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Local rigidity and physical trends in embedded Si nanocrystals
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We investigate the problem of local rigidity of Si nanocrystals embedded in amorphous silica. By analyzing
the elastic (bulk) modulus field into atomic contributions, we show that it is highly inhomogeneous. It consists
of a hard region in the interior of the nanocrystals, with moduli ∼105 GPa, compared to 98 GPa for bulk Si,
and of “superhard” (∼120 GPa) and “supersoft” (∼80 GPa) regions in the outer parts. Overall, the nanocrystal
bulk modulus is significantly enhanced compared to the bulk, and its variation with size accurately follows a
power-law dependence on the average bond length. The bulk modulus of the oxide matrix and of the interface
region is nearly constant with size, with values 60 and 70 GPa, respectively. The average optical (homopolar)
gap is directly linked to the elastic and bond-length variations.
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Silicon nanocrystals (Si-NCs) embedded in amorphous
silica1 (a-SiO2) are a prototypical nanomaterial system that
has attracted considerable attention for its light absorption
and emission properties. Promising applications include light-
emitting devices,2 nonvolatile memory systems,3 and third-
generation solar cells.4,5 The fundamental properties of this
nanocomposite system depend strongly on the size of the
nanoinclusions and the nature of the embedding medium.6

Probably, the least studied and understood property of this
system is the mechanical response of the embedded NC to the
pressure exerted by its environment, as the NC size varies.
The elucidation of this property is crucial not only for the
mechanical stability, but for the optoelectronic properties as
well.7,8 A number of issues arise. The most important is
whether the mechanical response of the NC, exemplified let
us say by its elastic (bulk) modulus, is uniform throughout the
NC or varies substantially from region to region, or from the
interior (core) to the interface with the matrix. Another issue is
whether any variations in the modulus follow definite trends,
and how these physical trends can be associated to other NC
properties.

Previous theoretical studies9,10 on free-standing or colloidal
NCs predicted enhancement of the bulk modulus as the size de-
creases, which was attributed to either surface effects9 or to the
strong interaction of the NC with passivants such as H.10 The
enhancement is consistent with experimental measurements.11

On the other hand, no theoretical study exists for embedded
NCs, but experimental work on the compressibility of embed-
ded Si-NCs/a-SiO2 shows enhancement.12 An analysis at the
local level, able to separate the contributions to the modulus
and rigidity from the NC core, the surface/interface, and the
embedding matrix, is lacking.

Here, we elucidate these issues through atomistic Monte
Carlo (MC) simulations. By utilizing a technique decomposing
the elastic response of the system into atomic bulk moduli,13

we unravel a striking effect. The rigidity of an embedded NC
is not uniform, as it exhibits both “hard” and “soft” regions,
arising from the structural inhomogeneity of the surrounding
amorphous silica matrix and the oxygen bonding at the
NC surface. Overall, the bulk modulus shows a significant
enhancement from the bulk value, and the variation with size

follows a well-defined physical trend. This is associated with a
corresponding trend in the average optical gap of the material.

For our study, we use cubic computational cells consisting
of spherical NCs embedded in a-SiO2 matrices. They are
obtained by continuous-space MC simulations,14 using for
the interactions the Tersoff empirical potential15 parametrized
to describe SiO2 systems.16 This potential describes well the
elemental Si properties, silica polymorphs, and phase transi-
tions between them, as well as the structure and energetics of
a-SiO2. We have recently shown the reliability and strength
of this approach by extracting stress maps of embedded NCs,6

intractable by ab initio calculations. We also verified that the
calculated6 bulk moduli of various polymorphs are in very
good agreement with results of ab initio calculations17 and
experiment. This reassures us that the pressure exerted by the
amorphous matrix on the nanocrystals is correct.

