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Rapid creation of distant entanglement by multiphoton resonant fluorescence
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We study a simple, effective, and robust method for entangling two separate stationary quantum dot spin qubits
with high fidelity using multiphoton Gaussian state. The fluorescence signals from the two dots interfere at a beam
splitter. The bosonic nature of photons leads, in analogy with the Hong-Ou-Mandel effect, to selective pairing of
photon holes (photon absences in the fluorescent signals). As a result, two odd photon number detections at the
outgoing beams herald trion entanglement creation, and subsequent reduction of the trions to the spin ground states
leads to spin-spin entanglement. The robustness of the Gaussian states is evidenced by the ability to compensate
for photon absorption and noise by a moderate increase in the number of photons at the input. We calculate
the entanglement generation rate in the ideal, nonideal, and near-ideal detector regimes and find substantial
improvement over single-photon schemes in all three regimes. Fast and efficient spin-spin entanglement creation
can form the basis for a scalable quantum dot quantum computing network. Our predictions can be tested using
current experimental capabilities.

DOI: 10.1103/PhysRevB.88.245306 PACS number(s): 03.65.Ud, 03.67.Bg, 32.50.+d, 78.67.Hc

I. INTRODUCTION

Quantum computers have the power to solve some prob-
lems much more quickly and efficiently than any classical
computer.1,2 Quantum communication between two distant
elements in the computer or between two quantum computers
can be established over a quantum channel and used, e.g.,
to distribute a key for encrypting data over a classical
channel or to establish entanglement, which can then be
used for quantum teleportation3 or dense coding.4 A leading
model for the implementation of these tasks is a quantum
network5,6 composed of many nodes, each containing one
or several quantum bits (qubits), and high-fidelity quantum
channels connecting these nodes. Preparation, processing, and
storage of quantum information are performed at the network
nodes, which must therefore be stable and in fixed locations
(stationary qubits), while quantum communication is attained
by photons (flying qubits).

Quantum dot (QD) spin qubits are promising candidates
for stationary qubits in scalable quantum networks, as they
are compatible with existing semiconductor technology, can
be integrated on a chip with photonic crystal cavities,7,8 have
short optical recombination and photon emission times,9,10 can
be manipulated by fast single-qubit11–14 and two-qubit15–18

quantum gates, and can be entangled with adjacent qubits by
tunneling interaction16 or with remote ones via entanglement
swapping with photons.19–21

Entanglement of stationary qubits is an essential resource
in a quantum network. Interqubit entanglement can be applied
to increase the quantum capacity of a channel,22 and to
implement quantum repeaters23 for long-distance quantum
communication. Entangled qubit pairs can also form the basis
for entanglement-assisted quantum error correction (QEC),
which has fewer constraints and higher capacity than standard
QEC.24 The heralded entanglement of two remote stationary
qubits can be achieved by first entangling the qubits with pho-
tons, which interfere on a beam splitter, and then performing a
measurement on the photons, with one (type I) or two (type II)
single photon detections indicating whether the entanglement
creation was successful.6,25 Type I heralded entanglement was

suggested theoretically26,27 and implemented,28,29 but suffers
from a low success rate due to the requirement of weak qubit
excitation and due to high sensitivity to fluctuations in the
photonic phase. Type II heralded entanglement schemes,30,31

which were also experimentally realized,32–34 are exempt from
the weak excitation requirement and, through two-photon
interference, are more robust to noise than type I schemes.
However, both single-photon heralded entanglement types use
single-photon states, which are very sensitive to noise, and
as a result they currently produce entangled pairs at a slow
rate of the order of 0.1 to 10 pairs per minute.28,29,32–34

A question is raised whether this performance can be
improved by increasing the number of photons at the
input.

Several theoretical proposals to improve the entangled pair
generation rate by multiphoton light included a system where
the matter qubit is placed in a resonant cavity and interacts with
coherent state light via coherent Raman scattering,35 whereas
the light at the beam splitter output undergoes continuous
wave homodyne measurement. The use of multiphoton light,
in this case, does not improve the results substantially over
single-photon schemes, as the loss of a single photon produces
“which path” information which leads to significant deco-
herence, impairing entanglement creation. Another theoretical
work used twin-Fock or NOON states,36 but again produced
entanglement creation rates of the same order as single-photon
schemes due to sensitivity to single-photon losses. Recently,
robust multiphoton entanglement creation using coherent state
light was put forward.37 An entanglement creation rate of
1.2 × 107 pairs per minute was calculated for QD spin qubits
with this scheme.

Gaussian states form a versatile, robust, powerful, yet
simple, continuous variable alternative to qubits in quantum
information processing.38,39 The single-mode Gaussian state
is, in general, squeezed vacuum rotated and displaced in
phase space, and thus includes coherent states, squeezed
states, and thermal states as special cases.38 Multimode
Gaussian states, in turn, can exhibit entanglement and be
used for quantum cryptography,40 quantum teleportation,41

quantum communication,42 quantum computation,43 quantum
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cloning,44 and quantum dense coding.45 Experimentally,
Gaussian states are readily generated with photons46,47 and
manipulated by many common optical elements, such as beam
splitters and quarter-wave plates, which constitute Gaussian
operations.38 Gaussian measurements can be performed by
homodyne detection.48,49

Among all Gaussian states, the two-mode Gaussian state
(N = 2), a simple bipartite continuous variable system, at-
tracted much research effort in recent years. The separa-
bility criterion was given50 as well as a closed expression
for the entanglement of formation for symmetric states51

and the logarithmic negativity entanglement measure for
all states.52 The purity, von Neumann entropy, and mutual
information were also found,53 as was the quantum discord,54

a measure of the quantumness of correlations for a given
state.

We present a simple, effective, robust, and scalable multi-
photon entanglement generation method driven by two-mode
Gaussian state light. Two fluorescence signals interfere at
a beam splitter and are then subject to projective photon
number measurement. The bosonic statistics of photons gives
rise through the multiphoton Hong-Ou-Mandel effect, i.e.,
the Hong-Ou-Mandel effect as applied to photon holes in
a multiphoton state, to heralded trion entanglement only
upon two odd photon number measurements. Spin entan-
glement is obtained by reducing the trion states to their
corresponding spin states through coherent Rabi rotations in
the QDs. In contrast with current single-photon schemes,
wherein an excited � system must undergo spontaneous
emission for entanglement creation,25 the evolution of our
4-level QD spin qubits before the measurement is completely
deterministic.

