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Interaction quench in nonequilibrium Luttinger liquids
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We study the relaxation dynamics of a nonequilibrium Tomonaga-Luttinger model after a sudden interaction
switch-on (“quench”), focusing on a double-step initial momentum distribution function. In the framework of
the nonequilibrium bosonization, the results are obtained in terms of singular Fredholm determinants that are
evaluated numerically and whose asymptotics are found analytically. While the quasiparticle weights decay
exponentially with time after the quench, this is not a relaxation into a thermal state, in view of the integrability
of the model. The steady-state distribution emerging at infinite times retains two edges which support Luttinger-
liquid-like power-law singularities smeared by dephasing. The obtained critical exponents and the dephasing
length are found to depend on the initial nonequilibrium state.
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I. INTRODUCTION

Quantum physics of interacting one-dimensional (1D)
systems represents a fascinating research area. One of the
main features of such systems is the emergence of a strongly
correlated state, the Luttinger liquid.1 Most important exper-
imental realizations include electrons in 1D nanostructures
(quantum Hall and topological insulator edges, carbon nan-
otubes, semiconductor quantum wires), quantum spin chains,
and cold atoms (bosons as well as fermions) in optical traps.
One of central directions of current research is the physics of
nonequilibrium phenomena in these structures.

In the cold-atom context (see Ref. 2 for a review), the most
frequently considered nonequilibrium setting is a quantum
quench:3–7 one explores a quantum evolution of the system
after a sudden change of one of the parameters. In particular,
one can modify the optical lattice potential confining the
atoms. An alternative possibility is to suddenly change the
interaction strength by employing a strong dependence of
interaction on the magnetic field in the vicinity of Feshbach
resonance. It has been recognized that, upon an interaction
quench, a Luttinger liquid shows an interesting dynamics
and eventually evolves into a nonthermal state characterized
by nonequilibrium power-law correlations.8–10 Subsequent
theoretical works explored various generalizations of this
problem.11–30

On the other hand, in the context of electronic systems,
typical nonequilibrium setups are of steady-state character
(as obtained by applying bias voltages to some of source
electrodes). Recent experiments have addressed nonequi-
librium spectroscopy of carbon nanotubes31 and quantum
Hall edge states32 as well as nonequilibrium edge state
interferometry.33–40 On the theory side, one of important
recent theoretical advances was a development of the method
of nonequilibrium bosonization41–44 that permits, in partic-
ular, treating Luttinger liquids with distribution functions
of incoming electrons that have multiple Fermi edges. It
was shown that this leads to a multiple-branch zero-bias
anomaly with exponents and dephasing rates controlled by

the nonequilibrium state of the system. Related results have
been obtained for the problems of quantum Hall edge state
spectroscopy45,46 and Mach-Zehnder interferometry.47–49

While two types of nonequilibrium Luttinger liquid setups
(a temporal interaction quench and a steady-state with multiple
Fermi edges originating from applied voltages) are quite
different, there is a remarkable similarity between the results.
In both cases, one finds nontrivial power-law exponents that
are essentially different from the equilibrium ones. In this
paper, we show that both kinds of nonequilibrium settings can
be treated within a unified framework of the nonequilibrium
bosonization. We employ this formalism to explore the dynam-
ics after an interaction quench in an initially nonequilibrium
Luttinger liquid. The Fermi-edge exponents and dephasing
are controlled by charge fractionalization at temporal (and
possibly spatial) boundaries of the interaction region and by
the input nonequilibrium distributions.

II. EQUILIBRIUM QUENCH IN THE
TOMONAGA-LUTTINGER MODEL

The Tomonaga-Luttinger model (TLM) describes the low-
energy physics of interacting 1D fermions. It turns out that low-
energy excitations can be fully captured in terms of bosonic
modes. A free 1D fermionic system with right-(left-)moving
modes ψ+ (ψ−) close to the Fermi points can be mapped onto
a free 1D bosonic system with a linear spectrum

H0 = −ivF :
∫

dx (ψ†
+∂xψ+ − ψ

†
−∂xψ−) :

= πvF :
∫

dx (�2
+ + �2

−) :

with density operators �±(x) =: ψ
†
±(x)ψ±(x) : and Fermi

velocity vF . The fermionic operators can be likewise expressed
in terms of bosonic operators

ψη(x) ∼ η√
2πa

eiφη , η = ±,
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where the phase operators φη are related to densities via
�η(x) = (η/2π )∂xφη(x). While counterpropagating density
modes are uncoupled for originally free fermions, they are
mixed by interaction. The interaction Hamiltonian for short-
range interaction is

Hint(t) = g4(t)

2
:
∫

dx (�2
+ + �2

−) :

+ g2(t) :
∫

dx �+(x)�−(x) : .

To describe the interaction quench we let the coupling
parameters gj (t) = gjθ (t) be time dependent. In more physical
terms we assume that the switching time is much shorter than
all characteristic time scales of the problem set for example
by the inverse voltage U ; see Sec. III A below. On the other
hand, the switching time is assumed to be larger than the
inverse ultraviolet cutoff 	−1. In this case the TLM is a valid
description of a Luttinger liquid also for the quench problem.
A departure from the TLM behavior will only arise at very long
times, as discussed in Sec. IV. In the presence of interaction
the new bosonic eigenmodes, the “plasmons” �̃η, are obtained
by the Bogoliubov transformation(

�+
�−

)
=

(
c s

s c

)(
�̃+
�̃−

)
, c ≡ 1 + K

2
√

K
, s ≡ 1 − K

2
√

K
(1)

with the Luttinger parameter

K =
√

2πvF + g4 − g2

2πvF + g4 + g2
.

