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Molecular graphene under the eye of scattering theory
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The recent experimental observations of designer Dirac fermions and topological phases in molecular graphene
are addressed theoretically. Using scattering theory, we calculate the electronic structure of finite lattices of
scattering centers dual to the honeycomb lattice. In good agreement with experimental observations, we obtain a
V-shaped electron density of states around the Fermi energy. By varying the lattice parameter we simulate electron
and hole doping of the structure, and by adding and removing scattering centers we simulate, respectively, vacancy
and impurity defects. Specifically, for the vacancy defect we verify the emergence of a sharp resonance near the
Fermi energy for increasing strength of the scattering potential.
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I. INTRODUCTION

The interest in Dirac fermions has grown for a wide
community after the first synthesis of a monolayer graphene
and the subsequent observations of massless fermions.1–6 As a
common feature to a new class of materials that has emerged
after the initial breakthrough, the band structure and embedded
spin degree of freedom of the Dirac fermions are described by
the relativistic Dirac equation.3,4

There has been increasing interest in engineered systems
that share key properties, including Dirac fermions, with
graphene.7 The hexagonal lattice structure has been shown
to be crucial for the formation of Dirac fermions, exper-
imentally realized by, for example, confining photons in
hexagonal patterns,8,9 nanopatterning of ultrahigh-mobility
two-dimensional electron gases,10 scanning probe methods
to assemble molecules on metallic surfaces,11 and trapping
ultracold atoms in optical lattices.12–14 It is important to notice
that artificial systems provide alternative routes for studies of
topological15 and quantum spin Hall insulators,16,17 as well as
for novel nontrivial strongly correlated phases.18

Although experimental progress within the field of arti-
ficially assembled nanostructures has been tremendous, as
shown in the above examples, theoretical advances have
focused less on aspects of engineered nanostructures. Here, we
theoretically study molecular graphene which is constructed
by depositing scattering defects in a regular triangular lattice
on a metallic surface. Using scattering theory,19 we calculate
the local density of electron states within the engineered lattice
structure and find a linear spectrum around the Fermi level, in
excellent agreement with experiments.11 Further, we study the
effects of electron and hole doping by modifying the lattice
parameter and magnetic field effects by imposing strain to the
lattice. Especially, we consider single-defect scattering and
simulate both vacancy and impurity defects. For the vacancy
defects we verify the emergence of a sharp resonance near the
Fermi level for increasing strength of the vacancy scattering
potential.

Previous attempts to model molecular, or artificial,
graphene have focused on the implementation of infinite
lattice structures in two-dimensional electron gases using tight-
binding models.20–22 Here, we instead employ a scattering
theoretical approach which allows us to study finite structures
of arbitrary size. The flexibility this approach offers has proven

invaluable in previous studies of, for example, engineered
nanostructures on metallic surfaces19,23,24 and single defects
on topological insulator surfaces25 and graphene.26 Our results
presented here are hence also an important demonstration of a
tool that can be applied more generally for studies of atomic
and molecular assemblies embedded in a two-dimensional
electron gas.

Local probing techniques are especially promising and
useful for building understanding of the interactions in
low-dimensional materials and complexes of molecular
structures.27–30 Such techniques have been employed in
very different contexts for engineering assembled nanostruc-
tures aiming for nanomagnetic memories,31 spin-based logic
gates,32 and coherent quantum phase measurements.33

Scanning tunneling microscopy (STM) is a local probing
technique34 which offers a route for mapping the local elec-
tronic structure using the tunneling current flowing between
the STM tip and a surface.35 At low temperatures the tunneling
conductance is given by

dI (r,V )

dV
∝ ntip(εF − eV )N (r,εF ), (1)

where εF is the Fermi level of the system in equilibrium and
V is the source-drain voltage applied across the tunneling
junction. This expression relates the tunneling (differential)
conductance (dI/dV ) to the local electronic densities of states
(DOS) of the surface (N ) and the tip (ntip). Typically, the tip
electronic density is featureless so that signatures picked up
in the tunneling conductance can be attributed to variations in
the local surface density of electron states N (r,ω). Calculating
this density is henceforth our primary focus.