The Gaussian state redundancy provides robustness against
noise that is lacking in single-photon or vacuum states. In
our system this robustness is manifested in the ability to
offset photon absorption, noise, and low-detection efficiency
by a moderate increase in the mean input photon number. We
show the entanglement generation rate in our Gaussian state
scheme is substantially higher than the ones in single-photon
schemes for all three regimes of ideal, nonideal, and near-ideal
photon number detectors. Even though we have made no
direct use of the continuous variable information, the strength
of the Gaussian information, we hope that our results from
employing the Gaussian states contribute to the viability of
this mode of information processing.

The paper is organized as follows. In Sec. II we present the
system model and Hamiltonian. We set criteria for the input
photon state, find the state satisfying these criteria, and solve
the Hamiltonian exactly for this state. In Sec. III we describe
the entanglement creation protocol in detail and derive the
conditions and probability for heralded entanglement when
ideal photon number detectors are employed. In Sec. IV
we discuss the effect of decoherence, noise, and nonideal
detectors on entanglement creation. We arrive at the conditions
and probability for heralded entanglement in the nonideal
case and analyze the limits and properties of the success
probability. In Sec. V we consider the problem of false positive
measurements and offer several solutions. Finally, in Sec. VI
we discuss the key results and consider directions for future
research.
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FIG. 1. (a) Schematic of the system for entanglement generation:
Two distant quantum dots, QD1 and QD2, are driven by coherent
light resulting in fluorescence which interferes at a beam splitter, BS.
The outputs of the beam splitter are detected by two photomultiplier
photon number detectors, D1 and D2, which provide postselection
of the entangled state. The photon paths are labeled a, b, c, and d .
(b) Energy level diagram for the first dot: The dot is in the Faraday
geometry in the limit of B = 0 T, and the allowed transitions are
between the −1/2 spin state |z−〉 to the −3/2 trion state |t−〉 and
between the 1/2 spin state |z+〉 to the 3/2 trion state |t+〉 through
σ∓ polarized light, respectively. The two states |z∓〉 are nearly
degenerate, as are |t∓〉. The energy level diagram for the second
dot is identical except that z and t have tildes.

II. SYSTEM MODEL AND HAMILTONIAN

Our system, shown schematically in Fig. 1(a), consists of
two four-level, singly charged quantum dots (QDs) in the
Faraday geometry55,56 in the limit of B = 0 T, a beam splitter,
and two photomultiplier photon number detectors. We note
that the zero magnetic field requirement can be relaxed, so
long as the Zeeman-splitting-induced difference in resonance
frequency between the two QD level pairs is much lower than
the trion state linewidth. The QD energy level diagram is given
in Fig. 1(b). The spin state ±1/2 of each QD functions as a
qubit, and the goal is to create entanglement between these
two spin qubits. The two levels |z∓〉 are degenerate, as are |t∓〉.
The allowed optical transitions in the first QD are between the
|z−〉 and |t−〉 levels through σ− polarized light and between
the |z+〉 and the |t+〉 levels through σ+ polarized light, while
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the cross-spin transitions are forbidden in this geometry. For
brevity we take the two QDs to have the same energy levels
and denote the QD2 states by tildes, |z̃∓〉,|t̃∓〉.

Our protocol for entanglement generation in this system
is as follows. The first and second QDs are initially prepared
in the |x+〉 = (|z−〉 + |z+〉)/√2 and |x̃+〉 = (|z̃−〉 + |z̃+〉)/√2
states, respectively, by, e.g., a π/2 laser pulse.57 Afterwards,
light is shone on each of the QDs and emerges at the beam
splitter inputs with a fluorescence signal. The photon states at
the beam splitter outputs are detected at the photomultiplier
tubes, and the measurement results herald whether distant
entanglement between the qubits was achieved.

We choose the composite photon state driving the QDs by
specifying a set of conditions which facilitate the entanglement
postselection procedure. (1) The state should interact with
both level pairs |z∓〉,|t∓〉 in each QD, and hence it should
be a two-mode state, with polarizations σ+ and σ− at the
resonance frequency of the levels ω0. (2) The state should be a
multiphoton Gaussian state, since Gaussian states are expected
to be more robust quantum information carriers than single-
photon states.38 (3) For simplicity, we follow the common
practice32,33 in specifying the driving Gaussian state to have
the same parameters for the two polarization modes. (4) The
Gaussian state should be a pure state.

The mathematical details of the construction of the Gaus-
sian state with the prerequisites defined above is given in
Appendix A. This state is found to be the EPR state, which in
the number state basis reads

|χ (0)〉 =
√

1 − λ2
∞∑

m=0

λm|m,m〉, (1)

where λ = tanh r , r is the squeezing parameter, and |m−,m+〉
are the two-polarization mode number basis photon states. The
average photon number in the EPR state is the same in both
modes,

m = λ2

1 − λ2
, (2)

which will be used to characterize the input photon state. The
variances in the photon number, also identical for both modes,
exhibit super-Poissonian statistics, as 〈(�m)2〉 = m2 + m.

The next step is to find the result of the interaction of
the designed input photon state with each QD. We model
the process by the state evolution of the Jaynes-Cummings
Hamiltonian58

H = H0 + H1, (3)

H0 = ω0

∑
i

a
†
i ai + ω0

2

∑
i

(|ti〉〈ti | − |zi〉〈zi |), (4)

H1 = g
∑

i

(a†
i |zi〉〈ti | + H.c.), (5)

where � is taken as unity, g is the coupling constant, and
ai and a

†
i are the annihilation and creation operators for a

σi polarized photon with the resonance frequency ω0. This
evolution idealizes the scattering process of the light against
the quantum dot and the host matrix by assuming it is entirely

reflected by the solid system. This mirror can be approximated
by the reflection of the quantum dot grown on a substrate on top
of a metal gate. We attempt here only a conceptual formulation
and recognize the limitation of this aspect of the estimate
of the entanglement efficiency as lacking in accuracy for an
experimental design. The idealization neglects the photon loss
in the actual physical processes. Possible remedies include
wave guides as conduit of photon states and embedding each
QD in a Fabry-Pérot microcavity tuned to have modes in
resonance with the QD transitions [Fig. 1(b)]. We provide
in the conclusions section an estimate of the errors if the latter
method is employed.