The full Hamiltonian after the quench then reads

H = H0 + Hint(t > 0) = πu :
∫

dx (�̃2
+ + �̃2

−) : (2)

with the plasmon velocity

u = vF

√
[1 + g4/(2πvF )]2 + [g2/(2πvF )]2.

In thermal equilibrium the many-body density matrix �̂ =
Z−1e−H/T is a function of H ; thus it is straightforwardly
expressed as an exponential of bilinears of bosonic fields.

References 8 and 14 considered time evolution after a sud-
den interaction switch-on. The initially noninteracting system
is prepared in the thermal equilibrium state �̂0 = Z−1

0 e−H0/T

which after the quench no longer represents equilibrium
(with respect to the full Hamiltonian H ). However, the time
evolution of �̂0, �η, and ψη can be deduced by the Bogoliubov
transformation (1). Calculations there were performed with a
finite interaction range R0 ∼ vF /	 as short-distance regular-
ization. At long distances x̄ � R0 results are insensitive to the
regularization scheme, and momentum-dependent coupling
parameters (associated with finite interaction range) can be
replaced by their zero-momentum values, gj (q) ≈ gj (q = 0).
The equal-time correlation function then is

G<
eq+(x̄,t̄ ; 0,t̄) = G<

0+(x̄,0)

∣∣∣∣R0

x̄

∣∣∣∣
γ̃ 2 ∣∣∣∣ (2ut̄)2 − x̄2

(2ut̄)2

∣∣∣∣
γ̃ 2/2

, (3)

where the exponent is determined by γ̃ ≡ (1 − K2)/2K and
G<

0+(x̄,0) is the free fermionic Green’s function.

For short times such that 2ut̄ � |x̄| the correlation function
G<

+(t̄ ; x̄,0) ≈ Z(t̄)G<
0+(x̄; 0) can be interpreted as the Green’s

function of an effective time-dependent Fermi liquid with
“Landau quasiparticle weight”

Z(t̄) = (R0/2ut̄)γ̃
2
, (4)

which gives rise to a discontinuity in the momentum distribu-
tion function n+(p) at Fermi momentum p = pF . According
to (4) the jump decays algebraically with time t̄ .

For large times t̄ → ∞ the system reaches a time-
independent steady state with power-law correlations

G<
+(t̄ � x̄/u; x̄,0) = G<

0+(0,x̄)|R0/x̄|γ̃ 2
. (5)

The corresponding momentum distribution function no longer
exhibits a discontinuity at p = pF , but instead has a power-law
singularity ∼|p − pF |γ̃ 2

. This behavior is very similar to that
observed in an equilibrium Luttinger liquid,1 however with
an exponent γ̃ 2 that differs from the equilibrium one, 2γ =
(1 − K)2/2K . Hence, while interactions drive the dynamical
evolution which destroy the Fermi liquid character of the
spectral function, the integrability prevents the system from
relaxation into thermal equilibrium.

III. QUENCH IN THE OUT-OF-EQUILIBRIUM
TOMONAGA-LUTTINGER MODEL

In this section we consider the quench problem in the
Luttinger liquid (within the TLM approximation) prepared
in a nonequilibrium initial state with double-step distribution
functions. First we present the key details of our calculations
within the nonequilibrium bosonization framework and then
discuss the obtained results.

A. Solution via nonequilibrium bosonization

In this paper we consider initial states in which fermionic
right-/left-moving single-particle states (±,εi) are indepen-
dently occupied according to distribution functions f±(εi) =
(1 − a)θ (−εi) + aθ (U − εi) which have two sharp Fermi
edges at ε = 0 and U ; see the inset in Fig. 3. Such distribution
functions arise when fermions with different (electro)chemical
potentials are mixed. In the context of electronic quantum
wires, double-step distributions have been experimentally
realized by applying appropriate bias voltages.31,32 Double-
step distributions are of particular interest as they represent a
nontrivial nonequilibrium state and still possess sharp edges.
For such nonequilibrium states the initial density matrix is
not an exponential of an operator quadratic in the plasmonic
modes. This makes the nonequilibrium problem considerably
more complicated in comparison with the equilibrium one.

A general framework to deal with this class of problems has
been developed in Ref. 41 where the operator bosonization
method was combined with the Keldysh action technique.
Within this approach the right-movers’ single-particle Green’s
function

iG<
+(x̄,t̄ ; 0,t̄) ≡ −〈ψ†

+(0,t̄)ψ+(x̄,t̄)〉
= iG<

eq+(x̄,t̄ ; 0,t̄)
∏
η=±

�η[δη]/�0[δη] (6)
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FIG. 1. (Color online) Trajectories of density peaks and the corresponding counting phases δ± for the Green’s function (6) in the case of
short times 2ut̄ < x̄ (left) and long times 2ut̄ > x̄ > 0 (right). The x axis corresponds to the time t = 0 when the quench takes place.

can be expressed in terms of a functional determinant of a
Fredholm operator,

�η[δη] = Det[1 − fη + eiδηfη].

While the distribution function fη is diagonal in energy
representation, the counting phase

δη(t) = 4πvF lim
t̃→−∞

∫ 0

t̃−t

dτ �q
η (ηvF τ,t̃) (7)

is diagonal in the conjugate time representation. The equi-
librium value �0[δη] of �η[δη] is obtained by replacing fη

by the equilibrium distribution function f0(ε) = θ (−ε). The
counting phase is sensitive to the asymptotic behavior of
the density trajectory �

q
η , which is the advanced solution of

the classical equations of motion[
∂t +

(
vF + g4

2π

)
∂x

]
�

q
+(x,t) + g2

2π
∂x�

q
−(x,t) = J (x,t),

(8)[
∂t −

(
vF + g4

2π

)
∂x

]
�

q
−(x,t) − g2

2π
∂x�

q
+(x,t) = 0.

