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Nontrivial interface states confined between two topological insulators
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By ab initio based tight-binding calculations, we show that nontrivial electronic states exist at an interface of a
Z2 topological insulator and a topological crystalline insulator. At the exemplary (111) interface between Bi2Te3

and SnTe, the two Dirac surface states at the Brillouin zone center � annihilate upon approaching the semi-infinite
subsystems but one topologically protected Dirac surface state remains at each time-reversal invariant momentum
M . This leads to a highly conducting spin-momentum-locked channel at the interface but insulating bulk regions.
For the Sb2Te3/Bi2Te3 interface, we find complete annihilation of Dirac states because both subsystems belong to
the same topology class. Our proof of principle may have impact on planar electric transport in future spintronics
devices with topologically protected conducting channels.
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I. INTRODUCTION

Three-dimensional topological insulators are a new class of
materials that are characterized by an insulating bulk but highly
conducting surface states.1 These surface states bridge the
fundamental band gap and are topologically protected against
perturbations. Two classes of three-dimensional topological
insulators (TIs) are currently investigated with great effort: Z2

TIs rely on time-reversal symmetry and an odd number of band
inversions in the bulk Brillouin zone; topological crystalline
insulators (TCIs)2 require a crystal symmetry, in particular,
mirror symmetry, but may possess an even number of band
inversions. Brought about by the spin-orbit interaction, the
fundamental band gaps of TIs are small compared to those of
typical band insulators (100–250 meV).

Prominent examples for Z2 TIs are the chalcogenides
Bi2Se3, Bi2Te3, and Sb2Te3, each showing a band inversion at
the center � of the bulk Brillouin zone. They are characterized
by Z2 topological invariants (ν0; ν1 ν2 ν3) = (1; 0 0 0) (see
Ref. 3) and have a single Dirac surface state at the center
� of their (111) surface’s Brillouin zone. The spin chirality
of these surface states is dictated by those p orbitals that
make up the inverted band gap; thus, it is identical among
the chalcogenides.4–6 As a consequence, the two Dirac
surface states at a common interface of two chalcogenide
TIs annihilate because the two subsystems are in the same
topological phase. They would not annihilate if their spin
chirality would be opposite;7 however, such a Z2 TI is yet
unknown.

One representative of a TCI with mirror symmetry is
SnTe,8,9 showing band inversions at the L points of the
bulk Brillouin zone. For a mirror plane that is spanned by
four L points, the relevant topological invariant—the mirror
Chern number—equals −2. Thus there are two Dirac points
associated with that plane. For the (001) surface, these are
close to the time-reversal invariant momentum (TRIM) X. This
crystal orientation does not fit to the commonly investigated
(111) orientation of the chalcogenides which is naturally
induced by their quintuple-layer geometry. Therefore, to form
a common interface of SnTe and Bi2Te3, one should choose the
(111) surface of SnTe that also shows two Dirac surface states,
one at � (as, e. g., Bi2Te3), another at M; these states have

identical spin chirality. Because the chalcogenides are also
topological crystalline insulators, with a mirror Chern number
of −1 (see Ref. 10), the spin chiralities of the surface states
of SnTe and Bi2Te3 are identical as well. As a consequence,
surface states annihilate at a common interface of SnTe and
Bi2Te3.

From these considerations, the question arises whether all
Dirac surface states of Bi2Te3(111) and SnTe(111) annihilate
at a common interface. Or do only two of them obliterate
each other and does one nontrivial surface state remain (see
Fig. 1)? In this Paper, we provide a proof of principle by
means of ab initio based tight-binding calculations that the
pair of Dirac surface states at � indeed annihilates but the
Dirac surface state at M “survives.” This remaining electronic
state is topologically protected by mirror symmetry and results
in a highly conducting channel at the interface of two bulk
topological insulators. This conductance channel with spin-
momentum locking could be utilized in future electronics.
For comparison, the Sb2Te3/Bi2Te3 interface shows complete
annihilation of Dirac states because both subsystems belong
to the same topology class, resulting in an entirely insulating
system.

