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We show that the colossal thermoelectric power S(T ) observed in the correlated semiconductor FeSb2 below
30 K is accompanied by a huge Nernst coefficient ν(T ) and magnetoresistance MR(T ). Markedly, the latter
two quantities are enhanced in a strikingly similar manner. While in the same temperature range, S(T ) of the
reference compound FeAs2, which has a seven-times-larger energy gap, amounts to nearly half of that of FeSb2,
its ν(T ) and MR(T ) are intrinsically different to FeSb2: They are smaller by two orders of magnitude and have
no common features. Underlying the essentially different thermoelectric properties between FeSb2 and FeAs2, a
large mismatch between the electrical and thermal Hall mobilities is found only in the former compound. With
the charge transport of FeAs2 successfully captured by the density functional theory, we emphasize a significantly
dispersive electron-relaxation time τ (εk) related to electron-electron correlations to be at the heart of the peculiar
thermoelectricity and magnetoresistance of FeSb2.
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I. INTRODUCTION

Current thermoelectric materials all operate around or
above room temperature (RT).1 Efficient thermoelectric con-
version at low temperatures (T < 100 K) by using a cryogenic
Peltier cooler in, for example, microelectronic superconduct-
ing devices based on high-Tc superconductors, may bring
about a worldwide implementation of relevant technology.2

Such thermoelectrics have not yet been discovered despite
intensive efforts. Consequently, the recent observation of
colossal thermoelectric power (TEP) in FeSb2 amounting to
tens of mV/K3 at T ≈ 10 K has been receiving considerable
attention.

FeSb2 is a new, d-electron-based correlated semiconductor
closely resembling FeSi.4–6 With the origin of the enhanced
TEP of FeSi in debate for decades,7–9 the observations in
FeSb2, with the thermoelectric power factor the largest ever
reported,3,10,11 have added timely interest to this concern. Ac-
cumulating experimental facts have confirmed the significant
effect of electron-electron correlations in FeSb2.3–6,10–17 These
include the large spectral weight redistribution up to higher
energies14,15 and the occurrence of electronic Griffiths phases
at low temperatures.17 The sign of the colossal TEP in FeSb2

is negative, in agreement with the dominating electron band
as revealed by Hall-effect measurements in the same window,
T < 30 K [cf. Fig. 1, inset (a)]. However, conventional elec-
tronic structure calculations18 can only qualitatively produce
the TEP profile, with the values being only one tenth of the
measured ones.

In this paper, we report on the Nernst coefficient ν(T ), TEP
S(T ), and magnetoresistance (MR) of FeSb2 in comparison
to the isostructural compound FeAs2. The latter compound
does not exhibit significant effects of electron correlations or
is only weakly correlated.13,18 In FeSb2, the simultaneously
enhanced values of S(T ), ν(T ), and MR(T ), as well as the
striking similarity between the latter two quantities, evidence,

as we will argue, a highly dispersive relaxation time τ (εk)
of the charge carriers to be at the heart of these enhanced
quantities. Further support for this argument comes from the
significant mismatch between the electrical and thermal Hall
mobilities of FeSb2, which forms a basis for our theoretical
interpretation of the enhanced Nernst signal using a dispersive
τ (εk). By contrast, for FeAs2, ν(T ) and MR(T ) show values
which are two orders of magnitude smaller, with its TEP
being well captured by the DFT approach assuming an
energy-independent τ .18

II. EXPERIMENTAL METHODS

Single crystals of FeSb2 and FeAs2 were prepared by
self-flux and chemical vapor transport techniques, respectively.
Details of sample synthesis and structure characterization have
been described elsewhere.3,13 The sample of FeSb2 employed
in this work is a 4.6 × 2 × 0.3 mm3 slab cut along the c

axis of the Marcasite structure, after orientation by the Laue
diffraction. We stress that this particular sample has been
used for all the transport measurements discussed in the
present paper. For the measurements of thermal properties
including thermoelectric power, Nernst effect, and thermal
conductivity, we employed a homemade setup equipped
with one chip resistor of 2000 � as heater and one thin
(φ = 25 μm) chromel-AuFe0.07% thermocouple for detecting
the temperature gradient.19 Electrical resistivity and Hall-
effect measurements were performed on the physical property
measurement system (PPMS) from Quantum Design.

