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Analysis of low-energy response and possible emergent SU(4) Kondo state in a double quantum dot
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We examine the low-energy behavior of a double quantum dot in a regime where spin and pseudospin
excitations are degenerate. The individual quantum dots are described by Anderson impurity models with an
on-site interaction U which are capacitively coupled by an interdot interaction U12 < U . The low-energy response
functions are expressed in terms of renormalized parameters, which can be deduced from an analysis of the fixed
point in a numerical renormalization group calculation. At the point where the spin and pseudospin degrees of
freedom become degenerate, the free quasiparticle excitations have a phase shift of π/4 and a 4-fold degeneracy.
We find, however, when the quasiparticle interactions are included, that the low-energy effective model has
SU(4) symmetry only in the special case U12 = U unless both U and U12 are greater than D, the half bandwidth
of the conduction electron bath. We show that the gate voltage dependence of the temperature-dependent
differential conductance observed in recent experiments can be described by a quasiparticle density of states with
temperature-dependent renormalized parameters.
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I. INTRODUCTION

There has been much recent theoretical and experimental
interest in the low-energy behavior of coupled quantum dots
where the electrons are strongly confined on the dots.1–10 As
a consequence of this confinement, the on-site and intersite
interactions between the electrons on the dots are strong and
their coupling to their environmental electron baths relatively
weak. Such systems can be used to probe the effects of strong
local electron correlation, such as the Kondo effect, in great
detail.11–15 Experimentally it is possible to vary many of the
parameters in these nanoscale systems in a controlled way; for
example, the energy levels on the dots can be changed through
the application of individual gate voltages to the dots making
it possible to investigate different parameter regimes. Strong
correlation behavior in steady-state nonequilibrium conditions
can be examined by applying bias voltages to the individual
dots and then measuring the electron transport through the dots.
Borda et al.3 have drawn attention to the situation of a singly
occupied double quantum dot where the spin and interdot
excitations are degenerate. The interdot charge fluctuations
can be interpreted as pseudospin fluctuations, the occupation
of one dot by a single electron corresponding to an “up”
pseudospin, and the single occupation of the other dot to a
“down” pseudospin. On the basis of scaling equations for an
effective Kondo model it was concluded that, in this regime, a
new symmetry would emerge on a low-energy scale between
the spin and pseudospin excitations, such that the low-energy
behavior could be described by an effective model with SU(4)
symmetry.3,16–19

Recently it has proved possible to realize this situation
experimentally using two capacitively coupled dots,20–22 and
to measure the response to an effective pseudospin field by
changing the levels on the dots. The conductance of the
electrons through the individual dots has also been measured,
offering the potential to examine the theoretical predictions in
detail. One technique for calculating the low-energy behavior
is via the determination of the renormalized parameters which

specify the effective Hamiltonian in this regime. These can
be determined from an analysis of the low-energy fixed point
in a numerical renormalization group (NRG) calculation.23–26

Once these have been determined several response functions,
such as the spin and charge susceptibilities at zero temperature
and the linear conductance through the dots, can be calculated
from exact expressions for these quantities in terms of these
renormalized parameters. By comparing with exact Bethe
ansatz results it has been shown that very accurate numerical
results can be obtained from these calculations.25,27,28 Fur-
thermore leading order corrections to some of these results
can be determined exactly using these parameters within
a renormalized perturbation theory (RPT).29 We use this
technique in this paper to examine the circumstances in which
the low-energy behavior could correspond to an SU(4) model
due to degenerate spin and interdot (orbital) fluctuations. We
calculate the spin and orbital susceptibilities and look at the
effect of introducing a magnetic field to suppress the spin
fluctuations and induce a crossover to an SU(2) pseudospin
Kondo effect. Finally we estimate temperature dependence
of the linear conductance in terms of temperature-dependent
parameters for the quasiparticles, and show that this approach
gives results in line with recent experimental observations.

II. MODEL HAMILTONIAN

The Hamiltonian for the double quantum dot can be
expressed in the form

H =
∑
i=1,2

(Hd,i + Hbath,i + Hc,i) + H12, (1)

where Hd,i describes the individual dots, i = 1,2, Hbath,i the
baths to which the dots are individually coupled by a coupling
term Hc,i , and H12 is the interaction between the dots. A
reasonable approximation is to take the baths, two for each
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dot, to be described by a free electron model,

Hbath,i =
∑
k,α,σ

εkc
†
k,i,α,σ ck,i,α,σ , (2)

where α = s,d (source, drain) and εk is an energy level in a
bath, taken to be independent of α, i, and σ .

The Hamiltonian describing the dots Hd,i is taken in the
form

Hd,i =
∑

σ

εd,i,σ c
†
d,i,σ cd,i,σ + Uind,i,↑nd,i,↓, (3)

where εd,i,σ is the level position on dot i in a magnetic field h,
εd,i,σ = εd,i − σh, relative to the chemical potential μi , and
Ui is the intradot interaction. It will be useful to introduce an
analogous pseudospin field hps by writing εd,1 = ε̄d − hps and
εd,2 = ε̄d + hps, where ε̄d = 0.5(εd,1 + εd,2).

The coupling of the dots to the leads is described by a
hybridization term,

Hc,i =
∑
k,α,σ

Vk,i,α(c†k,i,α,σ cd,i,σ + H.c.). (4)

We will assume no energy dependence of the matrix elements
but allow them to differ in the different channels. We define the
widths �i,α = πV 2

i,αρc(0) with the conduction electron density
of states ρc as the constant energy scale for hybridization, and
their sum, �i = ∑

α �i,α . For transport close to equilibrium
only the combination Vi,sc

†
k,i,s,σ + Vi,dc

†
k,i,d,σ couples to the

dot states. We can therefore simplify the problem to two dots
and two itinerant channels.

Finally for the coupling between the two dots we assume a
hopping term t and a repulsive interaction between the charges
on each dot U12,

H12 = t
∑

σ

(c†d,1,σ cd,2,σ + H.c.) + U12

∑
σ,σ ′

nd,1,σ nd,2,σ ′ . (5)

To get an idea of the order of magnitude of these parameters
we quote values estimated in recent experimental work:21

U1 ≈ 1.2 meV, U2 ≈ 1.5 meV, U12 ≈ 0.1 meV, �1,�2 ≈
0.005–0.02 meV, and t ∼ 0. Due to the very small value of
the hopping term t we will neglect this term in the calculations
presented here.

The ground-state electron configurations for the isolated
double-dot system for the Hamiltonian Eq. (1) with the
occupation numbers [nd,1,nd,2] as functions of on-site energy
ε̄d and pseudospin field hps are shown in Fig. 1.1 Note that in
an experiment εd can be tuned via gate voltages.20–22

III. THE LOW-ENERGY EFFECTIVE MODEL

The low-energy fixed point of this model corresponds to
a Fermi liquid theory and we can, therefore, assume that the
self-energy �i,σ (ω) for the single-electron Green’s function
on dot i is nonsingular at ω = 0. We can hence describe the
low-energy behavior in terms of well-defined quasiparticles
and their interactions. We have shown in earlier work25,26

in the absence of a magnetic field that these quasiparticles
can be taken to correspond to renormalized versions of the
parameters that specify the bare model, ε̃d,i,σ , �̃i , Ũi , and Ũ12.
The Hamiltonian describing the low-energy fixed point and the
leading irrelevant correction terms then has the same form as

( h , 0 )( -U12 - U + h , 0 )

h ps
 =

 ⎯ε
d 
+ U

 +
 h
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FIG. 1. (Color online) The ground-state electron configurations
of the isolated double dot in (ε̄d ,hps) plane at a magnetic field h (�0).
The meaning of [nd,1,nd,2] in the figure is that the number of electrons
on dot i (=1,2) is nd,i .

the original model, but with the bare parameters replaced by
the renormalized ones. The interaction terms have to be normal
ordered as they only come into play when two or more single-
particle excitations are created from the interacting ground
state. In the presence of a magnetic field the interdot interaction
in the low-energy effective Hamiltonian has to be generalized
to the form ∑

σ,σ ′
Ũ

σ,σ ′
12 :nd,1,σ nd,2,σ ′ : , (6)

to allow for the fact that the quasiparticle interactions can be
spin dependent, where the brackets : Ô : indicate a normal
ordering of the operator Ô.

