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Ultimate resolution of indefinite metamaterial flat lenses
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We propose an approach allowing a systematic optimization of lenses based on hyperbolic metamaterials. The
lensing properties of these highly anisotropic materials are summed up in a complex effective index extracted from
the complex dispersion relation. The analytical expression of this effective index in the homogenization regime or
its direct computation from the Bloch band diagram in the resonant regime leads to hyperbolic metamaterials that
outperform the state-of-art flat lenses. We show that feasible metal-dielectric multilayers provide superresolved
images for visible light (around 400 nm) even when fully taking absorption into account.
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I. INTRODUCTION

Since the seminal work of Pendry, who proposed a perfect
lens of unlimited resolution, intensive efforts have been made
to realize reliable metamaterials that could make this con-
cept effective.1 Beating the optical diffraction limit requires
conceiving bulk metamaterials presenting both electric and
magnetic permittivities (ε and μ) equal to −1. These slabs
of −1 refractive index are, however, particularly difficult
to realize at optical frequencies since their building blocks
(split-ring resonators, wires) are not sizable at the nanometer
scale.2 An alternative approach has recently emerged with
feasible metal-dielectric multilayers, referred to as indefi-
nite metamaterials, which operate at ultraviolet frequencies.3

These highly anisotropic media present hyperbolic photonic
dispersion surfaces in the k space, which induces enhanced
optical properties4–8 (Fig. 1). Consequently, both propagating
and evanescent waves emitted by a source decompose into
propagating waves in the hyperbolic medium, so that the
subwavelength details are efficiently transported through the
lens. This principle has been experimentally demonstrated in
the far-field space with a hyperlens that presents a spherical
shape.9–11 Planar indefinite hyperbolic metamaterials have
also been theoretically predicted to form subwavelength
images bonded at the output interface of the lens when
the canalization regime is reached.12,13 Other results have,
moreover, shown that light focalization is also possible in the
near field, and a lens equation for these hyperbolic lenses
has been derived.14–17 Other progress towards negative-index
metamaterials has been reported theoretically and demon-
strated experimentally with coupled plasmonic waveguide
structures that resemble indefinite metamaterials.18,19 The
latter results have, in particular, shown that these metamaterials
behave as −1 effective index flat lenses that make images for
ultraviolet light.19 This effective index has been evidenced by
tracking the refracted angles of a beam launched for various
incident angles through a stack of silver and TiO2 thin films.
According to the authors, subwavelength resolution has not
been achieved because of the optical losses, which are known
to reduce the efficiency of metamaterials lenses.

However, very little is known so far on the exact role of
optical losses on the optimal optical resolution of indefinite
metamaterials lenses, and to our knowledge, there is no

theoretical model that allows a systematic optimization of
such systems. In this work, we develop a method that allows
us to extract a complex effective index n̄ = n + iκ for in-
definite metamaterials. The usual homogenization techniques
start from the constituents of the composite materials and
deduce the effective index required to determine the photon
dispersion.20–24 These bottom-up approaches, restricted to the
long-wavelength limit, lead us to characterize indefinite meta-
materials by an effective permittivity tensor.25,26 Our method
is conversely a top-down approach that enables us to derive the
effective index directly from the dispersion relationship. As a
consequence it applies to both the homogeneous and diffractive
regimes and allows us to calculate a dispersive complex
effective index. The design of optimal flat lenses is thus guided
by the effective index and figure of merit FOM = |n/κ| maps
obtained for various filling fractions of metal-dielectric films.
The optical resolution of indefinite metamaterial lenses is
directly derived from the complex band diagram and is shown
to be limited by FOM and the focal distance. These results
are successfully validated with a rigorous electromagnetic
calculations based on a scattering-matrix method. Finally,
realizable indefinite metamaterials with high FOM are shown
to efficiently transport the evanescent waves to the rear face of
the lens. This mechanism boosts the optical resolution beyond
the diffraction limit, allowing us to make visible superresolved
images up to a focal distance of one wavelength.

II. COMPLEX EFFECTIVE INDEX FOR HYPERBOLIC
METAMATERIALS

Consider a periodic set of N slabs of silver and TiO2 layers
of thicknesses hm and hd and of complex relative permittivities
ε̄m and ε̄d [Fig. 1(a)]. Silver films are placed at boundaries
of the structure in order to benefit from surface plasmon
polariton resonances. In the homogenization regime and for
TM polarized electromagnetic waves propagating in the y

direction, the effective permittivity tensor is characterized by
the following diagonal elements:13