III. SAMPLE DEPENDENCE

While a significant sample dependence is not unusual for a
narrow-gap semiconductor, the one observed in the transport
properties of FeSb2 is surprisingly large. For example, in
contrast to the purely semiconducting behavior observed along
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FIG. 1. (Color online) Electrical resistivity ρ(T ) (main panel)
and Hall coefficient RH (T ) [inset (a)] for FeSb2 and FeAs2. RH (T )
was measured at B = 1 T. Inset (b): isothermal Hall resistivity ρH (B)
at selected temperatures for FeSb2.

all the crystallographic axes by us, Petrovic and coauthors11

reported that FeSb2 crystals may show a metal-insulator
transition along the c axis, depending on the conditions of
decanting after the flux growth.

Here we focus particularly on the sample dependence of the
thermoelectric power. The single crystals of FeSb2 prepared
by us exhibit a colossal TEP minimum at around 10 K, which,
depending on the sample quality, amounts to a value between
−10 and −45 mV/K.3,13 Due to the high thermal conductivity
which amounts to about 500 W/mK at around 10 K, thermal
measurements on this compound require us to pay very careful
attention to thermal stability. For this reason, we used a very
small temperature gradient during the thermal measurements
which was typically 0.002 × T , with T being the sample base
temperature. We have confirmed these minimum values of
the TEP by different measurement techniques that include
the original and modified thermal transport options on PPMS
(cf. Ref. 3 and its Supplementary Material), as well as the
homemade setup employed in this work. We recognize that the
TEP minima reported by the groups of Petrovic and Takahashi,
which were obtained on the original PPMS platform, are
roughly one order of magnitude smaller (1−2 mV/K).11,20,21

Nevertheless, in these cases, the thermoelectric power factor
S2/ρ could be much larger than in our observations due to
a reduced electrical resistivity.11 It is unfortunate that no
thermal conductivity results are available for those FeSb2

samples,11,21 except for the sample in Ref. 20, which exhibits
a metal-insulator transition and therefore prevents a direct
comparison with our thermal conductivity data.

Another interesting point is that the smaller TEP minima of
FeSb2 single crystals in the literature were observed either
to span over a large temperature region between 10 and
20 K,11 or at a rather higher temperature, 20 K,20,21 in
comparison to 10 K as observed by us. This may hint at a
better quality of the samples used in this work. For example,
a tiny amount of electron doping by Te (0.05%) into the Sb
sites can shift the TEP minimum to 30 K, with its magnitude

reduced by more than one order of magnitude.22 In support
of the peculiar thermal transport in FeSb2, recently, in the
isostructural semiconductor CrSb2, a huge TEP minimum of
−4.5 mV/K at 18 K and thermal conductivity comparable with
that of FeSb2 were reported by Sales et al.23

IV. RESULTS AND DISCUSSION

An increase of the electrical resistivity ρ(T ) by four orders
of magnitude upon cooling from RT to 2 K evidences a
high quality of the current FeSb2 crystal (cf. Fig. 1). As had
been reported for various FeSb2 samples,3,11,13 a shoulder in
ρ(T ) is observed between 10 and 20 K. Applying the thermal
activation law to ρ(T ) between 40 and 100 K yields an energy
gap Eg � 28 meV, which can be reasonably explained by the
electronic structure calculations only when taking electron-
electron correlations into account through, e.g., Hedin’s GW
approximation.18 At even lower temperatures (T < 15 K),
ρ(T ) is found to be dominated by a small activation energy
of ∼6 meV. These transport features were found to be rather
robust against varying sample quality and crystallinity, except
for a sample-dependent activation energy (<0.1 meV) which
can be estimated from the nearly flat ρ(T ) below 6 K. The
transport properties in this low-temperature region (T < 6 K)
are assumed to be influenced by impurity bands and are
therefore excluded from our focus in this work. For FeAs2,
thermal activation behavior of ρ(T ) was confirmed above
200 K (Fig. 1), with Eg ∼ 200 meV. The metallic behavior
between 50 and 180 K in this compound presumably is caused
by in-gap impurity states.