More generally a renormalized form of perturbation theory
can be formulated in terms of these quasiparticles29–31 in
which all interaction terms of the bare model are included.
This requires the explicit taking into account of counter terms
to avoid overcounting renormalization effects which have
already been included in the use of renormalized parameters.
For simplicity we will assume the dots to be identical, apart
from the energy levels εi,σ , so �i = � and Ui = U and the
corresponding renormalized parameters will be taken to be
independent of i.

Before calculating the renormalized parameters we con-
sider a number of quantities that can be expressed exactly
in terms of these parameters. The linear coefficient of the
specific-heat coefficient γ due to the dots is independent of
the quasiparticle interactions, as expected in a Fermi liquid
theory, and is given by

γ = π2 ∑
i,σ ρ̃i,σ (0)

3
, (7)

where ρ̃i,σ (ω) is the free quasiparticle density of states per
single spin and channel,

ρ̃i,σ (ω) = �̃/π

(ω − ε̃d,i,σ )2 + �̃2
. (8)
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Here �̃ = z�, where z is quasiparticle weight factor. The phase
shift δi,σ per spin on the dot connected to channel i is given by
the Friedel sum rule,

δi,σ = π

2
− tan−1

(
εd,i,σ + �i,σ (0)

�

)
, (9)

and equivalently in terms of the renormalized parameters,

δi,σ = π

2
− tan−1

(
ε̃d,i,σ

�̃

)
. (10)

The total occupation of the impurity sites nd,tot is given by
nd,tot = ∑

i,σ nd,i,σ = ∑
i,σ δi,σ /π at T = 0. These expres-

sions in terms of renormalized parameters already allow us
to draw first conclusions about the occurrence of an emergent
SU(4) symmetry. If, in the absence of an applied magnetic
field, ε̃d,i = ε̃d = �̃ for i = 1,2 we have level degeneracy on
the dots ε̃d,1 = ε̃d,2, so ρ̃1(0) = ρ̃2(0) = ρ̃(0) = 1/2π�̃, and
the phase shifts per spin per dot are all equal to π/4. Hence
at the free quasiparticle level the system in this regime has
SU(4) symmetry. However, the quasiparticle interaction terms
play an important role in determining the low-energy behavior.
They correspond to the leading correction terms to the fixed
point, and so the low-energy model only has SU(4) symmetry
if this symmetry is retained when these terms are included.

Other exact equations are for the total charge
susceptibility,26

χc =
∑

σ

[η̃c,1,σ ρ̃1,σ (0) + η̃c,2,σ ρ̃2,σ (0)], (11)

where the term η̃c,i,σ takes into account the quasiparticle
interactions and is given by

η̃c,i,σ = 1 − Ũ ρ̃i,−σ (0) −
∑

i ′ �=i,σ ′
Ũ

σ,σ ′
12 ρ̃i ′,σ ′(0). (12)

In the case with level degeneracy on the dots and no external
magnetic field, we can expect the total charge susceptibility to
be negligible if U/π� � 1 and U12/π� � 1. This is because
double occupancy on a single dot is inhibited by the large value
of U and double occupation of the two dots with one electron
on each dot is inhibited by the large value of U12. Equating
the total charge susceptibility to zero at this degeneracy point
gives a relation between the renormalized parameters,

Ũ + 2Ũ12 = 2π�̃. (13)

Away from this degeneracy point, if the ground state of the
system has on average one electron on the two dots, and
U/π� � 1 and U12/π� � 1, then we still expect the charge
susceptibility to be negligible and we get a more general
condition,∑

i=1,2

ρ̃i(0)[1 − Ũ ρ̃i(0)] − 4Ũ12ρ̃1(0)ρ̃2(0) = 0. (14)

The total spin susceptibility, χs = ∑
i dmi/dh, mi = (nd,i,↑ −

nd,i,↓)/2, of the two dots is given by26

χs =
∑

σ

[η̃s,1,σ ρ̃1,σ (0) + η̃s,2,σ ρ̃2,σ (0)], (15)

where

η̃s,i,σ = 1 + Ũ ρ̃i,−σ (0), (16)

and the pseudospin susceptibility, χps = d mps/dhps, mps =
(nd,1 − nd,2)/2, by

χps =
∑

σ

[η̃ps,1,σ ρ̃1,σ (0) + η̃ps,2,σ ρ̃2,σ (0)], (17)

where η̃ps,i,σ is given by

η̃ps,i,σ = 1 − Ũ ρ̃i,−σ (0) +
∑

i ′ �=i,σ ′
Ũ

σ,σ ′
12 ρ̃i ′,σ ′ (0). (18)

At the degeneracy point in the absence of a magnetic field
these become

χs = 1

π�̃

(
1 + Ũ

2π�̃

)
, (19)

and for the pseudospin

χps = 1

π�̃

(
1 + 2Ũ12 − Ũ

2π�̃

)
. (20)

For SU(4) symmetry of the effective Hamiltonian with renor-
malized parameters determining the low-energy behavior at
this degeneracy point we require Ũ12 = Ũ , which as expected
makes the spin and pseudospin susceptibilities equal. From
Eq. (13) this implies Ũ12 = 2π�̃/3 = Ũ , giving the known
Wilson ratio, Ws = π2χs/(3γ ), for an SU(4) Kondo model of
4/3. We have only one energy scale in this case which will be
the Kondo temperature TK for the SU(4) Kondo model which
we can define by the relation

4TK = 1

ρ̃(0)
= π�̃

(
1 + ε̃2

d

�̃2

)
= 2π�̃, (21)

where for the last equation the degeneracy point was assumed.
If we raise the spin degeneracy by an applied magnetic

field but keep the average electron occupation on each dot as
1/2, and ρ1,σ (0) = ρ2,σ (0), then eventually in a large magnetic
field we will be left with only one spin type on each dot.
We take this to correspond to spin up so that in this limit,
ρi,↓(0) → 0. For magnetic field energies small compared with
both U12 and U , we can still equate the charge susceptibility
to zero, which would imply ρi,↑(0) → 1/π�̃. There is then no
enhancement of the spin susceptibility, but an enhancement
of the pseudospin susceptibility by a factor 1 + Ũ12/π�̃

corresponding to a pseudospin Kondo effect. For U12 � π�,
we have Ũ12/π�̃ → 1 giving the SU(2) pseudospin Wilson
ratio Wps = π2χps/(3γ ) = 2.

To test these relations, and more generally evaluate spin
and pseudospin susceptibilities as a function of the energy
levels on the dot and applied magnetic field, we need to
calculate the renormalized parameters. We describe briefly
in Appendix A how these can be deduced from an analysis
of the low-energy fixed point in a numerical renormalization
group (NRG) calculation.25,26 We apply the method to the
model being investigated here and describe the results of these
calculations in detail in the next section. We typically retain
4000 states in our NRG calculations and use � = 6. This
comparatively large value gives accurate estimates for the
renormalized parameters as can be checked in the case of a
single-impurity model.
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FIG. 2. (Color online) The ground-state electron occupation
numbers in the isolated double dot in (h,ε̄d ) plane at zero pseudospin
field hps = 0.