One starts with Si NCs embedded in crystalline β-
cristobalite.1 The amorphization of the embedding matrix
is achieved by melting and subsequent quenching from the
liquid, while keeping the positions of the atoms in the NCs
fixed, running the simulations in the (N,V,T ) canonical
ensemble. After quenching, an annealing cycle at 1500 K in
the (N,P,T ) isobaric-isothermal ensemble follows to allow
for full equilibration of the nanocomposite system, both
geometrically and compositionally. This is crucial for the
proper structural relaxation and the formation of optimum
chemical bonding at the interface region that minimizes the
free energy. Finally, the structures are brought to 300 K where
all properties are obtained as ensemble averages.

We have generated in total seven different composite
structures with the size of the NCs ranging from 1 to 5 nm in
diameter, the number of Si atoms in the NC from 40 to 3600,
and the number of atoms in the oxide from 4800 to 50 000. We
keep the Si/O ratio at about 0.53 to consistently capture the
variation of moduli with NC size. The cells are subjected to
periodic boundary conditions so that the NCs properly interact
with their images.

The key to our analysis of local rigidity is the concept
of atomic bulk modulus, developed earlier by Kelires13 for
the study of amorphous carbon materials and other systems
where the environment is more or less isotropic at the local
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FIG. 1. (Color online) Contour maps of local bulk moduli in
{110} planes (passing through the NC center), in the core of four
representative NCs with sizes: (a) 2.2 nm, (b) 3 nm, (c) 4 nm,
(d) 5 nm. The atomic moduli are merged into a continuous mesh
by averaging over spheres of 3 Å in radius.

level. These conditions are fulfilled in each constituent of
the nanocomposite system studied here. One starts with the
decomposition of the total energy of the system E into
atomic energies Ei , readily obtainable in the present empirical
potential approach. The equilibrium atomic bulk modulus Bi

0,
indicative of the local rigidity, is then defined as

Bi
0 = �i

d2Ei

d�2
i

, (1)

where �i is the atomic volume (such as the Wigner-Seitz
volume of atom i). The total bulk modulus B0 is the normalized
sum of the Bi

0 over all atoms in the system, while normalized
sums over atoms in specific regions can yield partial contribu-
tions, such as for the NC core, the interface, and the matrix.
Equivalently, these partial contributions to the bulk modulus
can be obtained through Murnaghan’s equation of state18 by
summing up the atomic energies over the specified regions.

We begin with the local rigidity of the embedded NCs.
(The microstruture of these nanocomposite systems has
been described in detail previously.6) Figure 1 shows two-
dimensional contour maps of atom-projected bulk moduli in
the core region (composed of Si atoms having as neighbors
only Si+0 suboxides, i.e., Si atoms not bonded to any O
atoms) of four representative NCs of various sizes. There are
two striking findings in these maps. The first is that in all
cases the field of atomic moduli, and thus of local rigidity, is

FIG. 2. (Color online) Ball and stick model (part of a thin slice
cut) of a Si NC (3 nm) showing the bridge-bonding reconstructions
of {111} and {100} facets and the local modulus field in the NC core
beneath. The matrix and some atoms at the interface are not shown
for clarity. Si and O atoms in the bridges are colored gray and red,
respectively. Sites colored orange (blue) possess moduli over (under)
110 (90) GPa. Sites deeper in the core (green) have moduli around
105 GPa.

highly inhomogeneous, not only while moving from the center
outwards but along the periphery as well. The other is that
the NCs exhibit both hard (more rigid) regions, with moduli
approaching 115 to 120 GPa, compared to the bulk value of
98 GPa, and soft (less rigid) regions with moduli around 85
to 90 GPa. These hard and soft regions are mainly found
in the outer regions near the interface and roughly alternate
each other. The center possesses overall hard regions but with
somewhat lower moduli, around 105 GPa.