It is known that the Hall coefficient RH (T ) of FeSb2

is subject to multiband competition.11,13,24–26 This effect,
however, is largely sample dependent: At T < 30 K, besides
a high-mobility electron band as reported in the literature,
the additional low-mobility band could be either holelike,11,25

or electronlike (this work and Refs. 24 and 26). A clear
distinction between the two cases with opposite low-mobility
carriers is reflected by the opposite curvature of the Hall
resistivity ρH (B) [cf. Fig. 1 inset (b) and inset (a) of Fig. 2
in Ref.11]. In spite of the significant sample dependence
concerning the low-mobility band, it has been concluded that in
the temperature window of interest, i.e., 6−30 K, the electrical
transport of FeSb2 is dominated by the high-mobility electron
band,11,24,26 in line with the sublinear ρH (B) curves as shown
in the inset (b) of Fig. 1. Upon warming the compound up to
above 40 K, while we find the high-mobility band still to be of
electron character, it could be holelike in other samples.11,25

Given a dominating one-band transport in the FeAs2 sample,13

the two compounds investigated here have a similar carrier
concentration below 30 K [cf. Fig. 1 inset (a)], in which
temperature range the TEP assumes a peak in either case.

As shown in Fig. 2(a), upon cooling the TEP of the current
FeSb2 sample starts to be enhanced from 40 K and assumes
a maximum absolute value of 17.5 mV/K at T ≈ 10 K. In
the same temperature window, the Nernst coefficient ν(T ),
measured at B = 2 T, is strongly enhanced as well. It shows
two peaks at 7 and 30 K, as well as an anomaly at 10 K,
i.e., the position where the TEP peak occurs [Fig. 2(b)]. A
similar ν(T ) curve with double-peak profile has already been
observed in another FeSb2 crystal.16 All these anomalies in
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FIG. 2. (Color online) The thermoelectric power S(T ) (a) and
Nernst coefficient ν(T ) (b) for FeSb2 and FeAs2. Inset of (a) shows the
thermal conductivity κ(T ) of these two compounds. Note that ν(T )
of FeAs2 is smaller than that of FeSb2 by two orders of magnitude,
therefore being almost hidden in the horizontal axis of (b). For clarity,
the same data are also displayed in a double-log plot in the inset
of (b).

the ν(T ) curve can actually find their counterparts in S(T ),
e.g., the main peak of ν(T ) at 7 K concurs with a jump in
S(T ), as indicated by the gray vertical line. Further on, the
multiple anomalies are not only limited to ν(T ) and S(T ), but
clearly show up in the MR(T ) (cf. Fig. 3) and the dρ/dT vs
T curves,11 as well. We wish to particularly stress that the
ν(T ) and the MR(T ) curves of FeSb2 are surprisingly similar
concerning their complex temperature profiles. This, as will be
discussed below, strongly suggests a significantly dispersive
τ (εk) of charge carriers.