The paper is organized as follows. Theoretical aspects
are addressed in Sec. II, in which we provide details of the
electronic structure calculations (Sec. II A) and topological-
invariant calculations (Sec. II B). Results are discussed in
Sec. III. For the topological heterophase system SnTe/Bi2Te3,
we address the annihilation and survival of the Dirac states
(Sec. III A 1), a model Hamiltonian (Sec. III A 2), and the
localization of the Dirac states (Sec. III A 3). The complete
annihilation of Dirac states in the topological iso-phase system
Sb2Te3/Bi2Te3 is presented in Sec. III B. A sum rule for the
number of Dirac states at an interface is given in Sec. III C,
before concluding with Sec. IV.

II. THEORETICAL ASPECTS

A. Tight-binding calculations

The purpose of our approach is to support our main
statement of annihilation of a pair of Dirac states and the
survival of one Dirac state. To do so, the method accounts for
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FIG. 1. (Color online) Topologically nontrivial electronic states
at the (111) surfaces of the Z2 topological insulator Bi2Te3 and
the topological crystalline insulator SnTe (left) as well at their
common interface (right). Bi2Te3(111) hosts one state (red arrows),
while SnTe(111) hosts two states (red and green arrows). Upon
formation of an interface, the “red” surface states annihilate but the
“green” SnTe-derived state survives. Spin and momentum are locked:
states propagating to the left are spin up (small blue arrows), states
propagating to the right are spin down (small red arrows). Te, Bi, and
Sn atoms are displayed in brown, magenta, and grey, respectively.

the correct boundary conditions of an interface48 and relies
on a tight-binding parametrization, which works also well for
other chalcogenides and rocksalt insulators.11

The empirical tight-binding method interpolates the band
structure that has been determined by advanced first-principles
methods. We adopted Slater-Koster parameters, from Ref. 12
for Bi2Te3 as well as from Ref. 13 for SnTe. The parameters
for Sb2Te3 have been fitted to an ab initio band structure using
a Monte Carlo method.14,15 Spin-orbit coupling is treated as in
Ref. 16. All parameter sets yield good agreement, in particular
for the important energy range near the fundamental band
gap.17

The resulting band structures were checked against our
first-principles Korringa-Kohn-Rostoker, VASP, and WIEN2K

calculations.11,18–20 The agreement puts our tight-binding
approach on a firm and reliable basis. The bulk bands are
obtained by diagonalization of the Hamilton operator matrix
in the basis of Bloch states �α(�k), with α a compound index
of orbital, spin orientation, and atom; �k is the wave vector.

The electronic structures of the (111) surfaces and interfaces
have been obtained for the semi-infinite systems, using a
renormalization scheme for the Green function, originally

developed for surfaces21,22 and later extended to interfaces.23

A description of this scheme is rather lengthy; therefore we
provide a sketch here. The system is decomposed into principal
layers in such a way that only adjacent principal layers interact,
making the Hamiltonian matrix H block-tridiagonal. These
interactions are reduced by a renormalization process using
the defining matrix equation

G(z,�k‖)[z1 − H(�k‖)] = 1, (1)

in which z = E + iη, η > 0, is a complex energy argument.
For vanishing interlayer interaction, this scheme yields layer-
resolved blocks Glm(z,�k‖) of the Green function matrix which
is indexed by compound indices α and β (l and m principal
layer indices; �k‖ surface-parallel wave vector). Surface and
interface states appear “naturally” in this procedure, e. g.,
without additional treatment.24

The layer-resolved spectral density is then computed from

Nl(E,�k‖) = − 1

π
lim

η→0+
Im trα Gll(E + iη,�k‖). (2)

Appropriate partial traces allow to decompose the spectral
density with respect to, e. g., spin projection and orbital.

The spin texture of the Dirac states is investigated by means
of spin-resolved spectral densities, with spin projections typi-
cally along the Cartesian axes. Instead of the spin polarization,
we use spin differences:

�Sl(E,�k‖) = − 1

π
lim

η→0+
Im trα [�σGll(E + iη,�k‖)], (3)

where �σ is the vector of Pauli matrices. The limit η → 0+ in
Eqs. (2) and (3) is not taken but typically η = 2 meV.

The dispersions of the Dirac states show up as maxima in
Nαl(E,�k‖) of the interface layers; they agree well with those
obtained from our first-principles Korringa-Kohn-Rostoker
(semi-infinite system) and VASP (slab of at least six quintuple
layers) calculations for Bi2Te3 and Sb2Te3. For SnTe, we
checked also the electronic structure of the (001) surface and
found agreement with that reported in Ref. 8.