IV. RESULTS FOR THE RENORMALIZED PARAMETERS

We first of all test the hypothesis that the two-dot model
with degenerate levels and a total occupation of the two dots
nd,tot ∼ 1 has an emergent SU(4) low-energy fixed point in
a regime where fluctuations in the total charge on the two
dots are suppressed, U/π� � 1 and U12/π� � 1. We first
analyze the situation where the on-site energy εd is varied.
This corresponds to the line along h = 0 in Fig. 2, which can
serve as a guideline.

We consider the cases with parameters similar to those
quoted in experiment.21 Many of the following results are for
U/π� = 20, U12/π� = 5, and we take π� = 0.01 in all of
the calculations presented here. We consider the case first of all
with εd,1 = εd,2 = εd (hps = 0). In Fig. 3(a) we plot nd,i = nd ,
the occupation number on each dot, and the combinations
of renormalized parameters Ũ ρ̃(0), Ũ12ρ̃(0), and ε̃d/�̃ as a
function of the level position on the dots εd/π�.

Over this range the total occupation of the two dots varies
from a regime with nd,tot ∼ 2, where ε̃d/�̃ → 0, Ũ ρ̃(0) → 1,
corresponding to a spin Kondo regime on each dot, to a
low-density weakly correlated regime nd,tot ∼ 0, where both
Ũ ρ̃(0) → 0 and Ũ12ρ̃(0) → 0. For εd/π� ∼ −2.5, which
corresponds to εd ∼ −U12/2, there is a region where nd,tot ∼ 1
and approximate degeneracy of the spin and interdot
excitations.

To check some of the predicted relations between the
renormalized parameters we plot the combination ρ̃(0)(Ũ +
2Ũ12), relevant for the charge susceptibility in Eq. (11), and
the ratios ε̃d/�̃ and Ũ12/Ũ in Fig. 3(b). The total occupation
of the two dots nd,tot is also shown.

For εd/π� < −2.0 it can be seen that the combination
ρ̃(0)(Ũ + 2Ũ12) is very close to the value of 1, which from
Eq. (14) implies a localized regime where the total charge sus-
ceptibility of the two dots is negligible, and the fluctuations in
the total charge have been almost completely suppressed. This
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FIG. 3. (Color online) (a) A plot of the occupation number on a
single dot nd , Ũ ρ̃(0), Ũ12ρ̃(0), and ε̃d/�̃ as a function of εd/π�. (b) A
plot of the total occupation number on the dots nd,tot, ρ̃(0)(Ũ + 2Ũ12),
ε̃d/�̃, and Ũ12/Ũ as a function of εd/π� for the same parameter
set. (c) A plot of the Wilson ratios for the spin excitations Ws and
pseudospin excitations Wps for the double dot as a function of εd/π�.
The parameters for all plots are U/π� = 20, U12/π� = 5, and
π� = 0.01. The vertical dotted lines correspond to εd = −U12/2.

245130-4



ANALYSIS OF LOW-ENERGY RESPONSE AND POSSIBLE . . . PHYSICAL REVIEW B 88, 245130 (2013)

regime includes the point of complete degeneracy between
the spin and interdot charge fluctuations, where ε̃d/�̃ = 1 and
nd,tot = 1, so that all three curves have a common point of
intersection, as can be seen clearly in Fig. 3(b). This point to
a good approximation corresponds to εd = −U12/2.

If this degeneracy point corresponded to an SU(4) symme-
try for the low-energy excitations then we would expect the
ratio Ũ12/Ũ to pass through this same point giving Ũ12 = Ũ .
However, it is of the order 0.45, substantially smaller than 1.
The ratio is closer to 1 than that of the bare values U12/U =
0.25, and hence there is a flow towards the symmetry point,
which is however not reached for experimentally relevant
parameters. The values ρ̃(0)Ũ12 = 0.23 and ρ̃(0)Ũ = 0.54
at the degeneracy point give a Wilson ratio Ws for the
spin Ws = 1 + Ũ ρ̃(0) = 1.54, and for the pseudospins Wps =
1 + 2Ũ12ρ̃(0) − Ũ ρ̃(0) = 0.93. As these differ we do not have
SU(4) symmetry at the degeneracy point for this parameter set;
SU(4) symmetry would require Ws = Wps = 4/3.

How the two Wilson ratios, Ws and Wps, vary with εd for
the same parameter set is shown in Fig. 3(c). When −U/2 <

εd < −U12, the interdot interaction U12 plays no significant
role and Ũ12 → 0. In this regime Ũ ρ̃(0) → 1 which has the
effect of suppressing the pseudospin fluctuations so Wps → 0
[see Eq. (20)] and at the same time enhancing the spin Wilson
ratio Ws → 2. This corresponds to the spin Kondo limit with
a single electron on each dot. As εd is increased from εd =
−U12/2 the value of Ũ12 increases and Ũ decreases, which has
the effect of enhancing Wps and reducing Ws , but as long as the
bare interactions obey U > U12, Wps < Ws . As the level εd on
the dots passes above the Fermi level the interaction terms play
very little role and both Wps and Ws asymptotically approach
the value 1 corresponding to noninteracting quasiparticles.

For a different parameter set, U/π� = 12, U12/π� = 6,
we see that the results are very similar to those presented
in Fig. 3(a) but with a slightly increased value of ρ̃(0)Ũ12

due to the relatively larger value of U12 compared with U .
However, for the parameter set U/π� = 12, U12/π� = 3,
with a relatively smaller value of U12 there are some
qualitative differences. This is shown in Fig. 4, which

-6 -4 -2 0 2
εd/πΓ

0

0.5

1

1.5 nd, tot
(U+2U12)ρ(0)
εd/Γ
U12/U

~ ~
~ ~
~ ~

~

FIG. 4. (Color online) A plot of the total occupation number on
the dots nd,tot, ρ̃(0)(Ũ + 2Ũ12), ε̃d/�̃, and Ũ12/Ũ as a function of
εd/π� for U/π� = 12, U12/π� = 3, where π� = 0.01. The vertical
dotted line corresponds to εd = −U12/2.
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FIG. 5. (Color online) A plot of T ∗/π� as a function of εd/π�

for different parameter sets labeled by the values (U/π�, U12/π�).
The vertical dotted line corresponds to εd = −U12/2 for case (20,5).

can be compared directly with the corresponding plot in
Fig. 3(b).

It can be seen that, due to the smaller value of U12/�,
the fluctuations of the total charge on the two dots are not
suppressed completely so that the value of ρ̃(0)(Ũ + 2Ũ12) is
slightly less than 1 at the spin-pseudospin degeneracy point so
that it falls below this point.

As in Eq. (21) we can define an energy scale T ∗ via
4T ∗ = 1/ρ̃(0). It has the property T ∗ → TK, where TK is the
spin Kondo temperature in the range where nd,i ∼ 1, defined
such that χs = 1/4TK for a single dot. A more significant
difference between the results for different parameter sets can
be seen in Fig. 5 where we plot T ∗/π� as a function of εd/π�.

For the parameter set (U/π�,U12/π�) = (20,5) given in
Fig. 3 we see that T ∗ has a local minimum at εd/π� ∼ −3.4
with T ∗/π� ∼ 0.035. There is an even more extended and
marked minimum for the parameter set (12,6) shown as the
dashed curve in Fig. 5. These two results are in marked contrast
to the result for T ∗/π� for the case (12,3) with the smaller
value of U12/π� (see Fig. 4), which has no minimum or even
a plateau region.