The Hamiltonian in the interaction representation is the
time-independent H1 because of the resonance condition. The
state is governed by the Schrödinger equation

i
∂

∂t
|ψ(t)〉 = H1|ψ(t)〉 (6)

with the initial condition being the product of the QD initial
condition and the photon state in Eq. (1),

|ψ(0)〉 = |x+〉|χ (0)〉. (7)

The exact solution at time t of Eq. (6) with the Hamiltonian
(5) is

|ψa(t)〉 = |x+〉|χ (t)〉 + |t−〉|χ−(t)〉 + |t+〉|χ+(t)〉, (8)

where the subscript a denotes the photon path in Fig. 1, and
the photon conditional states are

|χ (t)〉 =
√

1 − λ2
∞∑

m=0

λm cos(g
√

mt)|m,m〉, (9)

|χ−(t)〉 = −i

√
1 − λ2

2

∞∑
m=0

λm sin(g
√

mt)|m − 1,m〉, (10)

|χ+(t)〉 = −i

√
1 − λ2

2

∞∑
m=0

λm sin(g
√

mt)|m,m − 1〉. (11)

We see the interaction results in photon and qubit states
entanglement, which will be useful for interqubit entanglement
creation. The beam splitter input state is thus |ψa(t)〉|ψb(t)〉,
with |ψa(t)〉 given in Eq. (8) and |ψb(t)〉, the state correspond-
ing to the b photon path and the second QD, obtained from the
same equation by writing it in terms of |x̃+〉 and |t̃±〉.

III. ENTANGLEMENT GENERATION

We detail the entanglement process. The input states to
the beam splitter from the two QDs driven by coherent light
interfere at the beam splitter. The total number of photons at
each output is measured by a detector [see Fig. 1(a)], and an
entangled state is then selected after obtaining the appropriate
pair of photon numbers in the two paths. Let the input
composite photon basis state be |m−,m+; m̃−,m̃+〉a;b, which
corresponds to m− and m+ photons of respective polarizations
σ∓ along path a from QD1, and m̃−,m̃+ photons along path
b from QD2. The output state is a linear combination of
the output composite basis states |m′

−,m′
+; m̃′

−,m̃′
+〉c;d , along

paths c,d, defined analogously to the input basis states. The
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two basis sets are related by the unitary transformation of the
single photon by the beam splitter,

ci = 1√
2

(ai + bi),

(12)

di = 1√
2

(bi − ai),

where ai,bi , are the annihilation operators of incoming photons
of polarization i = ∓ along paths a,b, respectively, and,
similarly, ci,di denote the outgoing photons.

The detection process can be described by projection
operators,1 each of which corresponds to a measurement result.
Since the photodetection is insensitive to polarization, the
projector for a measurement of n1 and n2 photons in the first
and second detectors, respectively, is

Pn1,n2 =
n1∑

k=0

n2∑
l=0

|k,n1 − k; l,n2 − l〉〈k,n1 − k; l,n2 − l|.
(13)

As these projectors are orthonormal, i.e., Pn1,n2Pn′
1,n

′
2
=

δn1,n
′
1
δn2,n

′
2
Pn1,n2 , the measurement is a von Neumann mea-

surement, and the state after the measurement is

|ψn1,n2〉 = Pn1,n2 |ψ(t)〉, (14)

where |ψ(t)〉 is the state of the system after the beam
splitter and before the measurement. The probability for this
measurement is

Probn1,n2 (m,t) = 〈ψ(t)|Pn1,n2 |ψ(t)〉. (15)

The measurement probability Probn1,n2 has the same form
in the Schrödinger picture as in the interaction picture, since
the transition to the former in Eq. (15), which includes
insertion of exp(iH0t) and exp(−iH0t) operators, leads to the
same expression. Thus Probn1,n2 , calculated in the interaction
picture, corresponds to the measurement probability of n1 and
n2 photons at time t .

Consider first the case when n1 is even and n2 is odd or vice
versa. The state after the measurement is

|ψn1,n2〉 = Pn1,n2UBS[|ψa(t)〉|ψb(t)〉], (16)

where UBS is the beam splitter transformation operator, and
|ψa,b(t)〉 are given in Eq. (8). The Pn1,n2 and UBS operators act
only on the 9 conditional photon states in |ψa(t)〉|ψb(t)〉, and
as UBS conserves the total number of photons, only the terms
in |ψa(t)〉|ψb(t)〉 with an odd number of photons contribute.
Of these terms |χ〉|χ∓〉 differs from |χ∓〉|χ〉 by m∓ ↔ m̃∓ in
each composite photon state |m−,m+; m̃−,m̃+〉a;b in it. This
transposition is the same as ai ↔ bi , which after the beam
splitter transformation (12), is equivalent to di → −di and
gives a (−1)n2 overall factor. The state after the measurement
is thus

|ψn1,n2〉 = Pn1,n2UBS {|A−〉|χ〉|χ−〉 + |A+〉|χ〉|χ+〉} , (17)

where |A∓〉 = |x+〉|t̃∓〉 + (−1)n2 |t∓〉|x̃+〉.
The terms Pn1,n2UBS(|χ〉|χ∓〉) in Eq. (17) have the same

norm and are orthogonal, since |χ〉|χ∓〉 differ only by an
exchange of polarizations and are orthogonal, a property
preserved by Pn1,n2 and UBS . As |A−〉 and |A+〉 have the
same norm and are orthogonal, the state following a − or +

measurement at one QD carries no preference for − or + at
the other QD, and |ψn1,n2〉 has no spin entanglement.