The source term J (x,t) ≡ 1
2δ(t − t̄)[δ(x) − δ(x − x̄)] on the

right-hand side of the equation corresponds to the injection of
a right-moving fermion at position 0 and time t̄ and its removal
at (x̄,t̄). After the quench, t > 0, the interaction couples right-
and left-moving density modes. To decouple them we apply
the Bogoliubov transformation (1), yielding

[∂t + u∂x]�̃q
+(x,t) = cJ (x,t),

(9)
[∂t − u∂x]�̃q

−(x,t) = −sJ (x,t).

The charge configuration �̃
q
η describes the “advanced charge

response” to the aforementioned injection and removal of the
right-moving fermion. It is a superposition of δ peaks moving
with velocities ±u after the quench and ±vF prior to it.

Solving the linear Eqs. (9) we find that at times t > 0 after
the quench

�̃
q
+(x,t) = − 1

2 c θ (t̄ − t){δ[x − u(t − t̄)]

− δ[x − x̄ − u(t − t̄)]},
�̃

q
−(x,t) = 1

2 s θ (t̄ − t){δ[x + u(t − t̄)]

− δ[x − x̄ + u(t − t̄)]}.
Requiring continuity at t = 0 and inverting the Bogoliubov
transformation we obtain the charge density prior to the

quench, t < 0,

�
q
+(x,t) = − 1

2 {c2(δ[x + ut̄ − vF t] − δ[x − x̄ + ut̄ − vF t])

− s2(δ[x − ut̄ − vF t] − δ[x − x̄ − ut̄ − vF t])},
�

q
−(x,t) = − 1

2cs{(δ[x + ut̄ + vF t] − δ[x − x̄ + ut̄ + vF t])

− (δ[x − ut̄ + vF t] − δ[x − x̄ − ut̄ + vF t])}.
The latter yields the counting phases

δ+(t) = 2π

{
c2

(
θ

[
t − −x̄ + ut̄

vF

]
− θ

[
t − ut̄

vF

])

− s2

(
θ

[
t − −x̄ − ut̄

vF

]
− θ

[
t − −ut̄

vF

])}
, (10)

δ−(t) = −2πcs

{(
θ

[
t − −ut̄

vF

]
− θ

[
t − x̄ − ut̄

vF

])

−
(

θ

[
t − ut̄

vF

]
− θ

[
t − x̄ + ut̄

vF

])}
. (11)

We visualize the above solutions in Fig. 1 which shows the
δ-peak density trajectories in the (x,t) plane. The filled circles
indicate the fermion injection and removal at time t̄ . Each
fermion fractionalizes into right- and left-moving plasmonic
modes with weights c and −s. At the time of quench (t = 0)
the plasmonic peaks disintegrate into bare particle-hole pair
excitations (small circles on x axis) which propagate with
smaller velocity vF . The counting phases δ± are calculated at
t̃ → −∞.

The left panel of Fig. 1 depicts the situation of 2ut̄ < |x̄|
and the right panel corresponds to the case 2ut̄ > |x̄|. In the
second case the phases δη split into two independent pulses
δ(1)
η , δ(2)

η of duration |x̄|/vF which are shifted by 2ut̄/vF . In
the long-time limit 2ut̄ � |x̄|, the coherence of right- and left-
moving plasmons is negligible and the determinant �η[δη] �
�η[δ(1)

η ]�η[δ(2)
η ] factorizes into two single-pulse determinants

which are of Toeplitz type.
Following Ref. 42 we regularize the determinants �η[δη]

by introducing an ultraviolet cutoff 	 and discretize times in
steps �t = π/	. For counting phases δη which are vanishing
outside some time interval of length τ , the discretization gives
rise to N × N matrices with N = τ	/π . Here we are inter-
ested in δη(t) which are piecewise constant functions. Such
dependence leads to the matrices of the generalized Toeplitz
form (see Appendix A). Various mathematical results exist for
the long-time asymptotic behavior of their determinants. In the
simplest situation that δη are single rectangular pulses [as, e.g.,
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(a)
(b)

FIG. 2. (Color online) (a) The momentum
distribution function for K = 0.8 and a = 0.8 at
times t̄ Uu/vF = 1, 10, 25, and in the station-
ary limit t̄ → ∞, as obtained by a numerical
evaluation of the determinants in Eq. (6). Clear
discontinuities at the edges p = pF and p = pF +
U/vF [see zoom (b)] are visible which decrease
with time t̄ according to Eq. (16) and eventually
vanish.

δ(1)
η (t)] matrices are of Toeplitz form with symbols exhibiting

Fisher-Hartwig singularities. The Fisher-Hartwig conjecture50

then gives the leading exponential and power-law contribution
to �η[δη] for N � 1 (including numerical prefactors). The
extension proposed in Ref. 42 allows for the calculation of
subleading power-law contributions. The phases δ±(t) shown
in Fig. 1 are not of a simple rectangular form. They stem
from the superposition of two rectangular pulses and therefore
possess four steplike discontinuities in time. This leads to a
class of matrices that are a generalization of Toeplitz matrices.
The asymptotic behavior of the corresponding determinants
can be found by a further generalization of the Fisher-Hartwig
conjecture (see Appendix A) which was put forward in
Ref. 43. This conjecture was supported both by analytical43

and numerical43,47 arguments.
In Sec. III B we present and discuss the results for the

Green’s function (6) obtained by means of the analysis of
corresponding singular Fredholm determinants. The details of
these calculation can be found in Appendix B.