The occurrence of such local minima in T ∗ can be ac-
counted for by considering the effective model that results from
a Schrieffer-Wolff transformation on the Hamiltonian Eq. (1)
(see the Appendix B). For 0 > εd > −U12 and U → ∞, fluc-
tuations between the fourfold-degenerate atomic ground states
with nd = 1 are mediated by both the excited two-particle and
unoccupied states, so that the resulting effective model features
a “pseudospin” exchange coupling Jps ∼ −V 2U12/[εd (εd +
U12)], which is minimized at the degeneracy point when
εd = −U12/2. This local minimum in Jps is sufficient to
explain the local minimum in the nominal pseudospin “Kondo
temperature,” Tps ∼ T ∗ ∼ e−1/2ρcJps , seen in Fig. 5 for the
parameter sets with U12/π� = 6 and U12/π� = 12. Although
the two pseudospin projections suggest a correspondence in
this regime with an SU(2) pseudospin Kondo model, the
spin degrees of freedom modify both the pseudospin Kondo
temperature Tps from its SU(2) value and the location of the
minima in T ∗. The shift of the minimum to the left can be
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understood qualitatively by the fact that for large U the spin
Kondo coupling Js ∼ −V 2/εd is decreasing on decreasing
εd . Hence, due to the interplay of spin and pseudospin Kondo
effects the minimum shifts to smaller values of εd . Specifically,
the minimum for the parameter set (20,5) does not correspond
to the spin/pseudospin degeneracy point, which occurs where
εd/π� ∼ −2.5, giving a value T ∗/π� ∼ 0.055. The value of
T ∗ in this regime is very much greater than the values of TK in
the spin Kondo regime, εd/π� < −8.0, which is also shown
in Fig. 5 for (20,0). Similar observations were made in Ref. 6,
where parameters with U12 closer to U were studied.

We can make a comparison of T ∗ at the degeneracy point
with TK for an SU(4) model with U = U12 and U12/π� =
5.0.32 There are two such SU(4) Kondo models corresponding
to the total occupation numbers, nd,tot = 1 and nd,tot = 2. For
the SU(4) model with nd,tot = 1 we find T ∗/π� = TK/π� =
0.096, which is greater than but of the same order of magnitude
as the value T ∗/π� ∼ 0.055 deduced from the results in Fig. 5
at the degeneracy point. The particle-hole symmetric SU(4)
model with nd,tot = 2 has a somewhat lower value of T ∗/π� =
TK/π� = 0.031.

We can estimate the degree of quasiparticle renormalization
at the spin/pseudospin degeneracy point for the parameter set,
U/π� = 20, U12/π� = 5, by comparing the value T ∗ with
that for the corresponding point for the noninteracting system
where nd,tot = 1. At this point, εd/� = 1 (nd,tot = 1) which
gives T ∗/π� ∼ 0.5. The degree of renormalization due to the
interactions can be estimated from their ratio 0.5/0.055, which
gives a renormalization factor of the order of 9 in this case.

In Appendix C we consider a more comprehensive pa-
rameter range to test the possibility of an emergent SU(4)
low-energy fixed point. In particular we consider the range with
very large values of U and U12, greater than the conduction
band width D, and we show compatibility of the results with
the predictions of a Schrieffer-Wolff transformation which
maps onto an SU(4) model in this limit.6,33,34

V. RESULTS IN A FIELD

A. Crossover as a function of magnetic field h

At the degeneracy point where the occupation number on
each dot nd,i = 0.5 and U � π� and U12 � π�, we have
both spin and pseudospin fluctuations. Applying a magnetic
field at this point will suppress the spin fluctuations. With a
large enough magnetic field it should be possible to suppress
the spin fluctuations completely such that there is a crossover to
an SU(2) Kondo fixed point due to the pseudospin fluctuations.
If this proves to be possible experimentally then one could
examine the transport of the two types of pseudospins
independently as each is associated with a single dot only.
The question naturally arises therefore as to how large the
magnetic field has to be to see this crossover. To answer this
question we have calculated the renormalized parameters in
a magnetic field28,35 and used them to deduce the Wilson
ratios for the spin and pseudospin, Ws and Wps. One way
of applying the magnetic field is to adjust the mean level
on the dots ε̄d such that ε̄d = h − U12/2, which, starting at
εd = −U12/2, will be such as to maintain the total occupation
of the two dots nd,tot = 1. This corresponds to the diagonal
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FIG. 6. (Color online) (a) A plot of the Wilson ratios for the spin
and pseudospin degrees of freedom, Ws and Wps, and the total spin-up
and spin-down occupation numbers nd,tot,u as a function of ln(h/π�)
and nd,tot,d , for the double dot in a magnetic field h, with a constraint
such that nd,tot = 1 for U/π� = 20, U12/π� = 5, π� = 0.01. (b)
The corresponding renormalized parameters, ε̃d,x and �̃x , for the
spin-up x = u and spin-down x = d quasiparticles in units of π�.

dashed line in Fig. 2. The results for this case are shown in
Fig. 6(a) plotted as a function of ln(h/π�) for U/π� = 20,
U12/π� = 5, π� = 0.01. We have defined nd,tot,u = ∑

i nd,i,↑
and nd,tot,d = ∑

i nd,i,↓.
For this parameter set we have T ∗/π� ∼ 0.055 at the

degeneracy point corresponding to ln(T ∗/π�) ∼ −2.9. From
Fig. 6(a) we can see that the crossover occurs relatively
slowly as the magnetic field is increased but when h = T ∗, the
pseudospin ratio has risen to a value Wps ∼ 1.7 and the spin
ratio fallen to Ws ∼ 1.14. At this point the crossover is well
advanced, and so T ∗ at the degeneracy point sets the scale of the
crossover with the magnetic field h. However, one needs larger
fields to suppress the spin fluctuations fully such that spin ratio
Ws falls to the value 1 and the pseudospin ratio Wps reaches
the SU(2) Kondo value of 2. From Fig. 6(a), we can extract
a rough estimate for the polarizing field ln(hpol/π�) = −1,
hpol ≈ 1.16�. Assuming � = 0.01 meV and h = gμBH/2
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with |g| = 0.44 for GaAs,22 the corresponding magnetic field
is H = 0.86 T, well within experimental reach.

In Fig. 6(b) we give the values of the corresponding
renormalized parameters ε̃d and �̃ for the up and down
quasiparticles. These describe the local spectral function at
low energy, where ρi,σ (ω) = zi,σ ρ̃i,σ (ω), with the quasiparticle
spectral function from Eq. (8). For h = 0 the quasiparticle
resonances for both types of spin lie above the Fermi level at
the degeneracy point such that ε̃d = �̃. As the magnetic field is
increased the position of the resonance corresponding to the up
electrons moves to the Fermi level and narrows considerably.
The resonance for the down spin quasiparticle, on the other
hand, moves farther away from the Fermi level and initially
broadens at the same time but appears to narrow in the very
large field regime.

A similar crossover behavior is found if the magnetic field is
applied at the degeneracy point without any other adjustment.
There is no constraint to maintain nd,tot = 1, so in this case
there is a second crossover when ln(h/π�) ∼ 1, h/π� ∼ 2.7,
which occurs when h ∼ U12/2. When h > U12/2 the interdot
interaction no longer plays a significant role in determining the
occupation numbers on the two dots and the two dots become
fully polarized such that n1,↑ = n2↑ ∼ 1 and n1↓ = n2↓ ∼ 0.
Both the spin and pseudospin Kondo effects are suppressed
and the Wilson ratios for both spin and pseudospin fall to the
value 1.