Next, consider the cases where both n1 and n2 are odd
or both n1 and n2 are even. The state after the measurement
is again given by Eq. (16), but now the contributing terms
have an even total photon number. Of these terms |χ−〉|χ+〉
differs from |χ+〉|χ−〉 by ai ↔ bi , which after the beam
splitter transformation (12) is equivalent to di → −di and
gives an overall sign of ∓ in the odd-odd and even-even cases,
respectively. The state after the measurement reads

|ψn1,n2〉 = Pn1,n2UBS{|B0〉|χ〉|χ〉 + |B↓〉|χ−〉|χ−〉
+ |B↑〉|χ+〉|χ+〉 + |B∓〉|χ−〉|χ+〉}, (18)

where |B0〉 = |x+〉|x̃+〉, |B↓〉 = |t−〉|t̃−〉, |B↑〉 = |t+〉|t̃+〉, and
|B∓〉 = (|t−〉|t̃+〉 ∓ |t+〉|t̃−〉) are the QD conditional states in
the odd-odd and even-even cases, respectively. The photon
states multiplying each of |B0〉, |B↓〉, and |B↑〉 are invariant
under ai ↔ bi , which corresponds to di → −di after the
beam splitter transformation. They therefore contribute only
to the even-even case, and the state in the odd-odd case is
|B−〉Pn1,n2UBS(|χ−〉|χ+〉), separable to a photon state and
qubit state of |�−〉 = 1√

2
(|t−〉|t̃+〉 − |t+〉|t̃−〉), Bell’s fourth

state, which is maximally entangled. By the selection rules
in Fig. 1(b), each trion state decays spontaneously to the
corresponding spin state with a random phase. To preserve
the entanglement and avoid the delay, the trion states should
instead be reduced to the spin states by applying on each QD
a pair of phase-locked π -pulses with polarizations σ∓.

Having shown that an odd-odd measurement heralds QD
spin entanglement, we wish to investigate the even-even case.
The QD density matrix, found from Eq. (18) by tracing over the
photons in |ψn1,n2〉〈ψn1,n2 |, is in this case, up to normalization,

ρ = q0|B0〉〈B0| + q�(|B↓〉〈B↓| + |B↑〉〈B↑|) + q+|B+〉〈B+|,
(19)

where the conservation of total photon number in each
polarization was used to show that the photon states associated
with |B0〉, |B↓〉, |B↑〉, and |B+〉 in Eq. (18) do not lead to
cross terms in the QD density matrix. The terms |B↓〉〈B↓|
and |B↑〉〈B↑| have the same coefficient in Eq. (19), since the
photon states associated with |B↓〉 and |B↑〉 in Eq. (18) are
identical apart from an exchange of the polarizations. The
QD density matrix in Eq. (19) is a mixture of the density
matrix q0|B0〉〈B0|, which is separable by the form of |B0〉,
and the density matrix given by the rest of Eq. (19). The last
density matrix has q� � q+, as shown in Appendix B, and
thus has zero concurrence.59 We conclude we have no spin
entanglement in the even-even case, as the density matrix in
Eq. (19) is separable, being a mixture of two separable density
matrices.1

The association of spin entanglement with odd-odd mea-
surements can also be seen to emerge from the bosonic nature
of photons. The interaction with the QDs results in coupling
photon hole states to |t−〉 and |t+〉 in Eq. (8). The part of
|ψa(t)〉|ψb(t)〉 with no photon holes has an even total photon
number and a photon state symmetric under ai ↔ bi and hence
must produce only even-even measurements. The parts with
a single photon hole have an odd total photon number and
contribute to odd-even or even-odd measurements. The parts
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involving two photon holes with the same polarization are
associated with |t∓〉|t̃∓〉. For these parts, the photon holes
interfere, owing to their bosonic statistics, à la the Hong-Ou-
Mandel (HOM) effect60 to give a pair of holes at either one of
the detectors, keeping the even-even measurement. This effect
may be termed the multiphoton HOM effect, as photon holes
exist in a background multiphoton state. The parts involving
two photon holes with different polarizations are associated
with |t∓〉|t̃±〉. The photon holes evolve independently then and
can either end up at the same detector or separate to give an
odd-odd measurement. The photon state contributing to this
measurement is the one antisymmetric under ai ↔ bi . Since
the associated qubit state is |�−〉, an odd-odd measurement
heralds spin entanglement.

Having dealt with the states after the measurements, we
now analyze the probability to obtain a measurement result,
Probn1,n2 in Eq. (15). First, since the beam splitter inputs are
identical,

Probn1,n2 (m,t) = Probn2,n1 (m,t). (20)

We are only interested in the odd-odd case for Probn1,n2 , as this
is when entanglement is generated. By Eq. (15) Probn1,n2 =
|Pn1,n2 |ψ(t)〉|2. The discussion following Eq. (18) points to the
term multiplying |B−〉 as the only one remaining in |ψn1,n2〉 in
the odd-odd case, whereupon by Eq. (18)

Probn1,n2 = |Pn1,n2UBS |χ−〉|χ+〉|2. (21)

Plugging in Pn1,n2 from Eq. (13) in Eq. (21), using total
photon number conservation, and the beam splitter matrix
elements being real, we obtain

Probn1,n2 = 1

2
(1 − λ2)2λ2(n3+1)

n1∑
k=0

n2∑
l=0

×
[

n3∑
m=0

sin(g
√

mt) sin(g
√

m′t)Fklmm′

]2

, (22)

where n3 = (n1 + n2)/2, m′ = n3 + 1 − m, and Fklmm′ =
〈k,n1 − k; l,n2 − l|UBS |m − 1,m; m′,m′ − 1〉. The measure-
ment probability in Eq. (22) is seen to be separable to an
m-dependent part and a time-dependent part. With the aid of
Eq. (2) we have Probn1,n2 (m,t) = fn1,n2 (m)gn1,n2 (t) with

fn1,n2 (m) = 1

(m + 1)2

(
m

m + 1

)n3+1

(23)

and

gn1,n2 (t) = 1

2

n1∑
k=0

n2∑
l=0

×
[

n3∑
m=0

sin(g
√

mt) sin(g
√

m′t)Fklmm′

]2

. (24)

The two time scales in the Hamiltonian (3) are the
reciprocals of the light frequency ω0 and the coupling constant
g. If the time interval between detections is much higher than
2π
g

, which is typically56,61 of the order of 1 ns, then for gn1,n2 (t)
in Eq. (24) only the time average is of practical interest. Let us
denote this average as Cn1,n2 and the time-averaged probability
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FIG. 2. Time-averaged probability for measuring (n1,n2) in de-
tectors D1 and D2, respectively, as a function of the average input
photon number m̄ for selected odd-odd pairs of (n1,n2).

of measurement as

Probn1,n2 (m) = Cn1,n2

(m + 1)2

(
m

m + 1

)n3+1

, (25)

where Eq. (23) was used. The form of Cn1,n2 is found in
Appendix C and used to plot Probn1,n2 (m) for several values
of n1 and n2 in Fig. 2. The maximum of this function occurs
at m = (n3 + 1)/2.