ε̄x = ε̄mfm + ε̄dfd, ε̄y =
(

fm

ε̄m

+ fd

ε̄d

)−1

, (1)

where the filling factors in metal and dielectric are, re-
spectively, fm = hm/D and fd = hd/D, with D = hm + hd
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FIG. 1. (Color online) (a) Principle of light focalization by in-
definite metamaterials consisting of a multilayer of metal and
dielectric films. This hyperbolic lens focuses at the focal distance f .
(b) Hyperbolic dispersion of an indefinite metamaterial; the green
and red spheres represent, respectively, the dispersion relations of the
air medium and of the effective medium.

being the lattice period. We denote by L the total thickness
of the multilayer. For convenience, these diagonal complex
elements are written in the following form: ε̄x = εx(1 + iσx)
and ε̄y = εy(1 + iσy). Note that these effective permittivity
components are valid in the long-wavelength limit (when
D/λ � 1) and for small transverse wave vectors (kx/k0 � 1,
where k0 = 2π/λ).27 Provided that the conditions given in
Ref. 17 are satisfied, εy < 0 and εx > 0, and the hyperbolic
relationship is k2

x/ε̄y + k̄2
y/ε̄x = (ω/c)2. Here, kx refers to the

conjugate coordinate of x for the Fourier transform and reduces
to a real number. We search for how to replace this anisotropic
medium by an equivalent homogeneous medium of complex
effective index n̄ that presents an isotropic photon dispersion
k2
x + k̄2

y = (n̄ω/c)2 [Fig. 1(b)]. For a fixed frequency ω, we
derive the complex wave vector k̄y in terms of a second-order
Taylor expansion:

k̄y(kx) = k̄y(0) − γ̄ k2
x

/
2k0, (2)

where γ̄ = −k0(∂2k̄y/∂k2
x)|kx=0. This parabolic approximation

of the hyperbolic dispersion allows us to replace an anisotropic
medium by an isotropic one having the same complex curva-
ture γ̄ = 1/n̄. When weak optical absorption is considered,
the real part of the effective index and the figure of merit FOM
are

n = 1/Re(γ̄ ), (3)

FOM = |Re(γ̄ )/Im(γ̄ )|. (4)

In the homogenization regime, the complex curvature reads
γ̄ = √

ε̄x/ε̄y , and the effective refractive index and FOM
can be expressed in terms of the complex permittivity tensor
elements:

n = − |εy |√
εx

(1 + σxσy/2)−1, (5)

FOM =
∣∣∣∣2 + σxσy

2σy − σx

∣∣∣∣. (6)

Equation (5) shows that the effective index is governed by the
ratio −|εy |/√εx and decreases when the material absorption
increases. Despite these material losses, FOM is also seen to

FIG. 2. (Color online) (a) Real and (b) imaginary parts of
the equifrequency diagram in the (kx,k̄y) space for D/λ = 0.11.
(c) Real and (d) imaginary parts of the complex equifrequency
diagram D/λ = 0.16. The solid, dashed, and dot-dashed curves rep-
resent, respectively, the exact band diagram, the paraxial expansion
[Eq. (2)], and the homogenized approach [Eq. (1)]. These calculations
are obtained for hm/hd = 1 and λ = 380 nm. The gray areas represent
the angular photonic band gaps.

be maximal when |2σy − σx | is minimal. As shown in Ref. 17,
the dispersive properties of indefinite metamaterials strongly
depends on the reduced frequency D/λ. As a consequence, the
effective index and FOM given by Eqs. (5) and (6) only apply
when D/λ � 1. Beyond the homogenization regime, it has
been shown that the optical properties of metamaterials have
to be retrieved from the exact photonic band diagram.28 The
parabolic approach can, however, be extended in the diffractive
regime when the latter condition is not satisfied by computing
the curvature γ̄ from the complex band structure.29 In this
way, the real and imaginary parts of the complex curvature are,
respectively, Re(γ ) = −k0[∂2Re(K̄y)/∂k2

x]|kx=0 and Im(γ ) =
−k0[∂2Im(K̄y)/∂k2

x]|kx=0, where K̄y is the complex Bloch
wave vector derived from the dispersion equation.29,30

To validate this approach, the complex band diagram
derived from the parabolic expansion given by Eq. (2)
is compared to the exact one (Fig. 2). These curves are
calculated at λ = 380 nm with hm/hd = 1 and for two reduced
frequencies, D/λ = 0.11 and D/λ = 0.16, close to homoge-
nization regime and in the diffractive regime, respectively. It
is seen that a better fit is obtained in the long-wavelength
limit with the parabolic approximation than with the band
diagram derived from the effective permittivities of Eq. (1).
Moreover, the parabolic dispersion matches almost perfectly
the exact complex equifrequency curves until angular photonic
band gaps appear for high-k vectors larger than 2k0. These
results demonstrate that the parabolic approximation allows
us to study light focalization of subwavelength sources and,
consequently, to optimize the optical resolution.