II. DEFINING THE SYSTEM

We consider a metallic surface modeled by a two-
dimensional electron gas using H0 = ∑

kσ εkc
†
kσ ckσ , where

c
†
kσ (ckσ ) creates (annihilates) an electron with energy εk,

momentum k, and spin σ = ↑,↓. Scattering points are inserted
at the positions Rn through the energy Hint = ∑

n Vnn(Rn),
where n(r) = ∑

σ

∫
c
†
kσ ck′σ e−i(k−k′)·rdkdk′/(2π )4 is the elec-

tronic charge at the spatial position r. The surface
electron density can be calculated through the relation
N (r,ω) = −ImG(r,r; ω)/π , where G(r,r′; ω) is the sur-
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FIG. 1. (Color online) (a) Topograph of a lattice consisting of hexagonal scatterers at an energy of −10 meV. The triangular and hexagonal
lattices are added as guides to the eye. (b)–(d) Local DOS as a function of (b) the number of scattering points in each scattering center [seven
points (hexagon), four points (triangle), and one point], (c) the diameter of the (hexagonal) scattering centers, and (d) lattice size: 5 × 6, 9 × 10,
13 × 14, and 17 × 18 (hexagonal) scattering centers. In (a), (b), and (d) we used a diameter of 4.8 Å for the hexagonal scattering centers
and lattice parameter a = 19.2 Å. For all plots we have used εk − εF = E0 + h̄2k2/2m∗, with E0 � −0.45 eV for Cu(111), and m∗ = 0.38m,
where m is the free-electron mass.

face Green’s function (GF) which describes the local elec-
tronic structure. The real-space GF connects to the intro-
duced model through the Fourier transform G(r,r′; ω) =∫

Gkk′(ω)eik·r−ik′ ·r′
dkdk′/(2π )4. Here, we have suppressed

the spin indices since our system is assumed to be perfectly
spin degenerate.

The dressed GF G is constructed through a T -matrix
expansion (see, for example, Refs. 19 and 36 for more details),

Gkk′(ω) = δ(k − k′)gk(ω) +
∑

mn

gk(ω)e−ik·Rm

×T (Rm,Rn)eik′ ·Rngk′(ω), (2a)

T (Rm,Rn) = t(Rm,Rn)Vn, (2b)

where t−1(Rm,Rn) = δ(Rm − Rn) − Vmg(Rm − Rn), g(r −
r′) = ∫

gke
ik·(r−r′)dk/(2π )2, and the bare, or unperturbed,

GF gk = (ω − εk + iδ)−1, where δ > 0 is infinitesimal. This
expansion describes the influence of scattering at the positions
Rm on the electronic structure by providing a correlation

between electron creation at r′ and annihilation at r in the
presence of potential scattering.

The scattering potentials at sites Rm deplete the electron
density in a neighborhood around those positions, and this
electron density has to be redistributed elsewhere in the
structure. This generates a new electronic structure. By
distributing the scattering potentials according to a triangular
lattice (dotted lines), we construct an electronic density which
is distributed as a honeycomb lattice; see Fig. 1(a).

III. Results

A. Lattice conditions

In an experimental setup, the scattering centers would be
represented by atomic or molecular entities,11 which provides
a continuous and spatially extended potential landscape.
While we have used Dirac pointlike scattering potentials,
Vn = ∫

V0δ(r − Rn)dr, in our calculations, spatial extension
of the scattering centers can be obtained by inserting several
scattering points in cluster formations [see the legend of
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Fig. 1(b)]. The electron DOSs resulting from three different
types of scattering centers are plotted in Fig. 1(b): single
scattering points (dotted line), four points in a triangular form
(dashed line), and seven points in a hexagonal form (solid
line). The plotted electron DOSs are obtained by spatially
averaging around the scattering centers and subtracting the
flat background density of the surface states. The plots
clearly illustrate how the spatial extension of the scattering
centers build up the linear spectrum around the Fermi
level (zero-energy point), the Dirac point, and we base our
following discussion on the hexagonally shaped scattering
centers.

Furthermore, we test the importance of the spatial extension
of the scattering centers by varying the diameter of the
hexagonally shaped scattering centers, and in Fig. 1(c) we
plot the electron DOS for different sizes. The resulting DOSs
point towards the fact that scattering centers of about 2–5 Å
in diameter are sufficiently large to not have a pointlike
influence on the electronic density. Scattering centers that are
too large (diameter � 9 Å) tend, on the other hand, to modify
the electronic density towards a double-well structure around
the Fermi level.

The lattice size has a natural influence on the electron DOS
at the center of the lattice [see Fig. 1(d), where we plot the
electron DOS as a function of the lattice size]. Distributing
scattering centers with a diameter of 4.8 Å in a triangular
lattice with lattice parameter a = 19.2 Å clearly indicates that
the central electron DOS converges towards a linear spectrum
around the Fermi level sufficiently well for 100–200 scattering
centers arranged in a nearly quadratic form.

