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Spin-orbit effects in a triple quantum dot shuttle
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Spin transport properties of a triple quantum dot shuttle system are analyzed in the presence of spin-orbit
interaction. We calculate the spin current through the device as a function of the bias voltage detuning. We find
that new resonances in the current through the shuttle appear due to the presence of spin-orbit interaction, and the
states involved in the conduction process are identified. Also, spin current polarization is analyzed as a function
of tunnel coupling and detuning, and conditions are found where the device can act as a spin filter.
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I. INTRODUCTION

Transport properties of electrons in triple quantum dot
(TQD) systems have become the subject of intense inves-
tigation recently, due mainly to their potential applications
in quantum information. TQDs represent the next level of
complexity in the study of the properties of coupled quantum
bits (qubits). In these systems, charge stability diagrams have
been obtained,1 and entanglement2 and interference effects in
a triangular setup3 have been studied. Coherent manipulation
of interacting three-spin states has been demonstrated4 and a
resonant exchange qubit has been realized in a TQD system.5

Recently, it has also been shown that, in a linear TQD
system, spin blockade becomes bipolar6,7 and that a new
quantum coherent mechanism, where the charge is transferred
via coherent states from one end of the TQD circuit to the
other without involving the center site, becomes relevant.6

Charge and spin transport properties in triple dots under
magnetic fields have been addressed as well.8–10 Oscillating
TQDs in linear array configurations have been proposed as
shuttle systems.11,14–16 AC-driven transport through shuttle
devices is also a very interesting topic and has recently
been investigated.11 There, the interplay between photon and
phonon side bands as potential tunneling channels gives rise
to new features in the current compared with the static or the
undriven case. Experimental realizations of a shuttle system,
using a metallic island mounted on a cantilever12 or oscillating
nanopillars,13 have been reported. Here, we focus on spin
transport properties through a triple quantum dot shuttle
(TQDS), taking into account spin-orbit interaction (SOI). We
assume that the Zeeman splitting energy is different in each
quantum dot (QD); this can be achieved using QDs with the
same g factor and local nanomagnets17 or by using QDs with
different g factors under a homogeneous magnetic field.18

Also, fluctuating Overhauser fields due to hyperfine interaction
give rise to Zeeman inhomogeneities.6 In the present work, we
find new resonances in the spin current through a TQDS due to
the presence of SOI. We also discuss the conditions required
to obtain spin-polarized currents and spin filtering.

The paper is organized as follows: in Sec. II we present the
Hubbard-like Hamiltonian that describes the TQDS system
and show how SOI is included in our model. In this section we

also present the main features of the reduced density matrix
(RDM) formulation used to calculate the electronic current
through the system. In Sec. III we analyze the new current
features due to SOI and explore the current spin polarization
and the spin filter mechanism. Finally, in Sec. IV we present
the conclusions.

II. FORMALISM

The TQDS system consists of a linear array of three QDs
[Fig. 1(a)], where the central dot oscillates between the two
outer dots, which are located at fixed positions ±x0. Conditions
are such that only one electron is in the system at any given time
(Coulomb blockade regime). In the presence of an external
magnetic field B, the level spin degeneracy is broken, resulting
in two energy states at each dot separated by the Zeeman energy
� = |g|μBB, where g is the Landé g factor (g = −0.44 for
GaAs, for example) and μB is the Bohr magneton. The system
is modeled by means of a Hubbard-like Hamiltonian,

Ĥ = Ĥ0 + Ĥosc + Ĥtun + Ĥleads + Ĥdot−leads, (1)

where the first three terms on the left-hand side of the
above equation represent the Hamiltonian of the TQD system
including the spin degree of freedom and are defined as

Ĥ0 =
∑
m,σ

εm,σ |m,σ 〉〈m,σ |, Ĥosc = h̄ω d†d,

(2)
Ĥtun =

∑
m�=c,σ

Tm,σ (x̂) [|m,σ 〉〈c,σ | + H.c.].