B. Crossover as a function of pseudospin field hps

A similar crossover can occur if we change the relative
levels on the two dots so as to induce an effective field
hps on the pseudospin degrees of freedom. The results are
shown in Fig. 7(a) for the Wilson ratio on dot 1, Ws1,
and the pseudospin ratio Wps, together with the occupation
numbers on the individual dots for the same parameter set with
ε̄d = −U12/2.

The pseudospin field has the effect of suppressing the
pseudospin degrees of freedom leaving the spin degrees of
freedom on the dots. The spin degrees of freedom, however,
depend on the occupation numbers on the individual dots
which also change. When hps > T ∗ the pseudospin degrees
of freedom are rapidly suppressed Wps → 0 and the Wilson
ratio for the spin on dot 1 has a plateau region with Ws1 ∼ 2.
When hps reaches a value of the order of U/2 [ln(U/2�) =
ln(10) ∼ 2.3] the occupation number on dot 1 rapidly jumps
from the order of 1 to 2. As both spin states are then occupied
on dot 1 the Wilson ratio Ws1 falls to the value 1.

The corresponding renormalized parameters, ε̃d,1, ε̃d,2, �̃1,
and �̃2 are shown in Fig. 7(b). In the crossover to the SU(2) spin
Kondo regime the peak of the quasiparticle resonance on dot
1 moves to the Fermi level while the quasiparticle resonance
on dot 2 moves above the Fermi level in a very similar way
to that for the up and down electrons shown in Fig. 6(b). The
values of ε̃d,1 and ε̃d,2 are almost identical with ε̃d,u and ε̃d,d

for h = hps. There is a distinct difference, however, in the
values of the corresponding widths. In the pseudofield hps the
quasiparticle resonance that moves to the Fermi level narrows
much more rapidly than the corresponding one in a magnetic
field h, while the one that moves away from the Fermi level
broadens more markedly and monotonically. The narrower
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FIG. 7. (Color online) (a) A plot of the spin Wilson ratio Ws1 on
dot 1, the pseudospin ratio Wps, and the occupation numbers for the
two dots, nd,1 and nd,2, as a function of ln(hps/π�) for U/π� = 20,
U12/π� = 5, ε̄d = −U12/2, π� = 0.01. (b) A corresponding plot of
the renormalized parameters ε̃d,1, ε̃d,2, �̃1, and �̃2 in units of π� (note
the smaller range).

resonance at the Fermi level in the pseudospin case is due to the
much smaller value of TK in the SU(2) spin Kondo limit, when
the pseudospin excitations are fully suppressed, compared with
the SU(2) pseudospin Kondo limit, when the spin fluctuations
are suppressed.

Similar shifts in the spectral density are found in a study
of a crossover from an SU(4) to an SU(2) Kondo state
by Tosi et al. in Ref. 36 using the noncrossing approxi-
mation (NCA) at finite temperature. However in their case
the level on one dot only was increased, whereas in our
calculation the levels were changed to keep the average of
the levels on the two dots constant to mimic the magnetic
field case; however, qualitatively the results are similar.
In the NCA calculation the lower atomic peak is seen in
addition to the quasiparticle resonance on the approach to
the spin SU(2) Kondo regime. This atomic peak is absent
in ρ̃i,σ (ω) which only describes the low-energy quasiparticle
excitations.
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VI. DIFFERENTIAL CONDUCTANCE

A quantity well accessible in experiment is the differential
conductance. The current through dot i, Ii , is given by the
result of Meir and Wingreen,37

Ii = 2eḡi

π�

∑
σ

∫ ∞

−∞
dω[fs(ω) − fd (ω)]

[−ImGr
d,i,σ (ω,Vds,i)

]
,

(22)

where ḡi = �d,i�s,i/(�d,i + �s,i), Gr
d,i,σ (ω,Vds,i) is the

steady-state retarded Green’s function on the dot site, and
fs(ω), fd (ω) are Fermi distribution functions for the electrons
in the source and drain reservoirs, respectively, fα(ω) =
fF(ω − μα) and μs,i = αs,ieVi , μd,i = −αd,ieVi , so that for
a difference in chemical potential across dot i of eVi due to
the bias voltage, Vi , αs,i + αd,i = 1.

A. Results at T = 0

In the limit of zero temperature and in the absence of a
magnetic field, the zero bias differential conductance through
dot i, Gi = dIi/dV , reads,

Gi = 4πḡiρi(0)G0, (23)

where G0 = 2e2/h is the twice the quantum conductance
result. This can be expressed in terms of renormalized
parameters, via ρi(0) = zi ρ̃i(0),

Gi = giG0

1 + ( ε̃d,i

�̃i

)2 , (24)

where gi = 4ḡi/(�d,i + �s,i). In the spin Kondo regime,
ε̃d,i/�̃i → 0 such that Gi → giG0, which is the unitary limit
for symmetric coupling to the leads, �d,i = �s,i so gi = 1. At
the degeneracy point we have ε̃d,i/�̃i = 1, such that in this
case Gi = giG0/2. Generally, in most experimental situations
one has �d,i �= �s,i . The crossover of the described behavior
can be seen in Fig. 8 where we plot Gi/giG0 as a function
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FIG. 8. (Color online) A plot of Gi/giG0 and �̃/� as a function
of εd/π� for the model with U/π� = 20, U12/π� = 5, and
π� = 0.01. The vertical dotted line corresponds to εd = −U12/2.

of εd/π� for the parameters U/π� = 20, U12/π� = 5, and
π� = 0.01.

Also plotted is the ratio �̃/�, because this gives a measure
of the width of the quasiparticle resonance to be seen in the
spectral density at zero temperature in terms of that for the
noninteracting system �. The quasiparticle resonance is seen
as a peak in the measurement of the differential conductance
versus source drain voltage V . Our calculations therefore
predict a minimum of the width of the source drain signal
when the gate voltage is tuned along the ridge with enhanced
conductance. The conductance signals in Figs. 2(a) and 2(b)
of Ref. 22 seem to indicate the possibility of such a behavior;
however, a closer inspection of the experimental data would
be desirable. If this resonance is very narrow, as it can be in
the spin Kondo regime due to the exponential renormalization
due to U , the peak will not be detectable if the resolution of
the temperature of the experiment is such that T > �̃. This is
the situation in the experiments reported in Refs. 21 and 22
but the peak in the spin/pseudospin degeneracy regime is seen
where the value of �̃ is significantly less renormalized than in
the spin Kondo regime (see below). The conductance in the
presence of a magnetic and pseudospin field and the associated
crossovers are discussed in Appendix D.

B. Results at finite temperature

So far we have dealt with the situation at zero temperature.
However, the scale for spin Kondo can be very small such that
the finite temperature T in the experiment matters. A more
general expression for the zero bias differential conductance
reads

Gi(T ) = 2eḡi

�

∑
σ

∫ ∞

−∞
dω βeβωfF(ω)2ρd,i,σ (ω), (25)

where β = 1/T . We expect that much of the change of the
conductance with temperature arises from the change in the
renormalization of the quasiparticles on energy scales of the
order of the temperature T , such that we can approximate
ρd,i,σ (ω) by the T = 0 expression but in terms of temperature-
dependent renormalized parameters,

ρd,i,σ (ω) = 1

π�

�̃2
i (T )

[ω − ε̃d,i(T )]2 + �̃i(T )
2 . (26)

The extension to temperature-dependent renormalized pa-
rameters was previously used to calculate the temperature
dependence of the spin susceptibility for the Anderson model
in the Kondo limit and an excellent agreement with the
exact results from the Bethe ansatz was obtained.25,27 The
temperature dependence of the renormalized parameters can
be estimated from the NRG calculations for an iteration N .
The N -dependent parameters calculated using Eq. (A4) are
converted into ones corresponding to a temperature TN given
by

TN = ηD�
1−N

2 , (27)

where D is half the conduction electron bandwidth and η is a
constant of order 1.38 The approximation for the temperature
dependence of conductance is tested in Appendix E with
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FIG. 9. (Color online) A two-dimensional plot of the linear
conductance ratio G(TN )/giG0 as a function of εd/π� and the
NRG iteration number N which corresponds to a temperature
TN = 0.55�(1−N)/2 with � = 6 for the parameter set U/π� = 20,
U12/π� = 5, and π� = 0.01.

results of a recent paper by Merker et al.,39 and excellent
agreement is found.