The huge Nernst coefficient of FeSb2 with a maximum
of 3.2 mV/KT at 7 K dwarfs that of FeAs2 [Fig. 2(b) main
panel and inset] by two orders of magnitude. This difference
of ν(T ) in magnitude is extremely prominent when compared
to that in the TEP: S(T ) of FeAs2 assumes a peak below 20
K amounting to 7 mV/K, i.e., a value as large as 40% of
that in FeSb2. As we will discuss below in terms of ν/μH ,
where μH is the Hall mobility (cf. Fig. 4), even if the largely
differing Hall mobilities of the two materials are taken into
account, such a large difference in ν(T ) is surprising. On the
other hand, the large values of TEP in FeAs2 are well captured
by DFT,18 which predicts a reasonable charge gap of ∼0.2 eV
as observed experimentally.13 Because of the much smaller

FIG. 3. (Color online) Magnetoresistance MR = (ρB − ρ0)/ρ0

for FeSb2 measured at various magnetic fields (main panel), and
for FeAs2 at 4 T (inset). Note that the MR(T ) of the latter compound
is smaller by a factor of 50 than that of FeSb2. For comparison, the
Nernst coefficient ν(T ) and the square of the electrical Hall mobility
μ2

H (T ) are shown in arbitrary units. While for FeSb2 ν(T ) reveals
a strikingly similar T profile compared to MR(T ), as indicated by
arrows on both ν(T ) and MR9T (T ) curves, for FeAs2, by contrast,
MR(T ) scales well with μ2

H (T ).

charge gap (∼28 meV), the colossal TEP observed in FeSb2

is far beyond the upper bound (∼1.5 mV/K) set up in the
coherent electron diffusion picture.18

A dominant phonon-drag contribution has been frequently
assumed in order to explain the enhanced TEP in FeSb2.18,21,24

However, this is doubtful because (i) in FeAs2, while the ther-
mal conductivity κ(T ) is larger than that of FeSb2 by a factor of
10 [Fig. 2(a), inset], compatible with an enhanced phonon-drag

FIG. 4. (Color online) Comparison of the electrical and thermal
Hall mobilities, μH (T ) and μt (T ), for FeSb2 and FeAs2. Note that
μH (T ) and μt (T ) are significantly different only in the former
compound. Inset: dimensionless ratio ν/μH (kB/e)−1 for the two
compounds.
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contribution, S(T ) can nevertheless be reasonably explained
within the DFT frame; (ii) the phonon-drag effect may
contribute to the Nernst effect as well, as observed, e.g., in
the semimetal Bi.27 In FeSb2, however, the complex profile of
ν(T ) shows a striking resemblance to that of MR(T ), instead
of κ(T ) as is usually expected for phonon-drag dominating
thermoelectric transport. Since MR(T ) is free of phononic
transport, our observations in FeSb2 strongly argue against a
phonon-drag scenario, providing evidence for both ν(T ) and
MR(T ) being dominated by a common electronic origin.

In terms of the linear response coefficients, the charge
current J can be induced by external electric field E or thermal
gradient ∇T : J = σ̄ · E − ᾱ · ∇T . We consider E, ∇T , and
thus J to be in the x-y plane, hence the two conductivities σ̄

(electrical) and ᾱ (Peltier) are 2 × 2 matrices with diagonal
and off-diagonal elements in the presence of a magnetic field
B along the z axis. The Nernst effect measures the transverse
electric field Ey and can be rooted to the difference of two
mobilities (for more information, refer to the Appendix),

ν ≡ Ey

B∇xT
= 1

B

αyxσ xx − αxxσ yx

σ xxσ yy + σyxσ xy

� αxx

σ xx

(
1

B

αyx

αxx
− 1

B

σyx

σ xx

)

= S(μt − μH ),

(1)

where S = αxx

σ xx defines the TEP, and μH = 1
B

σyx

σ xx is the Hall
mobility and can be simply estimated by computing RH/ρ. We
furthermore define μt = 1

B
αyx

αxx as the thermal analog of μH .
The electrical and thermal Hall mobilities, μH and μt , as

derived from our measured data presented in Figs. 1–2 and
Eq. (1), are shown in Fig. 4 for both FeSb2 and FeAs2. For
the latter compound, μt and μH are practically on top of each
other and approximately constant over a large temperature
range. By contrast, there is a significant difference between
these two quantities for FeSb2. Tracing the enhanced Nernst
signal in FeSb2 to the mismatch in the two mobilities, in our
opinion, is an important step forward in the understanding of
this material.