According to Eqs. (3) and (4), the effective refractive index
and FOM can now been systematically explored for various
wavelengths and metal-dielectric filling factors (Fig. 3). We

245138-2



ULTIMATE RESOLUTION OF INDEFINITE . . . PHYSICAL REVIEW B 88, 245138 (2013)

FIG. 3. (Color online) Effective index and FOM with respect to
the wavelength and the metal-dielectric ratio for (a) and (b) D/λ =
0.11 and (c) and (d) D/λ = 0.16. Equi-index curves of −1, −2.5,
and −5 effective indices (red, green, and blue curves) are superposed
in the FOM maps.

consider again two reduced frequencies, D/λ = 0.11 and
D/λ = 0.16, and to be as realistic as possible, the dispersive
complex permittivities of silver and TiO2 are taken into
account.31,32 The effective index is shown to range from −1 to
about −10 for wavelengths between 330 and 420 nm, and it is
also redshifted when the reduced frequency increases, leading
to a wider −1 equi-index curve for D/λ = 0.16. FOM is
seen to be optimal around λ = 400 nm and when hm/hd

is close to 1.3. From these maps, we conclude that the
best flat lens made with indefinite metamaterials with a −1
refractive index is obtained for FOM = 2 when the following
parameters hold: D/λ = 0.16, λ = 358 nm, hm/hd = 1.07.
These parameters lead to silver and TiO2 thicknesses of hd =
28 nm and hm = 30 nm, which are very close to the parameters
used by Xu et al. in their experimental demonstration.19

Looking for lower optical losses leads to a lens with FOM
as high as 4, obtained for D/λ = 0.11 at λ = 398 nm and
hm/hd = 1.28. However, in that case, the hyperbolic flat lens is
characterized by an effective index of −5. We finally underline
that the relatively smooth variation of the effective index and
the figure of merit with respect to any change of the aspect
ratio is probably a sign that the optical properties are resistant
to disorder.

III. OPTICAL RESOLUTION OF HYPERBOLIC
METAMATERIAL LENSES

In order to compare the optical efficiency of these −1 and
−5 effective index metamaterials, referred to as I

(−1)
M and I

(−5)
M ,

respectively, we derive a model that directly links their FOM to
the optical resolution. We assume an incident Gaussian beam
of waist W that impinges the input interface. After propagating
through the lens, whose thickness is L, the transmitted signal
calculated at a distance y far away from the output interface

reads

U (x,y) =
∫ ∞

−∞
A(kx)T (kx)t0(kx,y)eikxxdkx (7)

where t0(kx,y) = eiy
√

k2
0−k2

x is the transfer function in the out-
put air medium and A(kx) = W0/(2

√
π ) exp[−(kxW/2)2] is

the spectrum of the incident Gaussian beam in the k space. The
multilayer transmission coefficient T (kx) splits into a singular
part T s(kx) = ∑

p tp/(kx − k̄
(p)
x ), where k̄

(p)
x and tp are the

poles and the residues associated with optical resonances, and
a regular part T r (kx). Since this holomorphic function accounts
for both the phase and the optical absorption accumulated by
the signal when propagating through the metamaterial slab,
we assume that it is driven by the complex Bloch wave vector:
T r (kx) = eiK̄y (kx )L. The use of the parabolic expansion of
K̄y(kx) allows T r to be expressed in terms of the effective
index and FOM:

T r (kx) = eiK̄y (0)Le
− k2

x
2k0

L
|n|FOM e

−i
k2
x

2k0
L
n . (8)

An image is obtained when the focalization power provided
by the lens cancels out the optical diffraction in air, i.e., when
the total phase vanishes at the focal distance f . As shown
in Ref. 17, the paraxial approximation applied to tair leads to
f = −L/n, where n is the effective index defined in Eq. (3)
and L = DN + hm is the lens thickness. Finally, the focalized
beam is the sum of a resonant field Us(x,f ) linked to [T s(kx)]
and a regular field Ur (x,f ), given by

Ur (x,f ) =
∫ ∞

−∞
A(kx)|T r (kx)||t0(kx,f )|eikxxdkx. (9)

Perfect resolution implies that the transfer function product
|T r (kx)||t0(kx,f )| = 1 for all high-k waves, where in that

case |t0(kx,f )| = e−f
√

k2
x−k2

0 . However, Eq. (10), derived from
Eq. (8), shows that evanescent waves (for kx > k0) are reduced
rather than amplified inside indefinite metamaterials, contrary
to what would be expected for a perfect lens:1

|T r (kx)| = e−Im[K̄y (0)]Le
− k2

x
2k0

L
|n|FOM . (10)