The probability of both detectors measuring an odd number
of photons is

ProbSucc(m,η = 1) =
∞∑

n1=1,3,...

∞∑
n2=1,3,...

Probn1,n2 (m). (26)

Substitution of Eq. (25) in Eq. (26) leads to

ProbSucc(m,η = 1) =
∑∞

n3=1 Dn3

(
m

m+1

)n3+1

(m + 1)2
, (27)

where

Dn3 =
n3∑

n1=1,3,...

Cn1,2n3−n1 = n3

16
+ 1 − (−1)n3

64
, (28)

the sum over n1 being evaluated using Eq. (C5). Equation (27)
reduces to the simple form

ProbSucc(m,η = 1) = 1

32

3 + 4m

1 + 2m

(
m

1 + m

)2

(29)

plotted in Fig. 3. The asymptotic success probability at m →
∞ is seen by Eq. (29) to be 1/16. Since the success probability
is monotonously increasing, we define the characteristic value
of m needed to obtain entanglement, m1/2, as the one giving
half this probability. This value for ideal detectors is, by
Eq. (29), m1/2 ≈ 2.08.

IV. IMPACT OF NOISE

We will now discuss possible sources of noise which
affect the entanglement generation. The important factor is
the effective detector efficiency η, which is the product of
optical transmission factors, detector light collection solid
angle ratio, and detector quantum efficiency. The noise from
imperfect generation of the EPR state is negligible, as this
state can be prepared with high fidelity.62,63 The noise from
imperfect beam splitter and photon loss in the medium can be
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FIG. 3. Success probability of entanglement creation vs the
scaled average number of photons at the input EPR state when
the effective detector efficiency is η = 1,0.1,0.01 and mscaled =
m/10,m/33.3,m/251, respectively (solid, dotted, large dashes). The
average number of photons at the input EPR state is m, and the
scaling was chosen so as to make the value at mscaled = 1 identical
for the three values of η. The line for η = 0.001 with the scaling
of mscaled = m/2440 was not plotted as it coincided with the line
for η = 0.01 to within 0.5%. The reason for the coincidence is
the scaling law, which applies at η � 1 and gives the success
probability ProbSucc(m,η) = ProbSucc(λm,λ−1η), where λ is the
scaling constant. The horizontal dashed curve shows the asymptotic
value of 1/16 for the probability at m → ∞, which is the same for
all values of η.

dealt with by introducing a constant multiplicative factor at
the effective detector efficiency η.32,63 In addition, current
typical detector dark count rates19 of ∼100 Hz are much
lower than the entanglement creation rate, and the spin qubit
decoherence time of ∼1 μs, attainable by nuclear spin quieting
techniques,64,65 is much larger than the time needed to generate
entanglement following qubit state preparation.

The probability to measure m photons using a detector of
efficiency η is given by the quantum theory of photodetection61

as

P m =
∞∑

n=m

P n

(
n

m

)
ηm(1 − η)n−m, (30)

where P n is the probability for n photons at the detector
input state. For a number state of q photons, P n = δq,n,
and the probability to measure zero photons is, by Eq. (30),
P 0 = (1 − η)q . This is the important probability for us, since
measuring zero photons in either one of the detectors indicates
that either the number of photons is zero, for which we get
no entanglement, or that the detector did not interact with the
light at all.

With nonideal detectors32,33 η � 1, and discerning the
odd-odd measurement results from the rest is not realistic.
We therefore consider coincident clicks in both detectors as a
positive result with the understanding that some false positive
readings will occur. With this understanding, the success
probability for nonideal detectors is

ProbSucc(m,η)

=
∑
n1

∑
n2

Probn1,n2 (m)[1 − (1 − η)n1 ][1 − (1 − η)n2 ], (31)

where the sum over n1 and n2 is, as usual, only over the odd
integers, and Probn1,n2 (m) is given in Eq. (25). Equation (31)
reduces to Eq. (26) in the ideal detector limit of η = 1. For
other values of η Eq. (31) is evaluated in Appendix D and
plotted in Fig. 3. We find the asymptotic value of the success
probability is still 1/16 as in the ideal case, but higher values
of m are needed to obtain a given success probability.

Consider now the behavior of the ProbSucc(m,η) function
at various limits. First, at m � 1, we see from Eq. (25) that
the dominant term in Eq. (31) is the one with n1 = n2 = 1. In
this limit we thus have

ProbSucc(m,η) ≈ 3
32 (mη)2. (32)

The asymptotic behavior at m → ∞ can be found by the
approximations in Appendix D, which, as noted there, are
exact at this limit. We find

ProbSucc(m,η) ≈ 1

16
− 1

m

[
7η2 − 6η − 8

4η(η − 2)

]
. (33)

When η � 1 Eq. (33) reduces to

ProbSucc(m,η) ≈ 1

16
− 1

mη
, (34)

which is a function of mη, as was the case in Eq. (32) for
m � 1. By the approximations in Appendix D we find this
dependence holds for all values of m when η � 1, and in
particular for m1/2, defined above by ProbSucc(m1/2,η) =
1/32, as shown in Fig. 4. Consequently, the success probability
satisfies the scaling law66

ProbSucc(m,η) = ProbSucc(λm,λ−1η), (35)

where λ is a constant. This scaling law means that increasing
the average EPR state photon number by a factor of λ is
equivalent to improving the detector efficiency by the same
factor. The dependence of the ProbSucc(m,η) function on a
single variable mη enables us to calculate the value of the
function for arbitrary values of η or m, so long as scaling
applies, by its values for a single value of m or η. This property
is called data collapse.66
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log10 η

lo
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FIG. 4. Log-log plot of the characteristic average photon number
of the EPR state needed to obtain entanglement, m1/2, vs the effective
detector efficiency, η, showing the range of validity for scaling. The
dashed line corresponds to the asymptotic scaling law of m1/2 =
0.80/η.
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V. FALSE POSITIVE READINGS

The entanglement creation success probability was seen
to reach the same asymptotic value of 1/16 when the mean
input photon number m is large enough to compensate for the
low detector efficiency. However, this success probability is
merely the probability of true positive measurements, while the
probability for false positive measurements may be significant
due to the inability to discern the parity of the photon number
with low-efficiency detectors. The probability to obtain false
positive results equals the total positive measurement proba-
bility, the probability for at least one click at each detector,
minus the true positive probability. It is found in analogy with
the derivation leading to Eq. (31) and is

ProbFP(m,η) =
∞∑

n1=1

∞∑
n2=1

Probn1,n2 (m)[1 − (1 − η)n1 ]

× [1 − (1 − η)n2 ] − ProbSucc(m,η). (36)

By noting that Probn1,n2 varies relatively smoothly as a function
of its arguments, one finds the false positive probability to be
of the same order of magnitude as the true positive probability.