The lattice constants of Bi2Te3 and SnTe show a mismatch
of about 2 %. We assume that SnTe(111) adopts the in-plane
lattice constant of Bi2Te3; the out-of-plane (interlayer) dis-
tance is chosen to conserve the volume of the bulk unit cell. The
tight-binding parameters of SnTe have, thus, been scaled using
Harrison’s d−2 law.25 SnTe remains a topological crystalline
insulator in this distorted phase but with a reduced width of the
fundamental band gap (250 meV → 40 meV). Although the
Slater-Koster parameters at the surface or interface are taken
from bulk values, the surface electronic structures agree with
those reported earlier.8,19 The valence band maxima of the
bulk systems have been aligned to the common Fermi level in
the interface system, in accordance with the “common anion
rule” (see Ref. 26).

Concerning the SnTe/Bi2Te3 interface, the outermost SnTe
layer is made of Te atoms.49 The distance between these atoms
and the outermost Te atoms of Bi2Te3 is assumed identical to
that between the outermost Te atoms of adjacent quintuple
layers of Bi2Te3 (i. e., the van der Waals gap). Therefore
the Slater-Koster parameters at the interface are identical to
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those describing the coupling between two quintuple layers of
Bi2Te3.

To perform the transition from two separate surfaces to
a joint interface, we scale the tight-binding parameters that
mediate the hopping between the two half-spaces by a factor
κ , with κ = 0 (κ = 1) for zero (full) coupling; confer the bond-
cutting mechanism in Ref. 27. This procedure can be viewed
as letting the surfaces approach in real space (schematically
shown Fig. 1): κ = 0 mimics an infinite distance. NB: we
could have used Harrison’s d−2 scaling (see Ref. 25), with
identical results for the most important cases: vanishing and
full coupling.

The tight-binding parameters of the surface or interface
layers were not changed with respect to those of the bulk.
The (111) surfaces of both the chalcogenides and SnTe show
band bending due to their polar nature. For Bi2Se3(111), the
band bending region extends about 200 Å (see Ref. 28), and
we expect a similar width for Bi2Te3. Because the Dirac
surface state is strongly located in the first quintuple layer
(see below) it is mildly affected by the band bending. In the ab
initio calculations reported in Ref. 19, in which the potentials
of the first five quintuple layers are allowed to differ from
those in the bulk, no clear indication for band bending was
found. Although these two findings seem to contradict each
other, they both support to neglect the band bending in the
description of the Dirac surface state of Bi2Te3 for the time
being.

Concerning SnTe, an appropriate ab initio description re-
quires advanced exchange-correlation functionals, e. g., hybrid
functionals11 [the self-consistent calculation for SnTe(001)
reported in Ref. 8 relies on the generalized gradient ap-
proximation]. This makes such advanced density-functional
calculations computationally very demanding for the bulk
system but nearly impossible for a surface system. Our
tight-binding approach is numerically much less demanding
and, importantly, it reproduces very well the bulk electronic
structure of Ref. 11 and the Dirac surface states of SnTe(001)
reported in Refs. 8 and 9.

Hybrid functionals give a better description of the fun-
damental band gap than the often used local density ap-
proximation for the exchange-correlation functional. This is
in particular important for small-gap semiconductors (here,
SnTe). A too small band gap would result in a distorted
dispersion relation of the topologically protected surface
states.

Being computationally demanding, a hybrid-functional
calculation mimicking a surface system might be performed
for a slab with small thickness. Therefore surface states located
at either side of the slab would hybridize and show artificial
band gaps due to quantum confinement. These gaps could
be significantly wide for weakly localized surfaces states,
as would be the case for the surface state in SnTe(111)
at M , as we will see below. In our study on Bi2Te3/SnTe
interfaces, the opening up of band gaps is a crucial point;
artificial band gaps would make the interpretation difficult
and, thus, should be avoided. In our approach, this problem is
overcome by the renormalization technique for semi-infinite
systems.

For the band alignment, we follow the common anion rule
(see Refs. 29–31), discussed in the supplement of Ref. 26. This

rule applies to interfaces of insulators with a common anion.
In this case, the valence electronic states are primarily derived
from the anion orbitals (Te) whereas the conduction bands are
primarily derived from the cation orbitals. Consequently, the
valence states should be similar, leading to a smaller offset of
the valence bands than of the conduction bands. Taskin et al.
argue that the band bending shows up mainly in Bi2Te3 rather
than in SnTe (see Ref. 26).