B. Results

In general the determinants entering Eq. (6) can be
efficiently evaluated numerically.43,47 For sufficiently long
times ut̄ � vF /U analytical asymptotics can be found as we
discuss below.

For an arbitrary relation between x̄ and ut̄ we have found
that the Green’s function is a linear combination of terms
involving different powers of |x̄|, |2ut̄ + x̄|, |2ut̄ − x̄|, and
2ut̄ . For simplicity we will focus on two limiting cases:
(i) long-distance behavior at finite times, x̄ � 2ut̄ , and (ii) the
stationary limit t̄ → ∞. We also assume a moderate repulsive
interaction.

For finite times t̄ and long distances x̄ � ut̄ � vF /U the
Green’s function is determined by two dominant terms,

G<
+(x̄,t̄ ; 0,t̄) = G<

0+(x̄,0)e−t̄ /(2τϕ )

[
�̃′

1

(
2ut̄	

πvF

)T ′
1
(

πU

	

)V ′
1

+ �̃′
2e

ix̄U/vF

(
2ut̄	

πvF

)T ′
2
(

πU

	

)V ′
2
]

(12)

with exponents

T ′
j (V ′

j ) = −Re
[(

3
2 − j + s2 + 2β

)2 + (cs + 2β̃)2

− 1
4 ± 2c2s2

]
, j = 1,2,

and decay rate

τ−1
ϕ = −4U

u

vF

Im (β + β̃), (13)

where

β = 1

2πi
ln[ae−2πis2 + 1 − a], (14)

β̃ = 1

2πi
ln[ae2πics + 1 − a], (15)

and �̃′
j are numerical prefactors.

Similar to the equilibrium quench, the entire x̄ depen-
dence of the interacting Green’s function after the quench
is given by the noninteracting factor, G>

0+ ∝ x̄−1, so that
correlations drop off with distance in a Fermi-liquid-like
manner. Correspondingly, the momentum distribution function
has discontinuities at p = pF and p = pF + U/vF , signaling
the existence of Landau quasiparticle states (see Fig. 2 for
K = 0.8 and a = 0.8). In the nonequilibrium setup each of
the two Fermi edges exhibits quasiparticles with (in general
different) weights

Z1 ∝ e−t̄/(2τϕ ) t̄ T
′

1 UV ′
1 , Z2 ∝ e−t̄/(2τϕ ) t̄ T

′
2 UV ′

2 . (16)

In striking contrast to the equilibrium situation, the quasiparti-
cle weights are not simply algebraically suppressed with time,
but also exhibit exponential decay with characteristic time τϕ

due to nonequilibrium dephasing. The equilibrium result (3)
for |x̄| � ut̄ is recovered in the limit a → 0 where τ−1

ϕ → 0,
T ′

1 → −γ̃ 2, and �̃′
2 → 0.

Let us now turn to the long-time limit, t̄ → ∞. The
quenched system then relaxes to a stationary state without
Fermi liquid discontinuities, but with critical power-law
correlations characteristic for Luttinger liquid. In the case
of moderate repulsive interaction

√
2 − 1 � K � 1 and at

x̄ � vF U−1 leading contributions54 to the Green’s function
read

G<
+(t̄ � |x̄|/u; x̄,0)

= G<
0+(0; x̄) e−κ|x̄|

(
�̃1

∣∣∣∣ 	x̄

πvF

∣∣∣∣
1+X1

∣∣∣∣πU

	

∣∣∣∣
V1

+ �̃2 eiUx̄/vF

∣∣∣∣ 	x̄

πvF

∣∣∣∣
1+X2

∣∣∣∣πU

	

∣∣∣∣
V2

)
(17)

with exponents

Xj (Vj ) = − 1
2 [1 ± (c2 + s2)2] + (2j − 3)(s2 + 2β∗)

− Re [(s2 + 2β)2 + (cs − 2β̃)2], j = 1,2, (18)
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FIG. 3. (Color online) Steady-state momentum distribution func-
tion for a = 0.8 and K = 0.9 (solid blue line), 0.8, 0.7, 0.6,
0.5 (dashed blue line) obtained by a numerical evaluation of the
determinants in Eq. (6). At edges p = pF and p = pF + U/vF the
initial discontinuities are replaced by power laws �pq1,2 smeared by
dephasing. The inset shows the initial distribution functions f±(ε) in
energy space.

where the star denotes the complex conjugation. The decay
length κ−1 is equal to κ−1 = 4uτϕ with τϕ given by Eq. (13).
The numerical prefactors �̃j can be found in Appendix B;
see Eq. (B1). Again, in the equilibrium case (a → 0) �̃2 → 0,
1 + X1 → −γ̃ 2, and κ → 0, reproducing Eq. (5).

Our results show that the limiting (long-time) stationary
state retains information about the system’s prehistory, i.e.,
about the initial state prior to the quench. Indeed, at long
times after the quench the momentum distribution function
exhibits a double-step structure reminiscent of the original
nonequilibrium state (see Fig. 3). The initial sharp discon-
tinuities in n(p) are replaced by power laws |p − pF |q1

and |p − pF − U/vF |q2 with q1,2 = −(1 + X1,2) which are
smeared by nonequilibrium dephasing. The dependence of
exponents q1,2 and of the inverse dephasing length κ on the
interaction strength K for a particular choice of the initial
two-step distribution (a = 0.8) is shown in Figs. 4 and 5.