There are many ways to cope with false positive measure-
ments. One method is entanglement distillation through local
operations and classical communications (LOCC) of all the
positive measurement QD pairs obtained.67 Other methods
include performing a Bell measurement on the two QDs or
unambiguous state discrimination via the projectors: π̂1 =
|�−〉〈�−|, π̂2 = 1 − |�−〉〈�−|. This projective measurement
enables us to pick out all the Bell state pairs without affecting
their states.1

Currently, the two aforementioned methods are not avail-
able for QD spin qubits, and hence we suggest avoiding
the false positive readings problem by using low-noise high-
efficiency photon-number-resolving detectors. In recent years,
such detectors with efficiencies in the range of 90%–95%
were developed.68–70 If we use detectors of high efficiency
in our scheme and can keep the optical transmission factors
high, leading to an effective detector efficiency above 80%,
then using m = 5 will enable us to discern between even
and odd number of photons, largely eliminate the false
positive counts, and obtain close to asymptotic performance.
In comparison, the low entanglement generation rate in single-
photon schemes entails a higher ratio of false positive to true
positive measurements due to detector dark counts, and this,
in turn, translates to a lower entanglement fidelity.32,71

We now wish to show that our scheme outperforms
single-photon schemes also in this near-ideal detector regime.
Even though the success probability for some single-photon
schemes32,72 is η2/4, which leads to an asymptotic η = 1
limit of 1/4, compared with 1/16 in our scheme, the single-
photon schemes suffer from a factor of the order of 0.1 in
η, which currently cannot be eliminated, due to nonideal
single-photon sources. Moreover, the multiphoton state is more
robust against noise, due to the fluorescence signal being
redundantly encoded in multiple components of the state as can
be qualitatively seen from Eq. (8). This claim is quantitatively
confirmed by writing the success probability as a series in the
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FIG. 5. Plot of ζ (m), the coefficient of the first-order correction
in (1 − η) to the success probability of an ideal detector, vs m, the
average photon number at the input EPR state. The effective detector
efficiency, η, is assumed to be close to 1. The maximum occurs for
m = 1.47 and is 0.0123.

small parameter (1 − η),

ProbSucc(m,η) = ProbSucc(m,1) − ζ (m)(1 − η)

+O((1 − η)2). (37)

While for the single-photon schemes, ζ (m) = 1/8, for our
scheme ζ (m), found numerically from Eq. (31), is plotted in
Fig. 5 and is bound from above by 0.0123 which is more
than 10 times lower than the single-photon result. For m = 5
suggested above this ratio is even greater.

VI. CONCLUSIONS

In this work, we demonstrated a simple, effective, and
robust protocol for generating entanglement between two
stationary QD spin qubits using multiphoton Gaussian states.
Our method is clearly distinguished from current single-
photon schemes by the absence of fragile single-photon states
and noisy vacuum states and by unitary evolution before
measurement in a spin qubit 4-level system, rather than
spontaneous emission in a 3-level one. We showed resonance
fluorescence entails entanglement between the photon and
qubit states, and that measurement of photon numbers can
herald a maximally entangled state of the QDs. The association
of this state with two odd measurements was observed to
be a consequence of the bosonic nature of photons via the
multiphoton Hong-Ou-Mandel effect. For nonideal optical
elements and photon number detectors, we pointed that, owing
to the robustness to noise of the Gaussian states, the same
success probability as in the ideal case can be obtained by
an increase of the number of photons at the input. We then
proposed the recently developed near-ideal detectors as means
for decreasing false positive readings at the photon detectors,
and found that also in this regime Gaussian states make our
system less prone to noise than parallel single-photon schemes.

Throughout the paper we assumed the two QDs are
identical, as are the two input EPR states, whereas, in practice,
the parameter values may differ. We now show the results are
maintained if the discrepancy is not too large. First, a resonance
frequency difference between the QDs does not change the
results if it is much lower than the trion state linewidth. Second,
if the input EPR states parameters are λ and λ + �λ, and the
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QD coupling constants are g and g + �g, then with m > 2,
�λ/λ < 0.01%, and �g/g < 0.01%, the expected fidelity of
the qubit state relative to |�−〉 upon two odd photon number
measurements at 0 < t < 40π/g is found to be higher than
99.7%.

With the caveats given following Eq. (3) concerning the
system presented here not being a fully fledged experimental
design, we hereby estimate the entanglement creation rate.
The ideal photon process is now assumed to take place
with QDs in microcavities and thus exhibits losses, which
are now estimated. The strong-coupling regime, which was
experimentally realized in microcavities,73,74 is defined by
�cav/2 < �,75 where �cav = ω/Q is the cavity decay rate,
ω is the radiation frequency, Q is the cavity quality factor,
and � is the Rabi frequency. In this regime, assumed here,
Rabi oscillations have a decay rate �cav. The present collection
efficiency of light out of a planar microcavity containing a QD
can be made to be better than 10%.19,20,73 The probability
for resonance fluorescence in the microcavity, in turn, can be
made to be higher than 50%.73 By taking these lower limits,
the probability for resonance fluorescence and successful col-
lection from each quantum dot is C ≈ 5%. QD spin qubit state
initialization in the Faraday geometry was performed within
∼1 μs,57 while EPR states were prepared in ∼1.3 μs.62,63

With photodetection time being much shorter,19 the repetition
rate R is approximately the reciprocal of the larger of these
two times. If we now assume that the average number of
photons in the Gaussian states is large enough for the success
probability to reach its characteristic value of P = 1/32, the
entanglement generation rate is C2PR ≈ 3.6 × 103 min−1,
which is 3 orders of magnitude larger than the single-photon
heralded entanglement creation rate.28,29,32–34 In addition, the
spin qubit entanglement fidelity may be expected to be close
to unity assuming high-fidelity preparations of the QD states
and Gaussian photon states.

