the level broadening and � =
vF /a is the high-energy cutoff.

IV. TRANSIENT REGIME

From the solution of Eq. (18) we can extract the time-
dependent (TD) QD density as well as the TD current Iα(t) at
the α interface

Iα(z) =
∫

dz̄ �α(z,z̄)G(z̄,z) + H.c. (22)

We apply a symmetric bias VL = −VR = V/2 and calculate
I (t) = [IL(t) + IR(t)]/2 for the parameters of Fig. 1. The
U = 0 curve is almost on top of the diagrammatic Monte
Carlo simulation.16 The TD current displays quasistationary
plateaus between two consecutive times 2nπ/ω0; around
these times we see sharp spikes. For U > 0 we observe a
significant enhancement of the current; the plateaus bend
and the amplitude of the spikes increases. We understand
this peculiar transient behavior by inspecting the self-energy
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FIG. 1. (Color online) TD current for different U at fixed λ, and
initial QD occupancy nd = 1. For U = 0, exact data from Ref. 16 are
also displayed (circles). The parameters are λ = 16, ω0 = 8, V = 26,
ε̃d = −10, and � = 100. Units: 10−1� for energies and �−1 for times.
Inset: I (t) for long propagation times (not within reach of current
numerical techniques).

in Eq. (21). In the top panel of Fig. 2 we plot |�<(t)|
for increasing λ at U = 0. The effect of the ep interaction
is twofold: an overall suppression proportional to e−g and
a modulation of period 2π/ω0 (coming from the double
exponential eeiω0 t

). Physically (see cartoon in the top panel
of Fig. 2), if we start at time t = T with one electron on
the QD the phonon cloud is centered around the minimum at
x � λ/ω2

0 of the harmonic potential. The large |�<(T )| favors
the transfer of the electron from the QD to the leads causing
a sudden shift of the minimum to x = 0. At this point the
polaron (electron + cloud) cannot hop back to the QD since

FIG. 2. (Color online) Modulus of the TD self-energy |�<
α (t)| for

different λ at U = 0 (top panel), and for different U (in units of tw)
at λ = 8 (bottom panel). The parameters are ω0 = 8, ε̃d = 0, and
� = 100. Units: �� for |�<|, � for energies, and �−1 for times.

FIG. 3. (Color online) I-V curve for different λ at U = 0 (left
panel), and for different U at λ = 10 (right panel). The parameters
are ω0 = 5, ε̃d = 0, and � = 1000. For U = 0 (left panel), exact
data from Ref. 15 are also displayed (circles). All energies in units
of �.

the overlap between the shifted phonon-cloud wave functions
is negligible (small |�<(t)|). Only after a dwelling time of
order 2π/ω0 this overlap is again sizable, the electron returns
to the QD (large |�<(T + 2π/ω0)|), and the cycle restarts. The
physical interpretation offered by Eq. (21) enables us to explain
the structure of the transient, how the system approaches
the FCB regime, and how image-charge effects change the
picture. Indeed, a nonvanishing U modifies the envelope of
|�<| from the noninteracting power law 1/t to 1/tβ (see
bottom panel of Fig. 2). According to the cartoon an electron
in the QD causes a depletion of charge (image-charge effect)
in the vicinity of the interface, thus facilitating the tunneling
(Coulomb deblocking).11–14 Similarly, when the electron is in
the leads the hole left on the QD acts as an attractive potential
and the probability to tunnel back increases. This explains the
enhancement of I in Fig. 1.

V. STEADY STATE

In the steady-state regime G and �α depend only on the
time difference and can be Fourier transformed. The steady
current Ī is given by a Meir-Wingreen-like formula14,25

Ī =
∫

dω

2π

�>
L (ω)�<

R (ω) − �<
L (ω)�>

R (ω)∣∣ω − ε̃d − ∑
α �R

α (ω)
∣∣2 , (23)

where the explicit expression for the self-energy in frequency
space reads

�≶
α (ω) = ±i

�e−g

�(β)