B. Calculation of Z2 invariants and mirror Chern numbers

The tight-binding method allows a fast and reliable compu-
tation of topological invariants.3 The Z2 invariant is calculated
from the Fu-Kane formula32 discretized according to Fukui
and Hatsugai.33 For sufficiently dense �k meshes we compute
the Z2 invariants (ν0; ν1 ν2 ν3) = (1; 0 0 0) for Bi2Te3 and
Sb2Te3 as well as (0; 0 0 0) for SnTe.

In the calculation of the mirror Chern number, we follow
the idea of the spin Chern number.34 The considered mirror
plane is normal to a (111) surface plane; in reciprocal space,
it comprises the � and M points of the surface Brillouin zone
(confer Fig. 1 in both Ref. 8 and 10). The Bloch states with
wave vector �k within this mirror plane are eigenstates of both
the Hamiltonian and the mirror operator.35 This allows us to
divide the Bloch states into two categories: one with mirror
eigenvalue +i, the other with eigenvalue −i. The �k-dependent
Berry curvature is calculated for both of them. The weighted
sum of the Berry curvature over a discrete �k set in the
intersection of the mirror plane with the Brillouin zone gives
the Chern number n±i for each category. The mirror Chern
number is then obtained from4

cm ≡ n+i − n−i

2
. (4)

We calculate the mirror Chern number for a mesh of 100 × 100
k points, getting cm = −1 for Bi2Te3 and Sb2Te3 as well as
−2 for SnTe, with a relative error less than 10−4.

k
y

0

10

(a) Bi2Te3

kx

(b) SnTe

Γ

K

M

(c) Bi2Te3/SnTe

FIG. 2. (Color online) Electronic structure of (a) the Bi2Te3(111)
surface, (b) the SnTe(111) surface, and (c) a Bi2Te3/SnTe(111)
interface. The spectral densities of the outermost surface layers [(a)
and (b)] or the SnTe interface layer (c) are shown as color scale
(in states/eV) for a constant energy of 0.08 eV (i. e., within the
fundamental band gap). In each panel, the same part of the hexagonal
Brillouin zone is displayed; high-symmetry points and the Brillouin
zone edge are indicated by grey dots and lines, respectively. Arrows
mark surface and interface states.
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FIG. 3. (Color online) Electronic structure of a Bi2Te3/SnTe(111) interface, obtained from tight-binding calculations. The spectral densities
of the outermost Bi2Te3 [top, (a)–(d)] and SnTe [bottom, (e)–(h)] interface layers are shown as color scale (in units of states/eV) for a K-�-M
path in the two-dimensional Brillouin zone [inset in (e)]. The coupling strength κ of the semi-infinite systems increases from left to right (κ = 0
uncoupled; κ = 1 fully coupled). The horizontal lines mark the energy of 0.08 eV used in Fig. 2. Arrows in (a), (d), (e), and (h) point towards
Dirac surface or interface states (also indicated in Fig. 2).

III. DISCUSSION AND RESULTS

A. Interface electronic structure of SnTe(111)/Bi2Te3(111)

1. Annihilation and survival of Dirac states

The surface band structure of Bi2Te3(111) shows the
well-known Dirac surface state, with its Dirac point close to
the valence bands at �. In a constant energy cut (CEC), this
state results in a slightly warped36 circular shape [red arrow in
Fig. 2(a)]. The (111) surface of SnTe hosts two Dirac states:
the state at � produces a circular shape in a CEC [red arrow
in Fig. 2(b)], the equivalent states at M show up as ellipses
[green arrows in Fig. 2(b)].

Upon approaching the two semi-infinite systems, that is by
increasing κ to 1, the two circular contours at � disappear but
the structures at M remain [green arrows in Fig. 2(c)]. This
“annihilation” of the pair of states at � can be interpreted
by opening of a band gap in the two respective surface
states.