We stress that the exponents (18) differ from those in
the steady-state setup where the Luttinger liquid is coupled
to noninteracting reservoirs with nonequilibrium electron

FIG. 4. (Color online) Luttinger liquid exponents governing
power-law singularities of the momentum distribution functions: q1

at p = pF and q2 at p = pF + U/vF for quenched nonequilibrium
with a = 0.8, γ̃ 2 for quenched equilibrium, and 2γ for equilibrium
setup.

FIG. 5. (Color online) Inverse decay length κ in units of U/vF

as a function of the interaction constant K shown for the double-step
distribution with a = 0.8.

distributions.42 Clearly, they also differ both from the equi-
librium exponent1 and from that emerging after a quench in an
equilibrium Luttinger liquid;8,14 see Sec. II.

The following comment is in order here. In the case
of a quench from an equilibrium TLM,8,14 it was found
that the steady-state behavior is accurately captured by a
“bosonic generalized Gibbs ensemble (GGE).”9 Specifically,
the corresponding density matrix �̂GGE ∝ exp(

∑
λqn̂q) is

Gaussian in plasmonic fields, where n̂q are occupation number
operators of plasmonic modes and λq are Lagrange multipliers
chosen such that the averaged plasmon occupations coincide
in the GGE and the initial state, Tr�̂0n̂q = Tr�̂GGEn̂q . Contrary
to this, for the nonequilibrium initial state considered in our
paper the corresponding bosonic GGE does not reproduce the
correct steady-state behavior. Indeed, such a GGE gives for
large distances x̄ the Green’s function

G<
GGE+(x̄,0) ≈ G<

0+(x̄,0)|R̃0/x̄|−αe−κ̃|x̄| (19)

with the exponent

α = −γ̃ 2 + 2(1 − a)a(1 + γ̃ 2), (20)

the inverse decay length

κ̃ = (1 − a)a(1 + γ̃ 2)πU/vF , (21)

and a certain ultraviolet cutoff length R̃0. The corresponding
momentum distribution function possesses a single smeared
edge and is essentially different from the steady-state dis-
tribution resulting from G<

+(t̄ � |x̄|/u; x̄,0); see Eq. (17)
and Fig. 3.

The failure of the bosonic GGE is due to a combina-
tion of the following two reasons. First, while the original
nonequilibrium state is quite simple in terms of single-fermion
states (which are populated without correlations), it involves
an intricate “entanglement” of bosonic (plasmon) states.55

Second, the linear dispersion ωq = uq of plasmons in the TLM
ensures that certain non-Gaussian bosonic correlations, which
are present prior to the quench, are constants of motion and thus
survive in the steady state. This is due to a huge degeneracy
of the model: all states in, say, the right-moving sector with
a given total momentum have the same energy. As a result,
a huge variety of steady-state density matrices is in principle
allowed. The simplest possibilities are a bosonic GGE or a
GGE in terms of occupation numbers of fermions resulting
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from refermionization of the plasmons. In the present case,
the steady state has a more complicated form. Correlation
functions in this state can be viewed as generated by a
fermionic GGE with two species of left-moving and two
species of right-moving fermions, in correspondence with the
four factors

∏
η=± �η[δ(1)

η ]�η[δ(2)
η ] entering the determinant in

the long-time limit; see right panel of Fig. 1 and the discussion
in Sec. III A. All fermionic states are independently populated
with distributions fη. This complex structure of the steady state
is related to the fact that the original state is of fermionic GGE
character, while the quench induces a linear transformation in
terms of bosons.

The above degeneracy is lifted if one assumes a momentum-
dependent interaction gj (q) (that was considered in the context
of quenches from an equilibrium state in Ref. 27) that gives
rise to a nonlinear plasmon dispersion and, hence, to a decay
of non-Gaussian correlations between bosons. In this situation
the steady state obtained above will become an intermediate
asymptotics, while the ultimate steady state at the longest times
will be equivalent to a bosonic GGE. We will return to a
discussion of deviations from our model in Sec. IV.

IV. SUMMARY

To summarize, we have studied the dynamics of a nonequi-
librium Luttinger liquid after a sudden interaction quench
by employing the nonequilibrium bosonization formalism.
At variance with a quench out of an initial equilibrium
state,8,14 the quasiparticle weights decay exponentially with
time after the quench. This exponential behavior is however
not a relaxation into a thermal state, which is related to
the integrability of the model. In particular, for an initial
distribution with two Fermi edges, the distribution emerging
at long times retains a double-step structure, with power-
law singularities smeared by dephasing. The corresponding
exponents as well as the dephasing rate depend on the initial
nonequilibrium state.

In the above calculation we assumed the simplest model of a
Luttinger liquid, namely, TLM with a momentum-independent
interaction. For more generic models the behavior at very long
times will be essentially modified. In particular,

(i) a momentum-dependent coupling gj (q) gives rise to
free but dispersive bosonic modes, which leads to decaying
higher order density correlators, as discussed at the end of
Sec. III B; the resulting steady state can be represented by a
GGE8,14 which is Gaussian in bosonic operators;

(ii) nonintegrable models (e.g., with both momentum-
dependent interaction and curved fermionic spectrum)51 will
in general show relaxation into thermal equilibrium.56

In the generic situation, the TLM results remain relevant
assuming that the spectral curvatures of bosons and fermions
are weak (e.g., the characteristic scale for them is set by the
ultraviolet cutoff 	) and that the inverse quench time and the
width of the distribution satisfy τ−1,V � 	. In this case there
is a parametrically broad range of times where the TLM results
obtained above will hold.