We may explain this surprising effect by noting that the
density and microstructure of the surrounding silica matrix is
not homogeneous. It exhibits substantial variations from region
to region. As a result, the strain produced by the matrix on the
outer regions of the NC varies from place to place, and this
propagates into the interior giving rise to an inhomogeneous
pattern. Another contributor to the effect is bridge (Si-O-Si)
bonding at the NC surface, which induces significant strains
in the layers below. These strains differ depending on the
crystallographic orientation of the NC. For example, bridges in
the Si(111) planar interface produce compression underneath,
while bridges in the Si(100) interface produce tension.19 A
Si NC encompasses all crystallographic orientations, and thus
both compressed and tensed outer regions appear.

These induced strains are associated with the degree of
local rigidity. This is illustrated in Fig. 2, showing that the
core regions just under the {111} facets of a representative
NC are “superhard” with moduli over 110 GPa, while regions
under the {100} facets are “supersoft” with moduli less than
90 GPa. The former regions contain on average sites under
compression with shorter bonds, compared to the bulk, while
the latter contain sites under tension with longer bonds. This
bridge-bonding effect produces the hard/soft alternating outer
patterns evidenced in Fig. 1, which are however blurred by
the inhomogeneous matrix effect. The latter effect becomes
overwhelming when the whole spherical NC is visualized, that
is taking into account all possible plane orientations which may
or may not involve bridge bonding at the interface. The inner
core region is overall “harder” than the bulk.

The direct link of local rigidity to bond-length variations is
demonstrated in Fig. 3. Here, the atomic bulk moduli Bi

0 are
plotted as a function of the average length of the bonds that the
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FIG. 3. (Color online) Atomic bulk moduli vs average bond
length (see text). Orange (blue) symbols refer to NCs 3 (4) nm in
size. Dashed horizontal line shows the bulk value. The inset shows
how the average bond length varies from the center to the outer core
regions.

reference atom makes with its first nearest neighbors (NN).
The variation is linear and extends from “supersoft” sites with
moduli as low as 75 GPa, involving largely stretched bonds
compared to the bulk value, up to “superhard” sites with moduli
as high as 120 GPa, involving heavily compressed bonds. The
spatial distribution of bond lengths in the core of the NCs is
seen in the inset of Fig. 3. Clearly, all bonds are compressed
in the inner regions, which is consistent with the compressive
stress behavior studied elsewhere,6 and the related moduli are
in the range of 105 GPa. As we move outwards, the distribution
broadens considerably, and contains near the interface both
compressed and stretched bonds, giving rise to the extrema in
the moduli and the inhomogeneous patterns seen in Fig. 1.

Overall, the modulus of the core is significantly increased
with respect to the bulk crystalline value. Its variation with
size is shown in Fig. 4. It rises up sharply for small sizes
and seems to retrieve slowly the bulk value for only much
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FIG. 4. (Color online) The average core bulk modulus as a
function of the NC size. The inset shows how the average bond
length in the NC core varies with size.

larger sizes than studied here. As shown in the inset of Fig. 4,
the average bond length in the core drops with decreasing size,
due to the increasing pressure exerted by the amorphous matrix
because of the density mismatch.6 As a result, this enhances
the average modulus. Thus, here, in the embedding case, the
mechanism leading to enhanced rigidity is different than in the
free-standing or colloidal case where it was attributed to either
surface effects9 or to interactions with passivants.10 In our
case, interface effects are responsible for the inhomogeneity
of the elastic modulus field, as explained above.

The decomposition into interface and matrix contributions,
on the other hand, shows that their average modulus does not
vary significantly with NC size. It remains nearly constant
attaining values of 70 and 60 GPa, respectively. The much
larger embedding medium is hardly affected by the small
variations in NC size. Also, the interface width and the
suboxide ratios remain practically constant with varying
size.1,6

The variation of the average NC modulus with size, and
effectively with the average bond length, can be linked to
a very interesting physical trend. This trend is related to a
model proposed in 1985 by Cohen20 for the bulk moduli of
diamond and zinc-blende crystalline solids. It defines a power-
law dependence of B0 on the first NN separation (bond length)
d, in the form

B0 = Ad−3.5, (2)