In Fig. 9 we give a two-dimensional plot of the linear
conductance ratio G(TN )/giG0 as a function of εd/π� using
renormalized parameters corresponding to the NRG iteration
number N for the parameter set U/π� = 20, U/π� = 5.

We estimate the corresponding temperature dependence
from the relation in Eq. (27), with D = 1, � = 6, and
η = 0.55. The value of η was selected by the requirement
that the calculated entropy Simp(TN = ηD�

1−N
2 ) → 0 for

large N . The effect of increasing temperature (reducing N )
can be seen to significantly reduce the conductance in
the most strongly correlated regime εd/π� < −6 when the
temperature exceeds the very small values of the Kondo
temperature, and the Kondo resonance in the vicinity of the
Fermi level is suppressed. At higher temperatures (N ∼ 10) a
two-peaked response develops as a function of εd/π�. This
can be seen more clearly in Fig. 10, where we extract the
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FIG. 10. (Color online) The linear conductance G(T )/g1G0 as
a function of εd/π� taken from the results in Fig. 9 for
T/π� = 0.104,0.0173,1.34 × 10−5 corresponding to N = 8,10,18.

results for T/π� = 0.104,0.0173,1.34 × 10−5, which span
the interesting temperature regime.

For this parameter set we have estimated T ∗/π� = 0.055
at the spin/pseudospin degeneracy point, so for T ∼ T ∗ this
falls within the two-peak regime. As the temperature is
increased in the temperature range T ∼ T ∗, the heights of
both peaks are reduced but the height of the peak at the larger
value of |εd | decreases more rapidly. As a consequence the
two-peak structure becomes more symmetrical. At the higher
temperature T/π� = 0.1039, where T ∼ 2T ∗, the height of
the peak corresponding to the lower value of |εd | begins to
become the larger of the two. We have calculated further results
for the conductance as a function of N or T corresponding
to Figs. 9 and 10 for U/π� = 20 with U12/π� = 10,15,20,
and find the same features persist as in those shown for
U12/π� = 5.

Though we have not used the particular parameter set for
the recently reported experimental results by Keller et al.,22

we find a two-peak form and general trend with temperature
as shown in Fig. 2 of their paper (note that the results there are
plotted as a function of −εd ). In Fig. 10 it can be seen that there
is a range 0 > εd/π� > −1 where the conductance increases
with temperature rather than decreases. The behavior is similar
in the results shown in Fig. 2(d) of Ref. 22. We conclude that the
quasiparticle picture with temperature-dependent parameters
can provide an explanation of the main features seen in the
experimental results.

In Fig. 3 of Ref. 22 also the temperature scaling is analyzed
and NRG calculations for experimental parameters show a
small bump around 30 mK. The peak of the spectral function
in this regime is at ε̃d , shifted from the Fermi level ω = 0.
Therefore, as also seen in Fig. 15 it is possible that the
conductance increases at finite temperature since additional
spectral weight can become available for transport. A similar
effect was observed when the Kondo resonance splits in a
magnetic field.28 It is possible that such an effect is responsible
for the experimental observation in Ref. 22. These features,
however, are likely to depend on the particular parameter set
used in the calculations.

VII. CONCLUSIONS

We have surveyed the low-energy behavior for a double
quantum dot system described by an Anderson model paying
particular attention to the parameter regime where the spin
and pseudospin (interdot) excitations become degenerate. In
an earlier theoretical study it has been asserted that the
strong correlation behavior in this regime would correspond
to that of an SU(4) Kondo model.3 To examine this assertion
we have calculated the parameters that specify the effective
Hamiltonian for the low-energy regime, which correspond
to renormalized versions of the parameters, εd,i , �i , Ui , and
U12, which describe the original “bare” model. They can be
accurately deduced from an analysis of the low-energy exci-
tations of an NRG calculation.25,26 The low-energy effective
model describes a Fermi liquid in which the quasiparticles
interact via the terms Ũ and Ũ12. There is a point of 4-fold
degeneracy for the effective Hamiltonian when the interaction
terms between the quasiparticles set to zero, Ũ = Ũ12 = 0. For
universality and an SU(4) fixed point, however, we require that

245130-9



NISHIKAWA, HEWSON, CROW, AND BAUER PHYSICAL REVIEW B 88, 245130 (2013)

the low-energy response functions can be expressed in terms of
a single renormalized energy scale, the Kondo temperature TK.
Once the interaction terms are included the SU(4) symmetry
survives only if Ũ = Ũ12. For U � D we find this to be the
case only if U = U12 so no new symmetry emerges on the
low-energy scale. This implies that for U > U12 and U � D

we require two renormalized parameters to specify the low-
energy behavior. For U � D and U12 > D (see Appendix C),
there is a regime where we do find SU(4) symmetry. This is
consistent with the derivation of an SU(4) Coqblin-Schrieffer
model based on a Schrieffer-Wolff transformation.6,33,34 This
regime is not expected to be one relevant to the experimental
situation as the cutoff on the bath density of states D is expected
to be greater than the interlevel spacing on the dots.

The question arises as to why the conclusions based
on the Schrieffer-Wolff (SW) transformation apply in the
single-impurity case for U < D, but do not apply here.
In the single Anderson impurity case with U/π� � 1 the
SW mapping to the SU(2) Kondo model holds strictly only
when the energy levels of the impurity, εd and εd + U ,
lie outside the conduction band. The resulting mapping to
the Kondo model however still holds if εd or εd + U fall
within the band but the prefactor in the expression for
the Kondo temperature is modified due to virtual charge
scattering via band states ε lying in the regime |ε| > |εd |,
|εd + U |. Here, however, we are not just dealing with spin
fluctuations but also pseudospin or charge fluctuations. We can
expect the pseudospin terms to be more significantly modified
by the virtual charge excitations which can occur in the regime
within the band when U,U12 < D.

We note that there is not a unique SU(4) Kondo model
for the double quantum dot. The Anderson model with
U12 = U can be mapped into a SU(4) Kondo model also in
the case with particle-hole symmetry with nd,1 = nd,2 = 1.34

In this case the operators in the model correspond to a
6-dimensional representation of SU(4) in contrast to the map-
ping for the spin/pseudospin degenerate model with nd,1 =
nd,2 = 0.5 where the operators correspond to the fundamental
(4-dimensional) representation of SU(4).

The regime with spin/pseudospin degeneracy has attracted
experimental interest20–22 as it raises the possibility of using
the pseudospin excitations, which can be manipulated and
observed in independent channels, as a more convenient way
to examine behavior of excitations in individual spin species.
There are also recent proposals to use double-dot systems
for thermoelectric applications40 and to create spin-polarized
currents41,42 (cf. Fig. 13). Experimental measurements have
been made of electron transport through the individual dots
subject to bias voltages applied to the separate conduction
electron baths and there are recent theoretical predictions for
this situation.36 The results for the conductance as a function
of the bias voltage correspond to non-equilibrium steady-state
conditions and present a major challenge to theory. The
linear response, however, can be deduced from equilibrium
calculations. At T = 0 the linear response depends only on
the free quasiparticles, and at the degeneracy point the result
does correspond to that for an SU(4) model, which via the
Friedel sum rule can be expressed in terms of the equilibrium
occupation numbers on the dots. Our calculations of the
conductance, extended to finite temperatures, based on the

assumption of temperature-dependent but free quasiparticles,
predicts features in line with the experimental results. It
provides a framework for their interpretation.