The experimental realization of this proposed entanglement
method may be an important step towards fast and scalable
quantum computation and communication. More generally,
our work provides one illustration of Gaussian photon states
being a viable alternative to single-photon ones as information
carriers. In analogy, future work may be the application of spin
Gaussian states to replace single-spin qubits as information
carriers. Another direction may be to explore the use of
spin qubits to influence photon Gaussian states for Gaussian
information processing. Our method also has a limitation.
The selection rules in the Faraday geometry provide excellent
insulation of two-photon state evolution paths, which can
be utilized for distant entanglement of stationary qubits. The
Voigt geometry has many advantages, such as fast initial state
preparation,76 but our entanglement method will have to be
drastically redesigned in this geometry, as its selection rules
allow transitions between each spin state and both trion states.
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APPENDIX A: GAUSSIAN STATES

We provide the detail for writing down the input Gaussian
state with conditions specified in Sec. II. A Gaussian state can
be defined via its Wigner quasiprobability distribution, given
by38

W (x) = exp[−(1/2)(x − x)TV−1(x − x)]

(2π )N
√

detV
, (A1)

where

x = (q1,p1,q2,p2, . . . ,qN ,pN ), (A2)

x = (q1,p1,q2,p2, . . . ,qN ,pN ), (A3)

Vij = 1
2 〈̂xi x̂j + x̂j x̂i〉 − 〈̂xi〉〈̂xj 〉 (A4)

are the phase space coordinates vector, displacement vector,
and covariance matrix, respectively, with N being the number
of modes. The phase space operators are given by q̂k = (ak +
a
†
k)/

√
2 and p̂k = −i(ak − a

†
k)/

√
2, where � is put to unity for

brevity.
The Gaussian state is characterized completely by its

displacement vector x and covariance matrix V . A general
two-mode Gaussian state can be reduced by local unitary
operations on each mode, which do not affect the purity and
entanglement in the state, to the standard form,50 where x = 0
and

V =

⎛⎜⎝s− 0 h− 0
0 s− 0 h+
h− 0 s+ 0
0 h+ 0 s+

⎞⎟⎠ . (A5)

Condition (3) of the same parametric strength of the two
polarization modes in Sec. II is satisfied by s− = s+ = s.
Condition (4) of pure state is satisfied by53

det(V ) = 1
16 . (A6)

The resulting equation

(s2 − h2
−)(s2 − h2

+) = 1
16 (A7)

together with V > 0 entails s > max(1/2,|h−|,|h+|).
Combining this result with the uncertainty principle for

Gaussian states,77 V + i
2� � 0, where � is the usual sym-

plectic form

� ≡

⎛⎜⎝ 0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 0

⎞⎟⎠ , (A8)

gives h− = −h+, which, combined with Eq. (A7) and substi-
tuted in Eq. (A5), reduces the covariance matrix to the form

V = 1

2

⎛⎜⎜⎝
ν 0

√
ν2 − 1 0

0 ν 0 −√
ν2 − 1√

ν2 − 1 0 ν 0
0 −√

ν2 − 1 0 ν

⎞⎟⎟⎠ .

(A9)
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If one defines ν = cosh(2r), then this Gaussian state describes
the two-mode squeezed vacuum state,38 also known as an
Einstein-Podolski-Rosen (EPR) state, with the squeezing
parameter r > 0. In the number state basis the EPR state is
given by Eq. (1).

APPENDIX B: QD DENSITY MATRIX PROPERTIES
FOR EVEN-EVEN MEASUREMENT

We show that the QD density matrix for an even-even
measurement in Eq. (19) satisfies q� � q+. Eq. (19) is obtained
by tracing out the photons in |ψn1,n2〉〈ψn1,n2 |, where |ψn1,n2〉 is
given in Eq. (18). The coefficient q� is

q� = 1 − λ2

2

∣∣∣∣∣Pn1,n2UBS

∞∑
m,m′=0

λm+m′
sin(g

√
mt)

× sin(g
√

m′t)|m − 1,m; m′ − 1,m′〉
∣∣∣∣∣
2

,

(B1)

and q+ is seen to have the same form except for |m −
1,m; m′ − 1,m′〉 → |m − 1,m; m′,m′ − 1〉. Up to normaliza-
tion, Eq. (B1) is the probability for the state following Pn1,n2

inside the norm to be in the space projected by Pn1,n2 . The
norm of this state and the one of the corresponding state in q+
are equal by the unitarity of UBS .

Using the beam splitter transformation (12), we have

q� = 1 − λ2

2
√

2

∣∣∣∣∣Pn1,n2 (c†+ + d
†
+)UBS

∞∑
m,m′=0

1

m′ λ
m+m′

sin(g
√

mt)

× sin(g
√

m′t)|m − 1,m,m′ − 1,m′ − 1〉
∣∣∣∣∣
2

, (B2)

where q+ is given by the same expression with c+ → c−
and d+ → d−. Consider the state appearing after (c†+ + d

†
+)

in Eq. (B2). This state exists in both the expressions for q� and
q+. Had the operator (c†± + d

†
±) not existed, Eq. (B2) would,

by virtue of the total photon number, have given a nonzero
result only for even-odd or odd-even (n1,n2) pairs. Since the
state norm is identical in q� and q+ both before and after
the operation of (c†± + d

†
±), which adds a single photon, this

operator merely shifts probability of projection from even-odd
and odd-even pairs to even-even and odd-odd ones. Since q�
is zero for odd-odd pairs, a given even-even pair in it, (n1,n2),
receives all contributions from (n1 − 1,n2) and (n1,n2 − 1),
while in q+ it shares these contributions with the odd-odd
pairs (n1 − 1,n2 + 1) and (n1 + 1,n2 − 1). We thus conclude
that for the even-even case q� � q+.