In conclusion we mention that the framework developed
here is also applicable to a more general situation when
the interaction region possesses both spatial and temporal

boundaries. In this case the counting phases will be determined
by the fractionalization processes on all the boundaries.
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APPENDIX A: GENERALIZED TOEPLITZ
DETERMINANTS

In this Appendix we summarize the main results of
Ref. 43 for the asymptotic behavior of generalized Toeplitz
determinants. We consider a generalized Toeplitz matrix

gj,k =
∫ 	

−	

dε

2	
e−iεπ/	[j−k−δ(tj )/(2π)]g̃(tj ,ε), (A1)

which is defined via its symbol

g̃(t,ε) ≡ 1 + (eiδ(t) − 1)f (ε). (A2)

Let us focus on the special case when both the phase δ(t) and
the distribution function f (ε) are piecewise constant functions
with jumps at times τ1 < τ2 < · · · < τNτ

and energies μ1 <

μ2 < · · · < μNμ
, respectively. They satisfy the boundary

conditions δ(t) = 0 for t /∈ [τ1,τNτ
], f (ε) = 1 for ε < μ1,

and f (ε) = 0 for ε > μNμ
. The discontinuity points define

a grid which subdivides the time-energy plane in domains
with different values of the symbol. The domains can be
labeled by the time indices j ∈ {0, . . . ,Nτ } and energy indices
k ∈ {0, . . . ,Nμ}. One associates with this set of domains a set
of number cjk ,

cjk = 1

2πi
ln g̃(τj + 0,μk + 0) + njk,

(A3)
cj0 = δ(tj + 0)/(2π ), c0k = cNτ ,k = cj,Nμ

= 0,

where {njk} is an arbitrary set of integers. In the above equation
the logarithm ln g̃ is understood as evaluated at its principal
branch, Im ln g̃ ∈ (−π,π ]. The summation over integers njk

hence amounts to summing over different branches of the
logarithms.

It was conjectured in Ref. 43 that the asymptotic
behavior of the (normalized) determinant �̄[δ(t),f (ε)] =
�[δ(t),f (ε)]/�[δ(t),T = 0] takes the form

�̄[δ(t),f (ε)]

=
∑
{njk}

�̄{njk} exp

⎡
⎣i

∑
1�j�Nt

∑
1�k�Nμ

τjβjkμk

⎤
⎦

×
∏

1�j<l�Nt

∏
1�k<m�Nμ

[(τl − τj )(μk − μm)]γjl,km , (A4)

where

γjl,km = −cjkclm − cjmclk. (A5)

The normalized determinant is cutoff (	) independent. All de-
pendence on 	 comes from the zero-temperature determinant,
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which up to a constant prefactor reads

�[δ,T = 0] = exp

⎡
⎣−i

∑
1�j�Nt

	τj

(δj − δj−1)

2π

⎤
⎦

×
∏

1�j<l�Nt

∣∣∣∣	(τj − τl)

π

∣∣∣∣
(δj −δj−1)(δl−δl−1)/4π2

,

where we have defined the phases δj ≡ δ(tj + 0). While a
rigorous mathematical proof of these results is still missing,
there exists a strong analytical43 and numerical43,47 evidence
in their favor. The above asymptotic expressions for the
generalized Toeplitz determinants are used in Appendix B
for evaluation of the Green’s function in the nonequilibrium
Luttinger liquid after the quench.

APPENDIX B: ASYMPTOTIC BEHAVIOR
OF THE GREEN’S FUNCTION

This Appendix contains details of calculations of the
asymptotic behavior of the determinants that lead to the results
presented in Sec. III B.

Throughout the paper we use the nonequilibrium version
of canonical bosonization developed in Refs. 41–44. In this
framework nonequilibrium corrections to the right-movers’
equal-time Green’s function G

≷
+ (t̄ ; x̄,0) [see Eq. (6)] are

expressed in terms of Fredholm determinants

�μ ≡ Det[1 + (eiδμ − 1)fμ],

with the counting phases δμ [Eq. (11)] which were found in
Sec. III A.

Let us consider first the equilibrium situation with
distribution functions f+(ε) = f−(ε) = f0(ε) = θ (−ε).

Equations (A4) and (A6) yield

�+ = G(1 − s2)G(1 + s2)G(1 − c2)G(1 + c2)

× ei	x̄/vF

∣∣∣∣ 	x̄

πvF

∣∣∣∣
−c4−s4 ∣∣∣∣ (2ut̄)2 − x̄2

(2ut̄)2

∣∣∣∣
s2c2

,

�− = G(1 − cs)2G(1 + cs)2

∣∣∣∣ 	x̄

πvF

∣∣∣∣
−2c2s2 ∣∣∣∣ (2ut̄)2 − x̄2

(2ut̄)2

∣∣∣∣
s2c2

.

The prefactors containing the Barnes G functions G do
not directly follow from the asymptotic formulas for the
generalized Toeplitz determinants. They can be found from
the long-time limit where the factorization into simple Toeplitz
determinants is applicable (we refer the reader to Ref. 42 for
more details).

The Green’s function following the equilibrium interaction
quench is thus

G<
+(t̄ ; x̄,0) ∝ ei	x̄/vF

∣∣∣∣ 	x̄

πvF

∣∣∣∣
−(c2+s2)2 ∣∣∣∣ (2ut̄)2 − x̄2

(2ut̄)2

∣∣∣∣
2s2c2

.

Since 2cs = γ̃ and −(c2 + s2)2 = −1 − γ̃ 2 the power laws
are in perfect agreement with the exact result (3) of Ref. 8. In
the following we will use the equilibrium quench as reference
case to normalize our Fredholm determinants.