The quasiparticle interactions Ũi ,Ũ12 will play some role
in the temperature dependence of the conductance and result
in some deviation from universal SU(4) Kondo behavior.
There is a contribution to the leading T 2 correction to the
conductance in the SU(2) Anderson and Kondo models arising
from the quasiparticle interaction term Ũ . These terms can
be calculated exactly in terms of renormalized parameters
using the renormalized perturbation expansion (RPT).28–30 Le
Hur et al.19 have predicted that for an SU(4) Kondo model
the temperature corrections of order T 2 cancel out in the
conductance so the leading contribution in this case is of
order T 3. Away from SU(4) symmetry when Ũ12 �= Ũ , this
cancellation cannot be complete so that a T 2 contribution
should remain. This issue is currently being investigated.
Calculations can also be carried out for the leading corrections
to the linear voltage regime in powers of the bias voltage V ,
using RPT in the Keldysh formulation, as have already been
carried out for the single-impurity model.43–45
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APPENDIX A: CALCULATION OF THE
RENORMALIZED PARAMETERS

In an NRG calculation for a single-impurity Anderson
model the conduction electron band is discretized and cast
into a form corresponding to a tight-binding chain coupled to
the impurity at one end by the hybridization parameter V .38,46

The noninteracting single-particle Green’s function for dot i

then takes the form

G
(0)
d,i,σ (ω) = 1

ω − εd − V 2G
(0)
0,i,σ (ω)

, (A1)

where

G
(0)
n,i,σ (ω) = 1

ω − εi − V 2
n G

(0)
n+1,i,σ (ω)

, (A2)

with n = 0,1,2, . . . ,N , where Vn are the intersite hopping
matrix elements and εn the energies along the conduction
electron chain, with Vn = �−n/2ξn, where � (>1) is the
discretization parameter, and ξn is given by

ξn = D

2

(1 + �−1)(1 − �−n−1)

(1 − �−2n−1)1/2(1 − �−2n−3)1/2
. (A3)

The poles of the Green’s function (A1) give the single-particle
excitations for the non-interacting system.
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We can identify the low-energy free quasiparticle excita-
tions of the interacting system with the poles of this same
Green’s function but with renormalized parameters ε̃d and
Ṽ . If Ep,α(N ) and Eh,α(N ) are the lowest energies of single
particle and hole excitations calculated for a NRG chain of
length N then we can take these as corresponding to the poles
of (A1) with an N -dependent hybridization Ṽ (N ) and energy
level ε̃d (N ). We then get the two equations

±Ep/h,i(N ) − ε̃d (N ) − Ṽ (N )2G
(0)
0,i,σ ( ± Ep/h,i(N )) = 0

(A4)
to deduce Ṽ (N ) and energy level ε̃d (N ). The values of ε̃d and
Ṽ can be identified with the values in the plateau regime for
large N , ε̃d = limN→∞ε̃d (N ) and limN→∞Ṽ (N ) = Ṽ , with
�̃ = πṼ 2/2D.

After diagonalizing the free quasiparticle Hamiltonian,
the renormalized interaction parameters, Ũ , J̃ , and Ũ12, can
be calculated from the leading order correction terms to
the difference between the lowest two particle excitations,
Eσ

pp,i(N ), and the two lowest single-particle excitations for

large N , e.g., E0
pp,i(N ) − E

↑
p,i(N ) − E

↓
p,i(N ) in channel i

determines Ũi . Once the renormalized parameters have been
determined the T = 0 susceptibilities and specific-heat coef-
ficient γ can then be determined by substituting them into the
relevant RPT equations. For further details we refer to earlier
papers.25,26,32,34

APPENDIX B: EFFECTIVE HAMILTONIANS

An effective Hamiltonian for the model with U → ∞
and U12 > |εd | � π� can be found by projecting the full
Hamiltonian onto its atomic (i.e., � = 0) ground states and in-
cluding the effects of fluctuations between these ground states
perturbatively to lowest order in �. For Vk,1 = Vk,2 = Vk, the
impurity contribution to the resulting effective Hamiltonian is

Heff =
∑

kk′σσ ′

[
J kk′

⊥
{(

lkk′
σσ ′

)+
L−

σ ′σ + (
lkk′
σσ ′

)−
L+

σ ′σ
}

+ J kk′
‖

(
lkk′
σσ

)z
Lz

σ ′σ ′
] +

∑
kk′i

J kk′
spinskk′i · Si , (B1)

where Sα
i = 1

2c
†
d,i,σ σ

(α)
σσ ′cd,i,σ ′ and we have introduced the

pseudospin raising operator L+
σσ ′ ≡ |1σ 〉〈2σ ′| and lowering

operator L−
σσ ′ ≡ |2σ 〉〈1σ ′| and similarly for the conduction

electrons, with (lkk′
σσ ′)+ = c

†
k,1,σ ck′,2,σ ′ , etc., where ck,i,σ =

ck,i,s,σ + ck,i,d,σ (i.e., appropriate to the situation close to
equilibrium). Here, |iσ 〉 denotes the impurity configuration
with one electron of spin σ = ↑,↓ on the dot i = 1,2 and the
last term in Eq. (B1) describes a normal Kondo spin exchange
occurring independently on dots 1 and 2. The pseudospin con-
tribution is anisotropic, with J kk′

⊥ = −VkV
∗
k′U12/εd (εd + U12)

and J kk′
‖ = 2VkV

∗
k′/(εd + U12), whereas the spin contribution

is isotropic with an antiferromagnetic exchange coupling
J kk′

spin = −VkV
∗
k′/εd . Poor man’s scaling equations3,16,17,47 for

this effective model show the mutual influence of spin and
pseudospin Kondo physics as visible in the renormalization of
the respective couplings.
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FIG. 11. (Color online) A plot of nd,tot, (2Ũ12 + Ũ )/π�̃, 1/sin2

(πnd,tot/4), and Ũ12/Ũ as a function of U12/U for εd = −U12/2.

APPENDIX C: RENORMALIZED PARAMETERS
FOR AN EXTENDED PARAMETER RANGE

To test more generally the possibility of an emergent SU(4)
low-energy fixed point in the regime U/π� � 1, U12/π� �
1 with nd,tot ∼ 1, we have calculated the renormalized pa-
rameters Ũ , Ũ12, �̃, and ε̃d as a function of U12 for the case
U/π� = 12 with εd = −U12/2. The condition that the total
charge susceptibility of the dots be negligible from Eq. (14) is
(2Ũ12 + Ũ )ρ̃(0) = 1. Using the Friedel sum rule Eq. (9), this
condition can be alternatively expressed as

(2Ũ12 + Ũ )

π�̃
= 1

sin2(πnd,tot/4)
. (C1)

In Fig. 11 we plot the results for nd,tot, (2Ũ12 + Ũ )/π�̃,
1/sin2(πnd,tot/4), and Ũ12/Ũ , as a function of U12/U . The
condition in Eq. (C1) holds to a good approximation for the
range U12/U > 0.4 and also over this range that the total
charge on the dots nd,tot ∼ 1. The condition for a low-energy
SU(4) fixed point Ũ12/Ũ = 1, however, is only satisfied at the
point U12 = U , i.e., only if we have SU(4) symmetry already
for the “bare” model. At the SU(4) fixed point using Eq. (C1)
we predict

Ũ

π�̃
= Ũ12

π�̃
= 1

3sin2(πnd,tot/4)
, (C2)

which is satisfied precisely in the results in Fig. 11. For these
results with εd = −U12/2 and U12/π� � 1, nd,tot ∼ 1 but not
precisely equal to 1. In an earlier study of the SU(4) version
of this model34 we calculated the renormalized parameters
keeping nd,tot strictly equal to 1. In that case we obtained
the result Ũ/π�̃ = 0.66665 asymptotically for large U in
very accurate agreement with the prediction from Eq. (C2),
Ũ/π�̃ = 2/3.