In the above equation, the Hamiltonian Ĥ0 represents the
TQD system including the spin degree of freedom. The index
m = L,C,R labels each QD, and σ =↑ , ↓ corresponds to the
spin states. Also, allowing for the possibility of different local
magnetic fields at each QD, we have defined the dot energies

εm,σ = εm + �m,σ , (3)

with �m,↓ = �m/2 and �m,↑ = −�m/2, �m being the Zee-
man splitting at dot m. The energy of the central dot is position
dependent and is given by

εC(x̂) = [εL − (ε/2x0)(x̂ + x0)], (4)
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FIG. 1. (Color online) (a) TQDS system with SOI interaction,
where the central dot oscillates between two static QDs at fixed
position ±x0. There are two energy levels εm,↑↓ at QD m, due to
Zeeman splitting �m. The interdot tunneling rates, TR and TL, as
well as those including SOI, �L,R , are position dependent. (b) Spin
current as a function of detuning ε for a TQDS system with �m = 0.2
(m = L,C,R) and SOI [solid (red) line], compared with the case
without SOI [dashed (black) line]. Note that small satellite peaks
emerge as a consequence of the SOI (see arrows). Inset: Comparison
of the spin current through the TQDS [solid (red) line] and the static
TQD [dashed (green) line] with SOI (see text). (c) Amplification of
the total current (solid line) with SOI around ε = 1, showing that the
shoulder at ε � 0.77 is mainly spin-up current [dashed (blue) line],
while the one at ε � 1.178 is predominantly spin-down [dotted (red)
line]. Parameter values are V = 0.5, γ = 0.01, � = 0.05, x0 = 5.0,
α = 0.4, and N = 4.

where it is assumed that it undergoes a Stark shift proportional
to its position due to the voltage bias across the device:
ε = (εL − εR). In Eq. (4) the position operator x̂ is given
by x̂ = �xzp (d̂† + d̂), where �xzp = (h̄/2mω)1/2 is the zero-
point uncertainty position of the oscillator, and d† and d are
creation and destruction boson operators respectively, which
obey the following rules when applied to an arbitrary oscillator
state |i〉: d† |i〉 = √

i + 1 |i + 1〉 and d |i〉 = √
i |i − 1〉. Also

in Eq. (2), the Hamiltonian Ĥosc describes the oscillation of
the central QD, with frequency ω, and the Hamiltonian Ĥtun

accounts for the interdot tunneling, with position-dependent
tunneling rates,

TL(x̂) = −V e−α(x0+x̂), TR(x̂) = −V e−α(x0−x̂), (5)

where V is the tunneling amplitude and α is the inverse of
the tunneling length. The position operator x̂ measures the
displacement of the vibrational mode. The matrix elements of
the tunneling couplings T

ij

L(R) = 〈i|T (x̂)L(R)|j 〉 in the oscillator
basis states i and j (i,j = 0,1,2, . . . ,N) can be calculated
analytically following the procedure in Ref. 19, which yields

T
ij

L = −V [2n−m i! j !]1/2 e−αx0 eζ 2/4[−ζ ]i−j

j∑
k=0

ζ 2k

2k k! (k + i − j )!(j − k)!
, i � j, (6)

and T
ij

R = (−1)i−j T
ij

L . In the above equation we have defined
ζ = √

2 �xzp α; the matrix elements for the case i < j are
calculated by using the hermiticity of the tunneling couplings.