∞∑
n=0

gn

n!
|ω≶

αn/�|β−1θ (±ω≶
αn), (24)

with ω
≶
αn = ω ± nω0 − Vα , �(β) the Euler-gamma function,

and θ the Heaviside step function.43

In Fig. 3 we show the I-V curve for different λ at U = 0 (left
panel), and for different U at fixed λ = 10 (right panel). The
former is benchmarked against real-time path-integral Monte
Carlo results.15 Again we find quantitative agreement from
weak to strong coupling. The FCB suppression of Ī at large
λ as well as the phonon-assisted current steps at V = 2ω0

are correctly reproduced. Turning on the ee interaction the
Coulomb deblocking takes place and Ī increases for all V .
We still observe phonon-assisted steps but, unexpectedly,
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FIG. 4. (Color online) Contour plot of the differential conductance dI/dV as a function of gate ε̃d and bias V , for three different dot-lead
repulsion: U = 0 (left panel), U = 0.25 eV (middle panel), and U = 1 eV (right panel). The rest of the parameters are specified in the text.

they bend downward giving rise to regions of NDC. This
phenomenon is driven by the competition between ee and
ep interactions (no NDC for U = 0 or λ = 0). By further
increasing the bias a crossover occurs: The steps are attenuated
and the current acquires a power-law decay Ī ∼ V β−1. In
this region the system behaves as if the ep coupling were
zero.14,24

VI. NEGATIVE DIFFERENTIAL CONDUCTANCE

We investigate further the NDC aspect by calculating
the dI/dV as a function of voltage V and gate ε̃d . NDC
regions have been observed in QDs formed between the
defects of a CNT.4 Even though theoretical studies have so
far focussed on the ep coupling,4,19 the left/right portion of
the CNT screens the charge accumulated on the QD. Our
Hamiltonian represents the simplest generalization of previous
models to include this image-charge effect. We use parameters
from the literature: ω0 = 1 meV, λ = 1.82 meV, a = 2.46 Å,
vF = 8.1 × 105 m/s, � = 0.1 meV, and � = 0.1 eV.44 For
the ee coupling we take U < 1 eV, since in CNTs the on-site
repulsion is ∼ 5 eV.45 In Fig. 4 we show the contour plot of the
dI/dV for three different Us. The U = 0 case accurately re-
produces the FCB diamonds obtained within the rate equations
approach3 and later observed in experiments.4 However, no
signatures of NDC are found. For U = 0.25 eV, instead, spots
of NDC appear inside the diamonds, in qualitative agreement
with the experiment. Increasing U even further the NDC
regions expand, and horizontal stripes of large conductance
emerge. These stripes are suppressed by the strong, local
repulsion (not considered here) responsible for the Coulomb
blockade.3

VII. GENERALIZATION TO
LONG-RANGE INTERACTIONS

Our approximation scheme can be generalize to deal with
long-range QD-lead ee interactions. We consider an interaction
u(x) between an electron in the QD and a density fluctuation

n(x) at distance x. The generalization of Eq. (7) is

Ĥ = −ivF

∑
α=L,R

∫ ∞

−∞
dx ψ̂†

α(x)∂xψ̂α(x)

+εd n̂d + ω0â
†â + tl

∑
α

[ψ̂†
α(0)d̂ + H.c.]

+λn̂d (â† + â) + n̂d

∑
α

∫ ∞

−∞
dx u(x) n̂α(x). (25)

The contact interaction previously considered is recovered for
u(x) = uδ(x). The correlated embedding self-energy is still
given by Eq. (19) but the Green’s function g now reads (see
Appendix)

g
≶
α0α0(t,t ′) = ± i

2πa
e−geQ[±(t−t ′)]ege±iω0(t−t ′ )

e−iVα (t−t ′), (26)

with exponent

Q(t)=
∑

q

2π

Lq
e−aq (eivF qt−1)

[
1 − uq

πvF

+1

2

(
uq

πvF

)2]
. (27)

In Fig. 5 we display the I-V characteristic of the soft-Coulomb
interaction u(x) = u/

√
x2 + a2 (solid lines) and compare it

FIG. 5. (Color online) I-V curves for u(x) = u/
√

x2 + a2 (solid
lines) and u(x) = uδ(x) (dashed lines) for different values of the
ep coupling: λ = 0 (red), λ = 10 (green), λ = 15 (blue), and λ =
20 (orange). In the left panel u = 0.1, and in the right panel u =
0.6. The rest of the parameters are ω0 = 5, ε̃d = 0, and � = 1000.
Energies are in units of �/2 and u is in units of vF .
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with the I-V characteristic of the contact interaction u(x) =
uδ(x) (dashed lines) for u = 0.1vF (left panel) and u = 0.6vF

(right panel) at different values of λ. The long-range interaction
tends to increase the current since the depletion of charge
extends over a longer portion of the leads (enhancement of the
Coulomb deblocking). The consequences for the NDC are that
for small u (left panel) the NDC is more pronounced, while
for large u the NDC is significantly suppressed.