The divergent behavior of μt as well as the rapid decrease of
μH above 30 K for FeSb2 are partly ascribed to an ambipolar
effect in the presence of two carrier bands of opposite signs.
This situation is supported by Hall-resistivity measurements:
Above 30 K, ρH (B) changes its curvature [cf. Fig. 1, inset
(b)], indicating that the low-mobility band changes from
electron- to holelike (note that the high-mobility band remains
electronlike). As discussed by Bel et al.,28 in a compensated
two-band system

μt = 1

B

α
yx
+ + α

yx
−

αxx+ + αxx−
; μH = 1

B

σ
yx
+ + σ

yx
−

σxx+ + σxx−
, (2)

where the subscript denotes the sign of the carriers in the
respective band. Following the explanation in Ref. 28, one
readily knows that while σxx

+ and σxx
− have the same sign,

σ
yx
+ and σ

yx
− are opposite in sign, as is also evident from the

opposite Hall signals of + and − bands. On the other hand, the
Peltier conductivity αxx

+ and αxx
− (therefore S of the two bands)

have opposite signs, whereas α
yx
+ and α

yx
− have the same sign.

Therefore these combinations lead to an enhancement of μt

and a decrease of μH above 30 K. Our following discussions
apply only to the lower temperature range (6–30 K) where we
assume a one-band approximation to be adequate.

In order to demonstrate the role of a dispersive τ (εk)
in various transport coefficients, we employ a model of a
conventional semiconductor, where the chemical potential
μ = −�, with � being the activation energy. The conduction
band is approximated in terms of free electrons with an
effective mass m∗, and a band dispersion εk = �

2k2

2m∗ . This
dispersion is supplemented with a scattering rate that has a lin-
ear energy dependence, �k � �0(T ) + a(T )εk , where �0(T )
is the scattering rate of charge carriers at the bottom of the
conduction band, and a(T ) is a dimensionless parameter. Note
that the linear energy dependence is the simplest dispersion of
�k , which is employed here in order to demonstrate the impact
of an asymmetry of �k on the transport properties, rather than
to capture the physics in FeSb2. In the Boltzmann framework,
we have shown that all components of the conductivities σ̄ and
ᾱ [cf. Eq. (1)] can be expressed in terms of m∗, �

kBT
, �0

kBT
, and

a(T ) (refer to the Appendix).
As shown in the Appendix, when a(T ) = 0, i.e., �k

being energy independent, the mobilities μt and μH cancel
exactly, generalizing the Sondheimer cancellation theorem
of the Nernst effect. This is consistent with the analytical
explanation made for typical metals, where ν ∝ ∂τ (εk)/∂εk .29

The nonvanishing, and in fact large, Nernst coefficient (or,
more precisely, the large mismatch between μt and μH ) in
FeSb2 indicates that a strong energy-dependent scattering
rate plays an important role in the thermoelectricity of this
compound. This is also evident in the large values of MR(T )
in FeSb2, in comparison to FeAs2 (cf. Fig. 3): In the formalism
as employed above, the MR can be expressed with the same
set of parameters, and it vanishes as well when a(T ) = 0.

Bearing in mind our proposition of a common underlying
origin of ν and MR (cf. the Appendix), it is interesting to note
the striking similarities observed between these two quantities
for FeSb2 as a function of temperature, as revealed by Fig. 3.
To our knowledge, this phenomenon has never been reported
for any other compound. Qualitatively similar MR(T ) with
double peaks was also observed by Hu et al.30 There, however,
the peak at the high-T side (∼30 K) is nearly two orders of
magnitude larger than that of our observations, compatible
with the metal-insulator transition of their samples. A slight
shift of the double peaks in MR(T ) to higher temperatures
upon increasing field is observed in Fig. 3, indicating the
involvement of the spin degrees of freedom in the relevant
charge-carrier relaxation processes. Notice, however, that even
a large value of a(T ) is not enough to account quantitatively
for the observed ν(T ) of FeSb2, suggesting that the assumed
linear energy dependence of �k cannot correctly capture the
correlation effects in FeSb2. A more complicated dispersion
of �k has to be considered in order to make a comparison with
the experimental results. In addition, impurity states and/or
phonon-drag effect which could lead to a difference between
μt and μH may also play a role to some extent.