B. Lattice functionalization

Changes in the lattice parameter a have the influence of
doping the molecular graphene. A smaller (larger) lattice
parameter functions as a stronger (weaker) confinement of the
electron density, which thereby pushes the spectrum towards
higher (lower) energies [see Fig. 2(a)]. In this way one can
achieve electron (hole) doping of the system. Apart from the
rigid shift, the shape of the spectrum remains nearly unaffected
by the changes in the lattice parameter.

The flexibility offered by the scattering theoretical approach
is illustrated by the spectrum plotted in Fig. 2(b), showing
the electron DOS for a Kekulé textured lattice (see inset). In
excellent agreement with the experiments,11 we reproduce the
opening of a finite gap at the Dirac points, as well as the strong
peaks appearing on each side.

Imposing strain, or pseudomagnetic field, on molecular
graphene has the same effect as in real graphene, namely,
breaking the pseudospin symmetry of the Dirac point. Practi-
cally, a constant strain field is introduced through displacement
of the scattering centers, in polar coordinates (r,θ ), using
(ur,uθ ) = (qr2 sin 3θ,qr2 cos 3θ ), where q is a parameter for
the strength of the strain.17

In Fig. 3(a) we show the spectral density at the center of
the lattice for strain conditions corresponding to a magnetic
field of 60 T. In agreement with experiments, the strain breaks
the pseudospin symmetry of the Dirac point, which becomes
visible in the spatial resolution of the spectral density. This
results in the formation of an A sublattice with increased
density at the Fermi level (bright spots) and a B sublattice
with reduced density (dark spots). This is more clearly shown
in Fig. 3(b), where we plot the local DOS associated with the
respective sublattices. The local DOS shows a well-defined
zero-energy state, the zero Landau level, in the bright spots
of the A sublattice (solid line). The dark regions of the B

sublattice (dashed line) are associated with a reduced electron
density, revealing the Landau gap below the Fermi level.

C. Impurity scattering

Next, we consider impurity scattering in molecular
graphene. Before we proceed, however, we briefly intro-
duce the salient features predicted for impurity scattering in
graphene. It has been shown that simple potential scattering at
the position R0 gives rise to a resonance in the local electron
DOS below the Dirac point but within the linear part of the
spectrum.37–39 We discuss the results within a nearest-neighbor
interaction model for graphene of the type

H = −t
∑

〈mn〉σ
�†

mσσ x�nσ +
∑

mσ

�†
mσ U(rm)�mσ , (3)
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FIG. 2. (Color online) Electron DOS for (a) varying lattice parameter a, going from hole-doped (dotted line) via nearly neutral (solid line)
to electron-doped (dashed line) molecular graphene, and (b) Kekulé texturing of the scattering centers. The inset shows the geometry of the
Kekulé texturing. Other parameters are as in Fig. 1.
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FIG. 3. (Color online) Molecular graphene under a pseudomagnetic field corresponding to 60 T (q = 10−3 Å). (a) Spectral density and
(b) electron DOS in the A (solid line) and B (dashed line) sublattices.

where �
†
mσ = (a†

mσ b
†
mσ ) denotes the pseudospinor for creation

of electrons in the A and B sublattices, respectively, t is the
hopping parameter, and σx is the x component of the Pauli
matrices. In the last term U(rm) = diag{UA(rm) UB(rm)} is a
diagonal matrix representing the scattering potential and its
coupling to the A and B sublattices, respectively. In this form
we can describe scattering from a single vacancy in graphene
by letting, for example, U(R0) = diag{UA(R0) 0}, where R0

is a C site in the A sublattice. This describes scattering
off a potential UA in the A sublattice but none in the B

sublattice.
Calculating the resulting electronic structure due to this

potential scattering through, for example, a T -matrix approach
(see Refs. 37–39 for more details), one can write the real-space
local electron DOS in the B sublattice as NB(r,ω) = ωN0 +
δNB(r,ω), where

δNB(r,ω)

= −N0J
2
0 (kF |r − R0|)Im (2D + iπ )2

U−1
A − ω[2 ln(D/|ω|) + iπ ]

.

(4)

Here, N0 is related to the Fermi velocity vF and a high-energy
cutoff D ∼ 5–10 eV,37 kF is the Fermi wave vector, and J0(x)
is a Bessel function of the first kind. The correction δNB(r,ω)
displays clear divergent characteristics for 2ω ln(D/|ω|) →
1/UA in a spatial neighborhood around the vacancy. Hence, the
potential scattering creates a resonance within the linear part
of the spectrum for large scattering potentials UA. This feature
is tightly associated with the density in the B sublattice, which
can be seen since the corresponding electron DOS in the A

sublattice acquires the form NA(r,ω) = N0ω[1 + J 2
0 (kF |r −

R0|)] (for large UA). It is clear that the modified density in the
A sublattice lacks the divergent component. A threefold spatial
symmetry is therefore expected to emerge for the electron
density around the vacancy.