We get a very similar picture to that shown in Fig. 11
if we take a larger value of U , U/π� = 20, εd = −U12/2
and vary U12. We find Ũ12/Ũ = 1 only when U12 = U . For a
given ratio U12/U , the ratio of Ũ12/Ũ is observed to be larger
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in the range U12 < U when we increase the value of U from
U/π� = 12 to U/π� = 20. The question arises as to whether
the ratio Ũ12/Ũ would approach the value 1 in this range if we
increase the value of U still further. For U > 20π� = 0.2D

(D = 1, π� = 0.01), the values of U become of the order of
the half bandwidth D. With U ∼ D and εd = −U12/2 in the
range U12 → U , the ground-state impurity level will become
far removed from the Fermi level resulting in a renormalized
energy scale T ∗ → 0.

To investigate the larger U regime we take a fixed value
for εd , just below the Fermi level εd = −3π�. We know from
the Schrieffer-Wolff transformation that for U = U12 � D,
the model in this regime is equivalent to an SU(4) Coqblin-
Schrieffer model.6,33,34 The condition that U = U12 is not
strictly required in this regime for the mapping to hold provided
both U � D and U12 � D. The question arises, therefore, as
to whether the mapping could still hold for U12 < U over
a range with U < D. We test this possibility by calculating
Ũ12/Ũ as a function of U12/U for εd = −3π�. The results
are shown in Fig. 12 for U/D = 0.12,0.2,0.5,1,10,100. We
see that for values of U < D, we get the SU(4) symmetric
case with Ũ12/Ũ = 1 only if U12 = U . For U/D > 1 and
U12 > D we do find SU(4) symmetry with Ũ12/Ũ = 1 in
complete agreement with the result from the Schrieffer-Wolff
transformation.

APPENDIX D: DIFFERENTIAL
CONDUCTANCE IN A FIELD

If a magnetic field is applied to suppress the spin excitations
in large fields the conductance should correspond to the SU(2)
Kondo regime for the pseudospins. In Fig. 13, we plot the
linear conductance in the individual spin channels, Gu (spin
up) and Gd (spin down), and the total Gtot, as a function of
applied magnetic field (log scale) using the results shown in
Fig. 6.

The conductance in zero field is that at the degeneracy
point where Gu/giG0 = Gd/giG0 = 0.5, and as the magnetic
field is increased conductance due to the down excitations
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FIG. 12. (Color online) A plot of Ũ12/Ũ as a function of U12/U

for εd = −3π� and U/D = 0.12,0.2,0.5,1,10,100.
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FIG. 13. (Color online) A plot of the linear conductance of the up
and down electrons, Gu/giG0 and Gd/giG0, and their sum Gtot/giG0,
as a function of ln(h/π�) together with the renormalized resonance
widths, �̃u/� and �̃d/�, for the results shown in Fig. 6.

is suppressed and that due to the up electrons increased
and approaches that for the SU(2) Kondo model. Hence,
in this large magnetic field case we observe spin polarized
conductance through the dots which can reach the unitary
limit. The renormalized resonance widths of the up and down
electrons, �̃u, and �̃d , are shown in the same figure, that for
the up electrons narrowing significantly with increase of field
while that for the down electrons broadens slightly. In this
situation where we have treated the dots as identical the total
conductance is independent of the magnetic field. This means
that any deviation from this result would give information on
the differences between the dots and the couplings to their
respective baths.

In Fig. 14, we show the conductances of the individual dots
on suppressing the pseudospin excitations by changing the
levels on the individual dots such that ε̄d is held constant so as
to induce a pseudospin field hps.
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FIG. 14. (Color online) A plot of the linear conductances
G1/g1G0 and G2/g2G0 as a function of ln(hps/π�) for the parameters
shown in Fig. 7.
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The results are for the parameter set given in Fig. 7. As
the pseudospin field is increased from the degeneracy point
(ε̃d = �̃, nd,1 = nd,2 = 0.5) there is a crossover such that the
occupation number on dot 1 increases, nd,1 → 1, and that on
dots 2 decreases, nd,2 → 0. Over this range the conductance
on dot 1 approaches that of an SU(2) Kondo model due to the
remaining spin degrees of freedom, while that on dot 2 tends
to zero. However, when the pseudospin field reaches values
such that both spin states on dot 1 are occupied and nd,1 → 2,
the conductance on dot 1 shows a very rapid crossover such
that G1 → 0.

APPENDIX E: DIFFERENTIAL CONDUCTANCE
AT FINITE TEMPERATURE: TEST CASE

Here we test the approximation for the temperature depen-
dence of conductance against the NRG results in Fig. 2 in
the paper by Merker et al.39 for the single-impurity Anderson
model. The results of this comparison are shown in Fig. 15 for
D = 1, � = 1.7, and η = 0.55.

It can be seen that in the most strongly correlated case
corresponding to the particle-hole symmetric model (T0 = TK)
the agreement is excellent up to T = 2TK and is a good
approximation for T < 150TK. In all three NRG results there
is a regime where the conductance increases with temperature
before falling off again at higher temperatures resulting
in a peak. The small peak at higher temperatures for the
particle-hole symmetric case is due to the influence of the
atomic peaks at ω = ±U/2; this is not seen in the results
using quasiparticle approximation for the spectral density
as the latter does not include these atomic features. In the
less correlated cases away from particle-hole symmetry the
overall agreement is very good and reproduces the peaks
seen in the accurate NRG calculations. The temperature
dependence of the renormalized parameters plays a more

-6 -4 -2 0 2 4 6 8
Log(T/T0)

0

0.2

0.4

0.6

0.8

1

G
(T

)/g
G

0
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εd= - U/2 (RP)
εd = 0 (NRG)
εd = 0 (RP)
εd = +U/2 (NRG)
εd = +U/2 (RP)

FIG. 15. (Color online) The results for linear conductances
G(T )/gG0 as a function of ln(T/T0) for the single-impurity Anderson
model for U = 16� and εd = −U/2,0,U/2 given by Merker et al.
(Ref. 39) (NRG) compared with the approximate results based on
temperature-dependent renormalized parameters (RP). The value of
T0 is defined by χ (0) = 1/4T0, where χ (0) is the zero-temperature
impurity susceptibility. Note that the particle-hole symmetric case
εd = −U/2 is in the localized limit where T0 = TK.

important role in the more correlated cases. In the weakly
correlated case εd = U/2 the temperature dependence of the
parameters plays no role and the peak in the higher temperature
regime is due to the location of the quasiparticle peak in
the spectral density. The position of the peak for εd = 0
is also due to the location of the quasiparticle peak in the
spectral density but its height is reduced by the temperature
dependence of the parameters. We conclude that the main
features in the temperature dependence of the differential
conductance can be understood in terms Eq. (25) using the
quasiparticle density of states with temperature-dependent
parameters.
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