As shown in the inset of Fig. 3, the MR(T ) of FeAs2

measured at 4 T spans vertically a range which is a factor-of-50
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smaller than that for FeSb2. This is in line with the values of its
ν(T ) which are roughly two orders of magnitude smaller than
those of FeSb2. Different from FeSb2, no obvious correlation
can be observed between ν(T ) and MR(T ) for this compound.
Instead, we found that the MR(T ) curve scales well with
the μ2

H (T ) curve in FeAs2, as expected for a conventional
semiconductor.31

The energy-dependent scattering processes in FeSb2 can
also be highlighted by simply computing the ratio ν/μH in units
of kB/e. This is because in a nondegenerate semiconductor,
ν = − kB

e
μH r ,31 if τ (εk) obeys a power law function, τ (εk) ∝

εr
k . A similar scaling between Nernst coefficient and Hall

mobility has indeed been demonstrated for various metallic
systems in Ref. 29, where τ (εk) has been assumed to obey a
linear function of energy, i.e., r = 1. As shown in the inset of
Fig. 4, the ratio ν/μH in units of kB/e, as a measure of the power
r , is unrealistically large for FeSb2, whereas in FeAs2, it is of
order unity as anticipated for, e.g., acoustic-phonon or ionized-
impurity scattering.31 This difference, again, hints at a highly
energy-dependent scattering rate in FeSb2 that is presumably
related to the substantial electron-electron correlations in this
compound. This may be a local resonant scattering similar to
that operating in Kondo systems,32 or incoherent electronic
transport beyond the Landau quasiparticle picture as realized
in doped Mott insulators.33

V. CONCLUDING REMARKS

The thermoelectric power of a conducting solid is related to
its energy-dependent electrical conductivity.34 Consequently,
S arises from the energy dependence of the two crucial
components of electrical conductivity at the Fermi energy:
the electronic density of states and the relaxation time τ (εk).
Among them, the latter effect is of minor importance for most
materials.1 However, we have recently shown for the prototype
Kondo lattice compound CeCu2Si2 that its ν(T ) and S(T ) are
simply related by the electrical Hall mobility μH .32 Physically,
this occurs only when the dispersive τ (εk) is the dominating
cause of the enhanced thermoelectric power as well as the
Nernst coefficient, free of the Sondheimer cancellation that
occurs when τ (εk) is independent or only weakly dependent
on energy.

Along the same line, a strongly energy-dependent scatter-
ing mechanism, as indicated for FeSb2 by the largely and
similarly enhanced Nernst coefficient and magnetoresistance,
is supposed to play a significant role in the pronounced
thermoelectricity. Theoretically, we propose to trace the
enhancement of Nernst coefficient in FeSb2 to the mismatch
between the thermal and electrical Hall mobilities as observed
in this material. We show that the mismatch of the two
mobilities can stem from a dispersive scattering rate of the
charge carriers, though our assumption of a linear energy
dependence is too simple to capture the physics in FeSb2. The
unique scattering mechanism indicated for FeSb2, which is
absent in the uncorrelated band semiconductor FeAs2, appears
to be related to substantial electron-electron correlations, as
manifested by a large (factor of 20–50) renormalization of the
charge-carrier mass in slightly Te-doped FeSb2.6,17 A proper
theory of FeSb2 explaining this mass renormalization and the
dispersive τ (εk) has still to be developed.
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APPENDIX: THEORETICAL TREATMENTS OF THE
TRANSPORT CONDUCTIVITIES

We compute the Nernst coefficient ν(T ) and magnetore-
sistance MR(T ) of a single-band semiconductor within the
framework of Boltzmann theory. We show that if the charge
carriers’ scattering rate is nondispersive, i.e., �k(εk) = �0

is independent of the carriers’ energy εk , ν(T ) and MR(T )
will vanish. Also we show that while a simple linear
dispersion �k(εk) = aεk is able to produce a nonvanishing
Nernst coefficient and magnetoresistance, it is not sufficient
to explain the colossal Seebeck and Nernst coefficients of
FeSb2. This indicates that the correlation effects in FeSb2

cannot be correctly captured by such a simple dispersion
of �k .