The remaining two Hamiltonians on the right-hand side
of Eq. (1) correspond to the electrons in the leads and are
described by

Ĥleads =
∑

l∈(L,R),k,σ

εl,k,σ c
†
l,k,σ cl,k,σ , (7)

where c
†
l,k,σ and cl,k,σ are creation and destruction operators for

electrons in the leads, with energy εl,k,σ and spin σ . The cou-
pling between the leads and the outer dots (L and R) is given by

Ĥdot−leads =
∑

l∈(L,R),k,σ

Vl,k,σ (b†l,σ cl,k,σ + H.c.), (8)

where b
†
l,σ and bl,σ are creation and destruction operators

for electrons in the L/R dots, with spin σ , and Vl,k,σ are
the tunneling matrix elements representing the coupling
between the leads and the L/R QDs. In the limit of infinite
source-drain voltage, the tunneling rates to the leads read20

�l,σ = 2π

h̄

∑
k

|Vl,k,σ |2δ(εl,σ − εl,k,σ ), (9)

where l ∈ L,R. Here, for simplicity, we assume spin- and
energy-independent transition rates �L and �R .

To incorporate SOI, we add a new tunneling Hamiltonian
which takes into account spin-nonconserving processes,21–24

Ĥ SOI
tun =

∑
σ �=σ ′

{i �m(x̂) [|C,σ 〉〈L,σ ′| + |R,σ 〉〈C,σ ′|] + H.c.},

(10)

where, as before, σ,σ ′ =↑ , ↓, and interdot tunneling is
described by the real parameter �m(x̂). This Hamiltonian satis-
fies hermiticity and time reversal invariance. Following Ref. 22
for the static case, we include SOI phenomenologically and
consider that �m(x̂) = Tm(x̂)/10, which is a good estimation
from experiments.25

The equation of motion of the system using the stan-
dard master equation approach for the RDM,26 generalized
to include the environment of the oscillator, is given by
ρ̇

ij
qs = [ρ̇ij

qs]RDM + [ρ̇ij
qs]diss, where ρ

ij
qs represents the matrix

element in the composite basis states q and s [q,s = |m′,σ 〉,
m′ = 0,L,C,R (m′ = 0 represents the vacuum state), and
σ =↑ , ↓] projected on the oscillator basis states i and j (i,j =
0,1,2, . . . ,N ). The first term in ρ̇

ij
qs incorporates transitions

between the leads and the outer dots27 and is given by[
ρ̇ij

qs

]
RDM

= − i

h̄
[Ĥ ,ρ]ijqs

+
{∑

d �=q

(
�d→q ρ

ij

dd − �q→d ρ
ij
qq

)
, q = s,

− 1
2

( ∑
d �=q �q→d + ∑

d �=s �s→d

)
ρ

ij
qs, q �= s,

(11)

where the second and third lines represent the time evolution
of the occupation probabilities and decoherences, respectively,
for the open system. Here, �k→k′ is the transition rate, as
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defined above, from state k to state k′ in the system, due to cou-
pling to the leads. The dissipative term in the equation for the
density matrix due to coupling to the environment is given by28

ρ̇diss = −γ

2
n̄ [dd† ρ − 2d† ρ d + ρ d d†]

− γ

2
(n̄ + 1)[d†d ρ − 2d ρd† + ρ d†d], (12)

where γ is the classical damping rate of the oscillator and
n̄ is the thermal occupation number of the oscillator at
temperature T . In the low-temperature limit (n̄ → 0), ρ̇diss in
the composite basis reads[

ρ̇ij
qs

]
diss = −γ

(i + j )

2
ρij

qs + γ
√

(i + 1)(j + 1)ρi+1,j+1
qs .

(13)

By solving these equations we obtain the steady-state
electronic current of the system,

I = I↑ + I↓ = e �R

∑
i

(
ρii

R↑,R↑ + ρii
R↓,R↓

)
, (14)

where ρii
R↑,R↑ and ρii

R↓,R↓ are the occupation probabilities
of the right-hand dot for spin-up and spin-down for the ith
oscillator state when the steady state has been reached. We
define εL = −εR = ε/2 and �R = �L = �.