VIII. SUMMARY AND CONCLUSIONS

We presented a comprehensive analysis of the nonequilib-
rium properties of a QD with an ep coupling λ and an ee QD-
lead repulsion U . The Hamiltonian reduces to the interacting
resonant level model for λ = 0 and to the Anderson-Holstein
model for U = 0. Here we considered the presence of arbitrary
couplings U and λ. Combining the bosonization method
with nonequilibrium Green’s function theory we obtained
the Kadanoff-Baym equations for the QD Green’s function.
The self-energy is approximated using a truncation scheme
in the polaronic basis and has a simple analytic form which
accounts for the level broadening due to the leads as well
as for the ep and ee interactions. Excellent agreement with
available numerical results is found in the transient and in the
steady-state regime. The formula for the self-energy renders
the physical interpretation of the results direct and intuitive. We
also showed that the competition between FCB and Coulomb
deblocking leads to a novel mechanism for the NDC, and
studied the dependence on the screening length. This NDC
mechanism occurs in QD weakly coupled to low-dimensional
leads, like those recently realized with CNT.
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APPENDIX : EVALUATION OF � FOR
LONG-RANGE INTERACTIONS

By introducing the Fourier transform uq = ∫
dx eiqxu(x)

and the bosonized form of the field operators, the Hamiltonian

of Eq. (25) becomes

Ĥ =
∑

α,q>0

vF qb̂†αq b̂αq + εd n̂d + ω0â
†â

+tl
∑

α

[
η†

α√
2π

e−2
√

π
∑

q>0 ζq (b̂†αq−b̂αq )d̂ + H.c.

]

+n̂d

[
λ(â† + â) −

∑
α,q>0

ζqq√
π

uq(b̂†αq + b̂αq)

]
, (A1)

where the zero-mode contribution has been discarded as it
vanishes for leads of infinite length. As in the short-range
case we perform a Lang-Firsov transformation Ĥ ′ = Û †Ĥ Û
to eliminate the ep and ee coupling [second line of Eq. (A1)].
This is achieved by the unitary operator (sums over q > 0 are
understood)

Û = exp

[(
− λ

ω0
(â† − â) +

∑
αq

ζq√
πvF

uq(b̂†αq − b̂αq)

)
n̂d

]
.

(A2)
After the Lang-Firsov transformation we end up with a
Hamiltonian Ĥ ′ which is formally identical to the one in
Eq. (11) with the only difference that

ε̃d = εd − λ2

ω0
−

∑
q

u2
q

e−aq

πvFL
(A3)

and

f̂αx = ηα√
2πa

e−(λ/ω0)(â†−â)+2
√

π
∑

βq ζqWαβq (b̂†βqe−iqx−b̂βq eiqx ),

(A4)
with

WRRq = WLLq = 1 − uq/(2πvF ),
(A5)

WRLq = WLRq = −uq/(2πvF ).

The screened polaron field is again a coherent-state op-
erator and therefore the Green’s function gαxαx ′ (z,z′) =
1
i
〈T f̂αx(z)f̂ †

αx ′(z′)〉0 can be calculated analytically using stan-
dard identities for the harmonic oscillator. The result is given
in Eqs. (26) and (27) and correctly reduces to Eq. (20) in the
case of contact interactions uq = u.
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10P. Myöhänen, R. Tuovinen, T. Korhonen, G. Stefanucci, and R. van

Leeuwen, Phys. Rev. B 85, 075105 (2012).
11G. D. Mahan, Phys. Rev. Lett. 18, 448 (1967); P. Nozières and

C. T. De Dominicis, Phys. Rev. 178, 1097 (1969).
12J. Spitaler, E. Ya. Sherman, H. G. Evertz, and C. Ambrosch-Draxl,

Phys. Rev. B 70, 125107 (2004).
13M. Goldstein, R. Berkovits, and Y. Gefen, Phys. Rev. Lett. 104,

226805 (2010).
14E. Perfetto, G. Stefanucci, and M. Cini, Phys. Rev. B 85, 165437

(2012).
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