The situation becomes more complicated when turning
to nonequilibrium. We consider the double-step distribution
functions f±(ε) = (1 − a)θ (−ε) + aθ (U − ε) for right- and
left-movers as the initial steady state of the noninteracting
Fermi sea before the quench. Using the asymptotic formulas
(A4) and (A6) we obtain

G<
+(t̄ ; x̄,0) = G<

0+(0,x̄) �̃+ �̃−

for |x̄|,|2ut̄ − |x̄||,|2ut̄ | � vF /U with equilibrium-
normalized determinants

�̃+ =
∑

n1,n2,n3∈Z
�̃+(n1,n2,n3) ei(β1+β2)U |x̄|/vF ei(n1+n2−n3)U |x̄|/vF ein32Ut̄ u/vF

×
∣∣∣∣ 	

πvF

∣∣∣∣
1+γ++V+

|x̄|1+X+ (2ut̄ − |x̄|)D+(2ut̄ + |x̄|)S+(2ut̄)T+

∣∣∣∣πU

	

∣∣∣∣
V+

,

�̃− =
∑

n4,n5,n6∈Z
�̃−(n4,n5,n6) ei(β3+β4)U |x̄|/vF ei(n4+n5−n6)U |x̄|/vF ein62Ut̄ u/vF

×
∣∣∣∣ 	

πvF

∣∣∣∣
γ−+V−

|x̄|X− (2ut̄ − |x̄|)D−(2ut̄ + |x̄|)S−(2ut̄)T−

∣∣∣∣πU

	

∣∣∣∣
V−

for 2ut̄ > x̄ > 0 and

�̃+ =
∑

n1,n2,n3∈Z
�̃′

+(n1,n2,n3) ei(β1+β2)2Ut̄u/vF ei(n1+n2−n3)U |x̄|/vF ein32Ut̄ u/vF

×
∣∣∣∣ 	

πvF

∣∣∣∣
1+γ ′

++V ′
+
|x̄|1+X′

+ (−2ut̄ + |x̄|)D′
+(2ut̄ + |x̄|)S ′

+(2ut̄)T
′
+

∣∣∣∣πU

	

∣∣∣∣
V ′

+
,

�̃− =
∑

n4,n5,n6∈Z
�̃′

−(n4,n5,n6) ei(β3+β4)2Ut̄u/vF ei(n4+n5−n6)U |x̄|/vF ein62Ut̄ u/vF

×
∣∣∣∣ 	

πvF

∣∣∣∣
γ ′

−+V ′
−
|x̄|X′

− (−2ut̄ + |x̄|)D′
−(2ut̄ + |x̄|)S ′

−(2ut̄)T
′
−

∣∣∣∣πU

	

∣∣∣∣
V ′

−
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for 0 < 2ut̄ < x̄. Here, we left the nj dependence of the exponents X±,T±, . . . implicit. �̃±,�̃′
± are numerical prefactors which

are not known in general, and

β1 ≡ 1

2πi
ln[ae−2πis2 + 1 − a] = β, β2 ≡ 1

2πi
ln[ae2πic2 + 1 − a] = −β∗

1 ,

β3 ≡ 1

2πi
ln[ae2πics + 1 − a] = β̃, β4 ≡ 1

2πi
ln[ae−2πics + 1 − a] = −β∗

3 .

The determinants for x̄ < 0 are obtained by complex conjugation.
The exponents differ in the two regimes 2ut̄ ≷ |x̄|, which we consider below separately.

1. Regime of separated phase pulses, 2ut̄ > |x̄|
Here the exponents are

X+ = (−β2 + c2 − n2)(β2 − c2 + n2 − n3) + (−β1 − n1 + n3)(β1 + n1)

+ (−β2 − n2 + n3)(β2 + n2) + (−β1 − n1 − s2)(β1 + n1 − n3 + s2),

T+ = (−n1 + n3 − s2 − β1)(c2 − n2 − β2) + (−n1 − s2 − β1)(c2 − n2 + n3 − β2)

+ (n1 − n3 + β1)(n2 + β2) + (n1 + β1)(n2 − n3 + β2),

D+ = (n1 − n3 + β1)(−n2 + n3 − β2) + (−n1 + n3 − s2 − β1)(−c2 + n2 − n3 + β2),

S+ = (β1 + n1)[c2 − 2(β2 + n2)] − s2(β2 − c2 + n2),

γ+ = −c4 − s4,

X− = (−n4 + n6 − β3)(n4 + β3) + (−n4 + cs − β3)(n4 − n6 − cs + β3)

+ (−n5 + n6 − β4)(n5 + β4) + (−n5 − cs − β4)(n5 − n6 + cs + β4),

T− = (−n4 + n6 + cs − β3)(−n5 − cs − β4) + (−n4 + cs − β3)(−n5 + n6 − cs − β4)

+ (n4 − n6 + β3)(n5 + β4) + (n4 + β3)(n5 − n6 + β4),

D− = (n4 − n6 + β3)(−n5 + n6 − β4) + (−n4 + n6 + cs − β3)(n5 − n6 + cs + β4),

S− = cs(n5 + cs + β4) + (n4 + β3)[−cs − 2(n5 + β4)],

γ− = −2c2s2.

In the long-time limit 2ut̄ � |x̄|, the powers simplify to (2ut̄ − |x̄|)D±(2ut̄ + |x̄|)S±(2ut̄)T± → (2ut̄)T̃± with T̃+ = −2n2
3 � 0 and

T̃− = −2n2
6 � 0. Thus the correlation function relaxes to a stationary solution where solely terms with n3 = 0 = n6 contribute.