Consider the charge current J as a response to an electric
field E and temperature gradient ∇T :

J = σ̄ · E − ᾱ · ∇T . (A1)

J, E, and ∇T lie in the xy plane, thus the two conductivities
σ̄ and ᾱ are 2 × 2 matrices.

A magnetic field B perpendicular to the xy plane gives rise
to nonzero values of σxy and αxy . Besides, the longitudinal
conductivities σxx and αxx also acquire B-dependent contri-
bution, e.g., σxx = σxx

0 + δσ xx(B). Hereafter the subscript 0
denotes the absence of magnetic field. The resistivity ρ, Hall
mobility μH , thermoelectric power S, and magnetoresistance
MR are defined as

ρ ≡ Ex

J x
= 1

σxx + σxyσ xy

σ xx

, (A2)

μH ≡ Ey

BEx

= σxy

Bσxx
, (A3)

S ≡ Ex

∇T
= αxx

σ xx
, (A4)

MR ≡ ρ − ρ0

ρ0
. (A5)

J y = 0 has been used in writing Eqs. (A2)–(A5). In a common
setup of Hall measurement, the y component of E is established
due to the transverse motion (J y) of carriers, which counteracts
J y and leads to J y = 0.

We are concerned with the leading orders in B of the
transport quantities defined above. When B is small, σxy and
αxy are proportional to B, and δσ xx is proportional to B2. Thus
the leading orders are given by ρ = 1/σ xx

0 , μH = σxy/Bσxx
0 ,

and S = αxx
0 /σ xx

0 . The subleading term of ρ gives rise
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to MR. Hence,

ρ = 1

σxx
0 + (

δσ xx

B2 + σxx
0 μ2

H

)
B2

� ρ0 −
(

δσ xx

B2
(
σxx

0

)2 + μ2
H

σxx
0

)
B2 (A6)

and

MR = −
(

δσ xx

B2σxx
0

+ μ2
H

)
B2. (A7)

The Nernst coefficient ν is the transverse counterpart of S,

ν ≡ Ey

B∇xT
= 1

B

αxyσ xx − αxxσ xy

σ xxσ xx + σxyσ xy

� αxx
0

σxx
0

(
αxy

Bαxx
0

− σxy

Bσxx
0

)
= S(μt − μH ). (A8)

We have defined a “thermal” counterpart of the Hall mobility,
μt = αxy

Bαxx
0

.
In the Boltzmann theory, the conductivities are determined

by the Fermi distribution function, band velocity (and its higher
order derivatives), and the relaxation time. To model a single-
band semiconductor of electron-type carriers, we assume a
parabolic conduction band

εk = �
2k2

2m∗ , (A9)

where m∗ is the effective mass. The band velocity and higher
order derivative are written as

v
αβ...

k = ∂εk

(�∂kα)(�∂kβ) . . .
. (A10)

The Fermi distribution function is

f (εk) = 1

1 + exp
(

εk+�

kBT

) . (A11)

A fixed chemical potential μ = −� is chosen. � is the
activation energy. The relaxation time τk of a carrier with
energy εk is determined by the scattering rate �k ,

τk = �

2�k(εk)
. (A12)

Then the conductivities can be computed readily by the
following expressions:

σxx
0 = 2e2

V

∑
k

(
− ∂f

∂εk

)
vx

k vx
k τk, (A13)