As a consequence of this description, the optimal transport of
subwavelength details requires a large FOM, but it is limited
by the focal distance. We apply these results to the optimized
indefinite metamaterials I

(−1)
M and I

(−5)
M of the respective effec-

tive indices −1 and −5. The exact transfer function computed
with a rigorous modal transfer-matrix method33 is compared
to the total transfer function T p = |T r (kx)||t0(kx,f )| derived
from the parabolic approximation of Eq. (10) (Fig. 3). For that
purpose, the focal distance is initially kept to half a wavelength
(f = λ/2) by using the convenient number of lattice periods,
and a Gaussian beam of subwavelength waist W0 = λ/20
is launched toward the input lens interface. Figures 3(a)
and 3(d) show that the parabolic transfer function T p agrees
well with the rigorous one and that its slope is reduced
when FOM increases. The sharp oscillations observed around
kx = ±1.2k0 correspond to poles of the singular part. These
resonances, associated with surface plasmon polaritons (SPPs)
such as resonances bounded at the rear lens interface, are,
however, only activated for I

(−5)
M [Figs. 4(c) and 4(f)]. Despite

the fact that these surface modes are not caught by the parabolic
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FIG. 4. (Color online) Logarithm of the transfer functions, intensity profiles obtained at the focal distance, and maps of focalized beams.
The solid and dashed curves correspond, respectively, to the exact transfer function and the paraxial one T p . (a)–(c) and (d)–(f) are obtained
for f = λ/2 with I

(−1)
M and I

(−5)
M , respectively. (g)–(i) correspond to I

(−5)
M for f = λ/18.

transfer function T p, the derived intensity profiles match the
rigorous computations almost perfectly. This demonstrates the
validity of the description of indefinite metamaterials in terms
of the effective complex index [Figs. 4(b), 4(e), and 4(h)].
Finally, the full width at half maximum (FWHM) calculated
for this focal distance shows that a subwavelength resolution of
λ/2.7 is achieved for I

(−5)
M (with a FOM of 4) while the optical

resolution of I
(−1)
M is limited to λ/1.9 since its FOM = 2. A

high FOM allows us to efficiently transport both the propagat-
ing and evanescent waves, with the latter particularly boosting
the resolution. This mechanism enhances the optical resolution
by optimizing the regular field Ur (x,f ) and increases the con-
tribution of the singular field Us(x,f ). A maximal resolution
of λ/6 is reached for I

(−5)
M when the image is focused at the

output lens interface [Figs. 3(g)–3(i)]. Beyond this canalization
regime, superresolution persists as long as the focal distance
is smaller than λ, showing the crucial impact of high FOM
and SPP-like resonances (Fig. 5). The lower FOM of the I

(−1)
M

device only enables superresolution for a short focal distance of
λ/3, which corresponds to a multilayer of three lattice periods.
Beyond this distance, subwavelength details carried by high-k
components are irreversibly lost because of the optical losses.

IV. CONCLUSIONS

In conclusion, we have demonstrated that indefinite meta-
materials characterized by an anisotropic permittivity tensor

FIG. 5. (Color online) Optical resolution with respect to the focal
distance in units of λ for I

(−1)
M (dashed curve) and I

(−5)
M (solid curve).

Superresolution (red area) is obtained with I
(−5)
M as long as the focal

distance is smaller than one wavelength. Points are obtained with the
rigorous transfer-matrix method.33
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are equivalent to isotropic homogeneous metamaterials with
a complex negative effective index. This effective refractive
index and its associated absorption constant are extracted by
the use of a parabolic expansion from the complex Bloch
diagram. This approach applies in both the homogenization
and diffractive regimes and gives maps of effective index
and FOM for various metal-dielectric compositions and wave-
lengths. This systematic study allows the design of optimal
lenses based on indefinite metamaterials. We have in addition
developed a semianalytical theory that links the FOM to the
optical resolution of such lenses. These results, validated by
scattering matrix computations, show that indefinite meta-
materials of large FOM are required to efficiently transport
high-k components of the signal. Subwavelength resolution
is then attributed to a SPP-like resonance-assisted mechanism

rather than the amplification of evanescent waves theorized
for left-handed metamaterials. Finally, we show that a feasible
hyperbolic lens with a −5 effective index can outperform the
optimal lens with a −1 effective index by allowing visible light
focalization (at λ = 400 nm) together with superresolution
for focal distances as large as one wavelength. Any further
study of these structures should probably take into account the
impact of nonlinearities such as nonlinear light absorption,19

the Kerr effect,34 and nonlocality effect.35 The physics of
indefinite metamaterials is far from being exhausted, and as
new applications for these structures arise,36 we hope the
present work will be useful in many as yet unforeseen ways.

We would like to thank K. Vynck and C. Sauvan for helpful
discussions.
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