III. RESULTS

In what follows, we calculate the current through the TQDS
for symmetric and asymmetric Zeeman splitting in each QD,
taking into account SOI. To explain the current features, we
calculate the energy spectrum for the corresponding closed
system and identify the states involved in the conduction
process for each current peak. Finally, we analyze the current
polarization as a function of the detuning ε and tunnel coupling
α and identify a region in this parameter space where the
TQDS acts as a spin filter. All the calculations are in units of
h̄ = 2m = 1, and e = ω = 1. The energies are given in units
of ω, and displacements in units of the zero-point displacement
of the oscillator, �xzp.

A. Symmetric case

First, we consider a TQDS with SOI, for symmetric Zeeman
splitting given by �m = 0.2 (m = L,C,R), and V = 0.5,
α = 0.4, x0 = 5.0, γ = 0.01, and � = 0.05. In order to
explore the effects of SOI, we show in Figs. 1(b) and 1(c),
the current as a function of the detuning ε. We see that without
SOI, the current shows resonance peaks at values of ε which are
integer multiples of ω; i.e., additional tunneling channels are
opened via phonon absorption or emission.14 In the presence
of SOI, we obtain additional small satellite peaks [indicated by
arrows in Fig. 1(b)] on the sides of the main phonon peaks, with
a separation that depends on the Zeeman splitting �, which are
due to spin-nonconserving tunneling processes.22 In order to
compare our results with the case of a static TQD with SOI, we
have chosen a constant tunneling coupling between the dots
by setting x̂ = 0, which yields TL = TR = −V e−αx0 ≡ TD;
thus, for the chosen parameters, we obtain TD = −0.068. The
comparison is shown in the inset in Fig. 1(b), where we can
see that all the features of the current through the symmetric
TQDS and static TQD, including the SOI satellite peak, are

FIG. 2. (Color online) (a) Eigenvalues for the closed TQDS with
symmetric Zeeman splitting including SOI [Fig. 1(b)], as a function
of the detuning ε. (b) Amplification around the interval ε ∈ [0.74,0.8]
[open (black) square in (a)] shows the level anticrossing due to SOI.
The case without SOI [open (black) circles] presents an exact crossing
instead and is included for comparison. (c) At the level anticrossing
region of the spectrum in case (b) we chose a particular eigenvalue
at ε = 0.77 in order to calculate the corresponding eigenvector and
its probability amplitude. The eigenvalue E = 0.498 is indicated by
the black arrow in (b). A satellite peak is observed around the chosen
value of detuning ε [see Fig. 1(c)]. Here p stands for the ordering
index of the basis elements, as follows: {|L ↓ ,n〉} ↔ {1, . . . ,5},
{|L ↑ ,n〉} ↔ {6, . . . ,10}, {|C ↓ ,n〉} ↔ {11, . . . ,15}, {|C ↑ ,n〉} ↔
{16, . . . ,20}, {|R ↓ ,n〉} ↔ {21, . . . ,25}, {|R ↑ ,n〉} ↔ {26, . . . ,30},
where n = 0, . . . ,4 is the index associated with the oscillator states.