This scenario is illustrated by the interface electronic
structure for selected coupling strengths κ (see Fig. 3). For κ =
0, we find the surface band structures of Bi2Te3 and SnTe, both

showing a Dirac surface state at � bridging the fundamental
band gap (red arrows in a and e). The Dirac points are close
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FIG. 4. (Color online) Spin-resolved electronic structure of
(a) Bi2Te3(111), (b) SnTe(111), and (c) Bi2Te3/SnTe(111). The
spectral spin differences of the outermost surface layer [(a) and
(b); κ = 0] and the SnTe interface layer [(c), κ = 1], presented
as color scale (in units of states/eV), are resolved with respect to
the Rashba component of the spin polarization. Arrows mark Dirac
surface or interface states, as in Fig. 3.
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to the valence bands, in Bi2Te3, or to the conduction bands, in
SnTe. With increasing κ , the Bi2Te3 layer “picks up” spectral
weight from SnTe, seen by the pale colors, and vice versa.

A first important observation is that a band gap opens up
in the � surface states because these states have identical spin
chirality; compare Figs. 3(a) and 3(b) as well as Figs. 3(e)
and 3(f). The width of this band gap increases with κ

[Figs. 3(c) and 3(g)], so that for full coupling these surface
states merge with the bulk-state continuum and are entirely
shifted out of the fundamental band gap [Figs. 3(d) and 3(h)].
The band gap opening is accompanied by the formation of
Rashba-type dispersions, clearly seen in Fig. 3(f). Such a
dispersion has been observed for surface states in Au(111)
and Bi/Ag(111).37,38 The hybridization of the two Dirac states
turns their linear dispersion of massless relativistic Fermions
into the spin-orbit-split dispersion of massive electrons.

Another striking feature is that the SnTe surface state at
M [green arrow in Fig. 3(e)] “survives” the formation of the
interface [green arrows in Figs. 3(d) and 3(h)]. More precisely,
its dispersion does not change significantly with κ [Figs. 3(e)–
3(h)], which is readily explained by the considerable local
band gap around M . It is this Dirac interface state that forms
a topologically protected conducting channel in an otherwise
insulating system. In contrast, the two Dirac surface states at
� in Bi2Te3/Sb2Te3 annihilate upon increasing the coupling
κ because both subsystems are in the same topological phase
(see Sec. III B).

In view of applications, the spin textures of the surface
and interface states are essential quantities; in particular, spin-
momentum locking could be used in spintronics devices.39 The
spin polarization of the Bi2Te3(111) Dirac state is of Rashba
type: the spin is mostly in-plane and perpendicular to �k‖ [see
Fig. 4(a)]; the degree of spin polarization equals 53 %, in
agreement with first-principles calculations.19,40 Along K-�,
it is tilted out-of-plane due to warping (not shown here).19,36

The � surface state of SnTe(111) shows the same spin
chirality as its counterpart in Bi2Te3 [see Fig. 4(b)], which is
indicated by the identical sign of their mirror Chern number.50

At the energy of the constant energy cuts of Fig. 2, the spin
helicity of all Dirac states is clockwise. Note within this respect
that Figs. 4(a) and 4(b) show facing surfaces. The surface states
are almost completely spin polarized (93 % close to �, 98 %
close to M); the state at M displays an out-of-plane component
of 15 % on the M-K line.

The spin-momentum locking of the surviving interface state
at M is proven in Fig. 4(c). In the SnTe interface layer, the
Rashba spin polarization is 98 % along �-M; along M-K it
equals 90 %, with an out-of-plane contribution of 21 %. In the
adjacent Bi2Te3 quintuple layer, these numbers are slightly less
(77 %, 81 %, and 10 %, respectively). This large degree of spin
polarization lends itself support for spintronics applications.

2. Model Hamiltonian

The Dirac states at M are well described by the Hamiltonian
(in atomic units; � = me = 1)

̂H = k2
x

2m�
x

+ k2
y

2m�
y

+ αxykxσy + αyxkyσx + αxzkxσz, (5)

which has been derived from �k · �p theory for the point group
Cs (see Refs. 35 and 41). �k‖ is centered at M , the σ ’s
are Pauli matrices. A fit to the tight-binding bands yields
effective masses of m�

x = −0.01 and m�
y = −0.03, which

indicate almost linear dispersion. The spin-orbit parameters
read αxy = 0.89 eV Å, αyx = 3.31 eV Å, and αxz = 0.77 eV Å.
The in-plane α’s are strongly anisotropic, as expected from the
elongated CECs. αyx is even larger than the “giant” Rashba
parameter of Bi/Ag(111) (3.05 eV Å, Ref. 38).