A being a numerical constant. The physical considerations
behind this model are that B0 depends predominantly on the
covalent character of the bond, exemplified by a homopolar
gap Eh, and only weakly on ionicity, and that Eh scales
logarithmically as d−2.5 against lattice constants between
different rows of the periodic table, as suggested by Phillips.21

This power-law behavior, with the same scaling exponent, was
generalized by Kelires to hold for the whole composition range
of complex semiconductor alloys,22 and even for amorphous
carbon materials.23

Applying this theory to the present embedded NC case
confirms that the shorter the average bond length d̄ in the
NC, the larger its modulus. The dependence of B0 on d̄ is
shown in Fig. 5 in a log-log plot. The data, although lying in
a narrow range, closely follow a straight line, which indicates
that B0 = Adn. A line fit through the points gives for the
slope n and the constant factor A the values –3.5 and 1970,
respectively, when B0 is measured in GPa and d̄ in Å, in perfect
agreement with theory. This provides a solid verification of
the physical considerations behind this theory, and shows that
the elastic and structural data from our equilibrated cells are
accurately calculated.

The power-law dependence of B0 on d̄ implies also a
definite trend in the variation of the homopolar gap Eh in Si
NCs. Eh plays the role of an average optical gap (the average
bonding-antibonding splitting). Although not the true optical
gap, Eh still indicates how the optical properties can be simply
linked to and depend on changes in the structural parameters.
According to the approach developed by Kelires,22,23 the
variation of Eh with size can be given by

Eh(D) = Eh(Si)

[
B0(D)

B0(Si)
× d̄(D)

d̄(Si)

]
, (3)
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FIG. 5. (Color online) The NC bulk modulus as a function of the
average NN distance. The range of data is magnified for clarity.
The dashed line extrapolates to the constant A. The inset shows the
variation of the homopolar gap with NC size relative to that of bulk
Si (=5.07 eV).

where Eh(D) is the size-dependent homopolar gap, and Eh(Si)
and B0(Si) are the homopolar gap (=5.07 eV) (Ref. 20)
and bulk modulus of Si, used as the levels of reference.
This approach is based on the argument20 that for group-IV
elements, the purest covalent materials with no ionic bond-
ing, B0 scales proportional to Eh, which measures the
covalent character of the bond, and inversely proportional
to the bond length d, B0 = FEhd

−1 (F is a numerical
constant).

The results of this approach for Eh(D) when applied to our
case, given relative to Eh(Si), are plotted in the inset of Fig. 5.
The overall variation retrieves precisely the d−2.5 behavior,
showing the reliability of our calculated moduli and bond

lengths. Eh(D) increases with decreasing size, especially for
NCs smaller than 3 nm. Although Eh(D) is not the true optical
gap, its variation resembles the respective variations of the
energy gaps and photoluminescence or absorption energies in
this system as the NC size varies.2,24 Even the magnitude of the
enhancement falls within the experimental range. Thus, simple
arguments, solely based on elastic and structural data, can
give insight and useful trends without the need for elaborate
electronic-structure calculations.

In relation to the above-mentioned optical properties, we
may suggest that the major contributor of quantum confine-
ment effects in the system is the observed shrinkage of the
core of the NC, and the induced shortening of the bonds in
this region. It is also very interesting to suggest that the large
strains in the outer shell might decisively contribute to the
strong absorption/emission centers in the NC. This issue has
not yet been resolved. Work towards this goal is in progress.

In conclusion, our MC simulations and the accompanying
local level analysis have been able to map in detail the elastic
modulus field in Si-NC/a-SiO2 nanocomposites and to unravel
its origins. The field is found to be highly nonuniform in
the NCs, exhibiting both hard and soft regions. Overall, the
modulus is enhanced with respect to the bulk value, and
follows a power-law behavior quite accurately. Variations in
the optical parameters, such as the homopolar gap, can be
linked to structural and elastic parameters in a simple way.
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