similar for small ε, before the first phonon peak. However, for
large values of the detuning, we see that while the current in the
TQD rapidly drops to zero, in the TQDS it exhibits well defined
resonances. These resonances correspond to the opening of
new conduction channels induced by vibrational sidebands due
to the oscillation of the central dot. To understand the observed
features, we explore the energy spectra for one electron in
the closed system corresponding to the TQDS and determine
the most important state contributions to the satellite peaks
induced by SOI. In Fig. 2(a) we show the energy spectrum of
the shuttle with homogeneous Zeeman splitting and SOI. Note
that each eigenvalue has replicas at energy intervals separated
by ω = 1, due to the oscillations of the central dot. A slight
displacement between replicas is also observed, due to the
finite value N = 4 of oscillator states used in this calculation.
In general the spectra with and without SOI almost fully
overlap, except in regions corresponding to the satellite peaks
in the current, where level anticrossings appear due to the SOI.
Indeed, an amplification of the spectrum around the value of
ε = 0.770 [Fig. 2(b)] shows this behavior. The case without
SOI [open (black) circles] is included for comparison, showing
a level crossing. We proceed to investigate the components
of the eigenvector for one particular eigenvalue, E = 0.498,
computed in Fig. 2(b) and indicated by the black arrow. This
value is associated with ε = 0.77, which corresponds to the
spin-up satellite peak in Fig. 1(c). The histogram in Fig. 2(c)
shows the probability density in terms of the components
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FIG. 3. (Color online) Current through the TQDS [solid (black)
line], with SOI and asymmetrical Zeeman splitting �L = 0.2,
�C = 0.4, and �R = 0.6, compared to the current with no SOI
[dashed-dotted (green) line] in (a) the strong-coupling regime (small
α = 0.4), and in (b) the weak-coupling regime (large α = 0.8). In
both cases we show the different contributions, spin-up [dashed (blue)
line] and spin-down [dashed (red) line], to the SOI current. Note the
satellite peaks due to the SOI (see text). Inset in (a): Comparison of the
spin current through the TQDS [solid (red) line] in the strong-coupling
regime and the static TQD[dashed (green) line] with SOI. Parameter
values are the same as in Fig. 1.

of the eigenvector associated with this eigenvalue. We see
that the conduction channel is mainly due to the process
|L ↓ ,0〉 → |C ↑ ,1〉 → |R ↑ ,1〉; the referred basis states are
|q σ,n〉, where q = L,C,R denotes the electronic states,
σ =↑ , ↓ represents the spin, and n = 0, . . . ,N stands for the
oscillator states. Note that a spin flip occurs in the process and
that the final state corresponds to a spin-up state. A similar
analysis shows that the shoulder at ε � 1.178 corresponds
predominantly to a spin-down current (not shown).

B. Asymmetric case

Next we discuss the results for the spin current [see
Eq. (14)] as a function of the detuning ε for the TQDS with
asymmetric Zeeman splitting. For strong tunneling coupling
(α = 0.4) [Fig. 3(a)], we see the appearance of new peaks
in the current, due to SOI, where the spin-up and spin-down
contributions are shown. As in the symmetric case, in the
inset in Fig. 3(a) we compare this with results for the static
TQD, clearly showing the appearance of new resonances due to
the shuttle mechanism. The eigenvectors of the corresponding
closed system show a strong mixing of the states involved,
and the identification of the conduction channel is less clear.
Therefore in order to understand the underlying physical
mechanisms we study the weak-coupling regime. This is
simply achieved by increasing the value of the parameter
α. Thus, in Fig. 3(b) for α = 0.8, we observe clear current
peaks at ε ≈ 1.357 and ε ≈ 2.5, corresponding to spin-up
and spin-down contributions, respectively, resulting from the
presence of SOI. Note in both cases the pronounced decrease
in the current of opposite polarization. An energy spectrum
analysis (not shown here) shows that the spin-up current
contribution at ε ≈ 1.357 comes mainly from the conduction
channel |L ↓ ,0〉 → |C ↑ ,1〉 → |R ↑ ,2〉; similarly, for the
peak at ε ≈ 2.5, we obtain a spin-down current contribution.
Finally, in the case of the large peak at ε ≈ 2 (Fig. 3), we
can see that there are two conduction channels, with similar
characteristics, one for each spin direction.

C. Spin polarization in a TQDS

Here, we analyze the effect of SOI on the spin polarization
P , defined as

P = (I↑ − I↓)/(I↑ + I↓). (15)

In Figs. 4(a)–4(d), we present contour plots for the TQDS with
symmetric Zeeman splitting, as a function of the detuning
ε for a wide range of values of the coupling parameter α.