The remaining powers simplify to

X+ = −2

(
n1 − −s2 − 2β1

2

)2

− 2

(
n2 − c2 − 2β2

2

)2

− c4 + s4

2
,

V+ = −2

(
n1 − −s2 − 2β1

2

)2

− 2

(
n2 − c2 − 2β2

2

)2

+ c4 + s4

2
,

X− = −2

(
n4 − cs − 2β3

2

)2

− 2

(
n5 − −cs − 2β4

2

)2

− c2s2,

V− = −2

(
n4 − cs − 2β3

2

)2

− 2

(
n5 − −cs − 2β4

2

)2

+ c2s2.

Since in the long-time limit the phases split into independent pulses, all Fredholm determinants factorize into Toeplitz determinants
and the prefactors can be found in the closed analytical form using the generalized Fisher-Hartwig formula42

�̃+(n1,n2,n3 = 0) = G(1 − s2 − β1 − n1)G(1 + s2 + β1 + n1)G(1 + β1 + n1)G(1 − β1 − n1)

G(1 − s2)G(1 + s2)

× G(1 + c2 − β2 − n2)G(1 − c2 + β2 + n2)G(1 + β2 + n2)G(1 − β2 − n2)

G(1 + c2)G(1 − c2)
,

�̃−(n4,n5,n6 = 0) = G(1 + cs − β3 − n4)G(1 − cs + β3 + n4)G(1 + β3 + n4)G(1 − β3 − n4)

G(1 + cs)G(1 − cs)

× G(1 − cs − β4 − n5)G(1 + cs + β4 + n5)G(1 + β4 + n5)G(1 − β4 − n5)

G(1 − cs)G(1 + cs)
. (B1)
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For moderate repulsive interaction
√

2 − 1 � K � 1, the dominant powers Re X± are due to (n1,n2) = (0,1),(0,0) and (n4,n5) =
(0,0). These contributions are taken into account in (17) with �̃1 ≡ �̃+(0,0,0)�̃−(0,0,0), �̃2 ≡ �̃+(0,1,0)�̃−(0,0,0). In the
equilibrium limit, a → 0, prefactors vanish for all nj but n1 = n2 = n4 = n5 = 0 for which one recovers the equilibrium
exponents.

2. Regime of overlapping phase pulses, 2ut̄ < |x̄|
Here the exponents are

X′
+ = (−c2 + n2 − n3 − β1)(c2 − n2 − β2) + (−n1 − s2 − β1)(n1 − n3 + s2 − β2)

+ (−n2 + n3 + β1)(n2 + β2) + (n1 + β1)(−n1 + n3 + β2),

T ′
+ = (n2 − n3 − β1)(n1 + β1) + (−n1 − s2 − β1)(c2 − n2 + n3 + β1)

+ (n1 − n3 − β2)(n2 + β2) + (c2 − n2 − β2)(−n1 + n3 − s2 + β2),

D′
+ = (−n2 + n3 + β1)(n1 − n3 − β2) + (−c2 + n2 − n3 − β1)(−n1 + n3 − s2 + β2),

S ′
+ = −s2(−c2 + n2 + β2) + (n1 + β1)[c2 − 2(n2 + β2)],

X′
− = (n5 − n6 − cs − β3)(−n5 + cs − β4) + (−n4 − cs − β3)(n4 − n6 + cs − β4)

+ (−n5 + n6 + β3)(n5 + β4) + (n4 + β3)(−n4 + n6 + β4),

T ′
− = (n5 − n6 − β3)(n4 + β3) + (−n4 − cs − β3)(−n5 + n6 + cs + β3)

+ (n4 − n6 − β4)(n5 + β4) + (−n5 + cs − β4)(−n4 + n6 − cs + β4),

D′
− = (−n5 + n6 + β3)(n4 − n6 − β4) + (n5 − n6 − cs − β3)(−n4 + n6 − cs + β4),

S ′
− = −cs(n5 − cs + β4) + (n4 + β3)[cs − 2(n5 + β4)].

For long distances |x̄| � 2ut̄ the power-law dependence on distance simplifies to |x̄|X′
± (−2ut̄ + |x̄|)D′

±(2ut̄ + |x̄|)S ′
± → |x̄|X̃±

with the exponents

X̃+ = −2(n3 + 1/2 − n1 − n2)2 − 1
2 , X̃− = −2(n6 − n4 − n5)2.

For |x̄| → ∞ all terms vanish except for n3 = n1 + n2 or n3 = n1 + n2 − 1, and n6 = n4 + n5. Then 1 + X̃+ = 0 = X̃−; i.e.,
the normalized determinants �̃± are independent of x̄, and correlations drop off like G<

+(t̄ ; x̄,0) ∼ G<
0+(t̄ ; x̄,0) ∼ x̄−1.

The remaining exponents are

T ′
+(V ′

+) = −2

(
n1 − −1/2 − s2 − 2β1

2

)2

− 2

(
n2 − −1/2 + c2 − 2β2

2

)2

+ 1

4
∓ c2s2 (B2)

for n3 = n1 + n2,

T ′
+(V ′

+) = −2

(
n1 − 1/2 − s2 − 2β1

2

)2

− 2

(
n2 − 1/2 + c2 − 2β2

2

)2

+ 1

4
∓ c2s2 (B3)

for n3 = n1 + n2 − 1, and

T ′
−(V ′

−) = −2

(
n4 − −cs − 2β3

2

)2

− 2

(
n5 − cs − 2β4

2

)2

∓ c2s2 (B4)

for n6 = n4 + n5.
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