σxy

B
= 2e3

V

∑
k

(
− ∂f

∂εk

)
vx

k vx
k v

yy

k τ 2
k , (A14)

αxx
0 = −2ekB

V

∑
k

(
− ∂f

∂εk

)
vx

k vx
k (εk + �) τk, (A15)

αxy

B
= −2e2kB

V

∑
k

(
− ∂f

∂εk

)
vx

k vx
k v

yy

k (εk + �) τ 2
k , (A16)

δσ xx

B2
= 2e4

V

∑
k

(
− ∂f

∂εk

) (
vx

k vx
k vxx

k v
yy

k

− vxxx
k vx

k v
y

k v
y

k

)
τ 3
k . (A17)

We assume that the energy dependence of the scattering
rate �k has a nondispersive part and a linear part,

�k � �0(T ) + a(T )εk. (A18)

This form is often adopted in understanding the thermoelectric
transport in correlated metals.

If the carrier relaxation rate is nondispersive, i.e.,
a(T ) = 0 and �k = �0, we can get the following conclusions
straightforwardly for the nondegenerate limit, i.e., � 
 kBT ,

ρ �
(

2π

kBT

)3/2
�

3

e2(m∗)1/2τ0
exp

(
�

kBT

)
, (A19)

S � −kB

e

(
�

kBT
+ 5

2

)
. (A20)

These are expected results for a conventional semiconductor.
τ0 = �/2�0 is the nondispersive relaxation time.

The Hall mobility μH and its thermal counterpart μt are
simply

μH = μt = eτ0

m∗ . (A21)

Equation (A21) does not require the nondegenerate limit, thus
it is more general than Eqs. (A19) and (A20). Therefore,
μH and μt exactly cancel out in the Nernst effect, ν =
S(μt − μH ), leading to a vanishing ν. Also, the two terms
on the righthand side of Eq. (A7) cancel each other, leading to
vanishing magnetoresistance as well.

If the scattering rate is simply linear in energy, �k = a(T )εk ,
we have the following results in the nondegenerate limit:

ρ �
(

9π3

2

)1/2 (
�

e

)2
a

m∗kBT
exp

(
�

kBT

)
, (A22)

S � −kB

e

(
�

kBT
+ 3

2

)
. (A23)

Thus the temperature dependence of ρ and S is dominated
by the activation energy �, similar to the results of the
nondispersive relaxation.

The Hall mobility is

μH = �e

m∗kBT

1

a
. (A24)

The thermal mobility μt is

μt � �e

m∗kBT

1

a

(
1 − kBT

�

)
. (A25)

The kBT /� term in Eq. (A25) is the subleading order in the
nondegenerate limit. Therefore, μt and μH do not cancel and
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give rise to a nonvanishing ν,

ν = kB

e
μH

(
1 + 3

2

kBT

�

)
, (A26)

but we emphasize that the difference between μH and μt ,

μt − μH = −kBT

�
μH , (A27)

should be small at the nondegenerate limit, and vanishes with
decreasing temperature. Therefore, our analysis shows that
while a linear dispersion of �k is able to produce a finite Nernst
signal, obviously it is not consistent with the experimental
results in FeSb2, especially in the low temperature range where
the colossal Seebeck and Nernst coefficients are measured.

Therefore, a complex but realistic dispersion of �k is yet to be
identified for FeSb2.

Similarly, the magnetoresistance is

MR

B2
� μ2

H

(
�(−1/2)

4�(1/2)
− 1

)
. (A28)

Notice the � function �(−1/2) is divergent. This divergence
is artificial, because Eq. (A17) leads to the divergent integral

�(−1/2) =
∫ ∞

0
dxx−3/2 exp(−x). (A29)

This divergence can be eliminated by a small but finite �0 or a
realistic band structure. Therefore MR is proportional to μ2

H .
As we see in the main paper, in FeAs2, MR scales with μ2

H

over a wide temperature range, whereas this is not the case for
FeSb2.
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