FIG. 4. (Color online) Contour plot of the SOI current polarization P for the TQDS with (a)–(d) symmetric (� = �m, m = L,C,R) and
(e)–(h) asymmetric Zeeman splitting, indicated at the top of each panel as a function of the detuning ε and coupling parameter α. The shades
of blue (red) indicated by solid (dotted) arrows at the top of each panel, correspond mainly to spin-up (spin-down) contributions; the shades of
green correspond to P � 0. Parameter values are the same as in Fig. 1.
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In this case, we see that as α increases (the tunnel coupling
decreases), well-defined regions of high polarization develop
due to SOI, with |P | � 1. In particular, note the two regions
of opposite polarization, shown by solid (spin-up) and dotted
(spin-down) arrows, which tend to separate as the Zeeman
splitting (shown at the top of each panel) increases. This can
be explained by the energy spectrum [Fig. 2(a)], where one
can see that as the Zeeman splitting increases, the anticrossing
points will be displaced farther to the left and right with respect
to each phonon peak. Thus, in this regime of parameters, the
TQDS shows a spin filter behavior where peaks of opposite
polarization, with |P | � 1, appear as a function of detuning.
Furthermore, in Fig. 4(b), along the dashed black line at α =
0.4, high values of the polarization P appear, corresponding
to the SOI current peaks presented in Fig. 1(b). Similarly, in
Figs. 4(e)–4(h), we explore the behavior of the polarization
P for the TQDS with different asymmetric Zeeman splitting
configurations. Again, we obtain spin filter behavior, since as
α increases, the polarization increases for particular values
of detuning, being positive (or negative) for a wide range of
values of the parameter α. In particular, let us analyze more
closely the contour plot in Fig. 4(f), where we see that the
spin polarization is stronger at the values of ε � 1.36 and
2.5, being positive in the vicinity of ε � 1.36 and negative
at ε � 2.5, corresponding to the main current peaks induced
by SOI, discussed in Figs. 3(a) and 3(b) for different values
of α. Note also that for α � 0.4, the polarization exhibits
predominantly negative values corresponding to a spin-down
polarization, which for the present case is a distinctive feature
of the strong-coupling regime. We also indicate in Fig. 4(f) the
corresponding polarization for the two cases with asymmetric
Zeeman splitting analyzed in Figs. 3(a) and 3(b). These cases
correspond, respectively, to the values of α = 0.4 [dashed
(black) line] and α = 0.8 [solid (black) line]. We see that in the
weak-tunneling regime (α = 0.8), we obtain a spin filter effect
as a function of detuning ε, due to both SOI and asymmetrical
Zeeman splitting.

IV. CONCLUSIONS

In summary, the effects of SOI interaction on the spin cur-
rent through a vibrating TQD system in a linear arrangement
has been explored as a function of detuning and tunnel coupling
intensity, in the presence of a magnetic field. Using the density
matrix master equation approach, we calculate the current
and polarization for both static and dynamic conditions, for
symmetric and asymmetric Zeeman splitting configurations.
We note that the shuttle mechanism (i.e., position-dependent
interdot tunneling) gives rise to resonances, where vibrational
sidebands allow opening of new conduction channels. Addi-
tional resonance peaks are obtained in the presence of SOI.
These resonances are shown to correspond to anticrossings in
the energy spectrum reflecting coupling between states due to
SOI. By calculation of the eigenvectors at these anticrossings,
we identify the states involved in the conduction process at
each current peak. Finally, for both symmetric and asymmetric
TQDS we have carried out a systematic analysis of the current
polarization as a function of the tunnel coupling intensity
α of the oscillating QD with the outer dots, detuning ε,
and Zeeman splitting asymmetry. We have found that the
spin current becomes polarized for both weak and strong
coupling regimes and identified conditions under which the
current is fully polarized presenting a spin filter behavior.
To our knowledge, these properties of the spin current, in a
system where interdot tunnel coupling is position dependent,
including SOI, have not been reported before. We hope that our
work provides new insight into the spin transport properties of
shuttle semiconductor nanodevices where SOI is important.
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