APPENDIX C: TIME-AVERAGED MEASUREMENT
PROBABILITY

We set to find the form of Cn1,n2 , the time average of
gn1,n2 (t) in Eq. (24), which is the time-dependent part of
the measurement probability. As the beam splitter conserves

photon number in each polarization, Eq. (24) reduces to

gn1,n2 (t) = 1

2

min(n1,n3)∑
k=max(n1−n3,0)

[
n3∑

m=1

Akm

× sin(g
√

mt) sin(g
√

n3 − m + 1t)

]2

, (C1)

Akm ≡ 〈k,n1 − k; n3 − k,n3 − n1 + k|UBS

× |m − 1,m; n3 − m + 1,n3 − m〉. (C2)

The beam splitter matrix element can be broken to a product
of two one-mode beam splitter matrix elements as

〈m′
−,m′

+; m̃′
−,m̃′

+|UBS |m−,m+; m̃−,m̃+〉
= 〈m′

−,m̃′
−|UBS,1|m−,m̃−〉〈m′

+,m̃′
+|UBS,1|m+,m̃+〉, (C3)

with UBS,1 being the one-mode beam splitter operator. By
Eq. (12) the matrix elements of this operator are

〈k,n − k|UBS,1|l,n − l〉

=
√

k!(n − k)!

l!(n − l)!
2−n/2

k∑
q=0

(
l

q

)(
n − l

k − q

)
(−1)l+q . (C4)

The time average of a four-sines product in the expansion
of Eq. (C1) is nonzero only if the four frequencies of the sines
contain two identical frequency pairs. Consequently, this time
average reads

Cn1,n2 = 1

8

n3∑
m=1

(Bmm + Bm,n3−m+1)

− 1

32
B(n3+1)/2,(n3+1)/2[1 − (−1)n3 ], (C5)

where

Bmm′ ≡
min(n1,n3)∑

k=max(n1−n3,0)

AkmAkm′ , (C6)

the dependence of Akm and Bmm′ on (n1,n2) being
understood.

APPENDIX D: SUCCESS PROBABILITY
FOR NONIDEAL DETECTORS

We wish to find the infinite sum for the success probability
with nonideal detectors in Eq. (31). Due to the additional
η-dependent factor in Eq. (31), the sum rule of Eq. (28) cannot
be used to remove the sum over n1 and put it in closed form as in
the ideal detectors case. Approximating Eq. (31) by summing a
finite number of terms is also unsatisfactory due to the delicate
convergence of this series. Equation (25) indicates that the
m-dependent part of high-n3 summands decays to zero very
slowly relative to lower n3 terms and cannot be neglected when
m is large, while Cn1,n2 for these summands also does not decay
with increasing n3, being always of the order of 1 as seen from
Eq. (28). In order to find an effective approximation for the
infinite sum in Eq. (31), we first need to study the properties
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FIG. 6. Normalized values of Cn1,n2 , the time average of the time-
dependent part in the measurement probability, for odd (a) and even
(b) values of 1 � n3 � 300, where n3 = (n1 + n2)/2, and n1 and n2

are the photon numbers measured in the first and second detectors,
respectively. The coefficient Dn3 is obtained by summing Cn1,n2 over
all pairs of odd n1 and n2 corresponding to a given n3. The normalized
values of Cn1,n2 exhibit the property of data collapse when n3 is large.

of Cn1,n2 . We use Eq. (C5) to plot the normalized Cn1,n2 in
Fig. 6, and observe that the normalized coefficients exhibit the
property of data collapse when n3 is large. In particular, we
find the standard deviation of the Cn1,n2/Dn3 distribution for a
given n3 is a linear function of n3.

With the properties of the Cn1,n2 coefficients in mind, we set
to find an approximation which will allow us to sum Eq. (31).
Such an approximation, inspired by Fig. 6, is the “rooftop”
approximation, wherein Cn1,2n3−n1 for a given n3 is a piecewise
linear function of the form

Cn1,2n3−n1 ≈
{
an3n1 + bn3 , 0 � n1 � n3,

an3 (2n3 − n1) + bn3 , n3 � n1 � 2n3,

(D1)

where an3 and bn3 are determined by two constraints:
Eq. (28) and the linear relation for the standard deviation of
the Cn1,n2/Dn3 distribution. Equation (D1) is substituted in
Eq. (31), which can then be exactly summed. By comparing
the approximate Cn1,n2 with their exact values, we find the
rooftop approximation error is lower than 2%. We note the
approximation is exact when m → ∞, as then the dominant
terms in Eq. (31) have high n3 and an essentially flat η-
dependent factor, a fact which, combined with Cn1,n2 still
satisfying Eq. (28), leads to an exact result.

This insight leads to an improved approximation, the
“hybrid” approximation, obtained by summing Eq. (31) up
to some high value of n3, n3,max, exactly and then writing the
rest of the sum in closed form using the rooftop approximation
in Eq. (D1). With n3,max = 300, we find, by the method noted
above, that the hybrid approximation error is below 1%. We
use this approximation to plot Fig. 3.
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C. Schneider, M. Kamp, S. Höfling, A. Forchel, and Y. Yamamoto,
Nat. Photonics Lett. 4, 367 (2010).

66P. M. Chaikin and T. C. Lubensky, Principles of Condensed Matter
Physics, 1st ed. (Cambridge University Press, Cambridge, 1995).

67C. H. Bennett, H. J. Bernstein, S. Popescu, and B. Schumacher,
Phys. Rev. A 53, 2046 (1996).

68D. Rosenberg, A. E. Lita, A. J. Miller, and S. W. Nam, Phys. Rev.
A. 71, 061803(R) (2005).

69G. Khoury, H. S. Eisenberg, E. J. S. Fonseca, and D. Bouwmeester,
Phys. Rev. Lett. 96, 203601 (2006).

70A. E. Lita, A. J. Miller, and S. W. Nam, Opt. Express 16, 3032
(2008).

71B. B. Blinov, D. L. Moehring, L.-M. Duan, and C. Monroe, Nat.
Lett. 428, 153 (2004).

72S. Olmschenk, D. N. Matsukevich, P. Maunz, D. Hayes, L.-M.
Duan, and C. Monroe, Science 323, 486 (2009).

73S. Ates, S. M. Ulrich, S. Reitzenstein, A. Löffler, A. Forchel, and
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