In molecular graphene, the vacancy defect is realized
by adding a scattering center, henceforth referred to as the
vacancy site, at a point corresponding to a C site in, say, the

A sublattice [see inset of Fig. 4(b)]. The vacancy site breaks
the bond between this C site and the adjacent C sites in the
B sublattice, which locally depletes the electron density at
this site, in agreement with the expected features around a
vacancy site. In Fig. 4(a) we plot the local electron DOS in the
lattice sites adjacent to the vacancy site for increasing potential
strength. The potential strength is modulated by varying the
number of scattering points in the vacancy site. The plots
illustrate how the resonance builds up within the linear part
of the spectrum for an increasing number of scattering points
in the vacancy site, in agreement with Eq. (4), from a minor
hump for the weakest scattering potential (solid line) to a
more pronounced shoulder (dashed, dash-dotted, and dotted
lines) for the stronger ones. By dividing out the unperturbed
electron DOS [Fig. 4(a), thin line] from the perturbed ones,
those features become more apparent [see Fig. 4(b)]. The plots
illustrate the rise of a rather sharp resonance for the strong
scattering potentials. Also the topography around the scatter-
ing potential is modulated by the increased potential strength
[see Figs. 4(c) and 4(d), which show the spectral density for 7
and 13 scattering points within the vacancy site, respectively].
As expected, the vacancy scattering generates a threefold
symmetric spatial signature in the B sublattice, as well as an
increased electron density with increasing potential strength.
The emergence of the resonance within the linear part of the
spectrum, sometimes referred to as a midgap state, is caused
by breaking the sublattice symmetry. The relatively weak
resonance obtained in our computations compared to the pre-
diction made in terms of Eq. (4) is reasonable since our finite
lattice does not generate the very strong electronic confinement
acquired in a proper two-dimensional structure. Moreover,
the effective potential at the vacancy site is most likely still
in the weak limit, even in the case of 37 scattering points
in the vacancy site. Our computations, nevertheless, demon-
strate the correct tendency of the resulting electronic density
around the vacancy.

Scattering off an impurity at a plaquette position (inside
a hexagon) can be accounted for by removing one of
the scattering sites in the triangular lattice, hence allowing
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FIG. 4. (Color online) Effect of a single defect in molecular graphene. (a) Electron DOS for a varying number {7,13, 25, 37} of scattering
points within the vacancy site. The thin line shows the unperturbed electron DOS for reference. (b) Perturbed divided by unperturbed electron
DOS. The inset shows the geometry of the modified lattice including the vacancy site. The spatial spectral density for the cases of (c) 7 and (d)
13 scattering points at the vacancy site. (e) Spatial spectral density for a single impurity in the plaquette position.

electron density to fill the void and create a bond across
the hexagon through the impurity [see the spectral density
plotted in Fig. 4(e)]. The bright spot signifies the increased
electron density at the impurity site, and the associated sixfold
symmetry of the spatial signature surrounding it is apparent.
In this case a resonance builds up in both sublattices for strong
enough scattering potential since the impurity couples equally
strongly to both.

IV. SUMMARY

In summary, we have studied molecular graphene using
a scattering theoretical approach. Molecular graphene is
constructed from the redistribution of the electron density
constrained by a triangular lattice of scattering centers, dual
to the honeycomb lattice. Making use of pointlike scattering
potentials, we find that scattering centers comprising several
(about seven) scattering points distributed in a hexagonal shape
with a diameter between roughly 3 and 6 Å are sufficient
to obtain a V-shaped spectrum. This shows that spatially
continuous scattering potentials are not necessary to achieve
realistic electronic structures. Combining those scattering cen-
ters with a moderately sized finite lattice (∼13 × 14 scattering
centers), we reproduce results in very good agreement with
Ref. 11.

Impurity scattering can be realized by adding or removing
scattering centers in the system. An important finding is that
we verify that local defects may give rise to sharp reso-
nances within the V-shaped DOS, provided that the scattering
potential is sufficiently strong. This is in good agreement
with previous theoretical predictions.37–39 Our results suggest
that defects of the same species as the surrounding lattice
comprise a scattering potential which is not sufficiently strong
to generate a resonance in the local DOS, which we believe
to be the cause of the lack of experimental confirmation of
this feature. Entities that correspond to stronger scattering
potentials which thereby deplete the electron density more
efficiently than the surrounding lattice should be accessible to
the present experimental state of the art. Thus, experimental
verification of the theoretical prediction should be within the
realms of experiments in the near future.
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