3. Surface and interface localization of Dirac states

We investigated the localization of the Dirac states for the
uncoupled (κ = 0) and the fully coupled (κ = 1) systems. For
the surface system SnTe(111), the Dirac surface state with a
Dirac point at � is strongly localized at the surface (top row
in Fig. 5); this is deduced from the color saturation decreasing
from (a) to (c) and almost zero spectral weight in (d) and (e).
The other Dirac state, with a Dirac point at M , is comparably
weakly localized at the surface, as seen by the nonzero but
small spectral weight in (d) and (e).

The Dirac surface state in Bi2Te3(111) is strongly localized
within the topmost quintuple layer (bottom row in Fig. 5),
in agreement with earlier calculations. This state shows
significant spectral weight (large color saturation) only in the
first quintuple layer (f) but almost zero spectral weight in the
deeper layers [(g)–(j)]. The layers chosen for panels [(a)–(e)],
for SnTe(111), have almost the same distance from the surface
atomic layer as the central atomic layers of the quintuple layers
of Bi2Te3; this facilitates comparing the decay of the surface
states in both compounds.

For the interface system SnTe(111)/Bi2Te3(111) (see Fig. 6,
κ = 1), the Dirac state with Dirac point at M , which is derived
from the surface state in SnTe(111), survives, while the other
two surface states annihilate. Its weak localization at the
SnTe(111) surface (top row in Fig. 5) is also seen in the Bi2Te3

half-space; more precisely, it shows weak but nonzero spectral
weight in the deeper layers, for example in (d) and in (i).

The Dirac surface state of Bi2Te3 can be “buried,” that is,
it is shifted from the outermost into deeper quintuple layers,
by surface modification.18 Attaching a SnTe half-space to the
surface of Bi2Te3 may be viewed as a drastic surface alteration,
which suggests a “burying” of the Dirac state. Inspection of
Figs. 6(f)–6(j), however, shows no indication of a shift to
deeper layers.

B. Interface electronic structure of Sb2Te3(111)/Bi2Te3(111)

For comparison with SnTe(111)/Bi2Te3(111), we calcu-
lated the electronic structure and its evolution with κ for
Sb2Te3(111)/Bi2Te3(111). Since both subsystems belong to
the same class of topological insulators—both their Z2 invari-
ants and mirror Chern numbers are identical—the Dirac sur-
face states of the uncoupled systems annihilate upon contact.

For the uncoupled subsystems, we find the established Dirac
surface states of Sb2Te3(111) and Bi2Te3(111) with their Dirac
points at � [κ = 0, panels (a) and (e) in Fig. 7]. Increasing the
coupling strength κ opens up band gaps at the Dirac points
[(b) and (f)], whose widths increase with κ [e. g., (c) and
(g)]. In other words, the lower and the upper part of the Dirac
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FIG. 5. (Color online) Localization of the surface states of SnTe(111) [top row, (a)–(e)] and Bi2Te3(111) [bottom row, (f)–(j)] for κ = 0
(i. e., uncoupled semi-infinite subsystems). For SnTe, spectral densities are shown for the second (a), the fourth (b), the seventh (c), the ninth
(d), and the twelfth (e) double layer, counted from the surface. For Bi2Te3, spectral densities are shown for the first five quintuple layers,
counted from the surface (f). The color scale in (a) gives the spectral density in states per eV; the two-dimensional Brillouin zone is sketched
in (f).
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FIG. 6. (Color online) Localization of interface states of SnTe(111)/Bi2Te3(111) for κ = 1 (i. e., fully coupled semi-infinite subsystems).
Panels and insets as in Fig. 5.
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FIG. 7. (Color online) Interface electronic structure of Sb2Te3(111)/Bi2Te3(111). Spectral densities of the outermost quintuple layers of
Sb2Te3 [top row, (a)–(d)] and Bi2Te3 [bottom row, (e)–(h)] are shown for selected coupling strength κ , as indicated in each panel (κ = 0 for
no coupling, i. e., separate surfaces; κ = 1 for fully coupled subsystems). The color scale in (a) gives the spectral density in states per eV; the
two-dimensional Brillouin zone is sketched in (e).

cones detach; the lower part is shifted towards the valence
bands while the upper part is shifted towards the conduction
bands. For full coupling, κ = 1, the Dirac states are completely
removed from the fundamental band gaps and merge with the
bulk states, making the entire system insulating.

C. Sum rule for the Dirac states

The annihilation and survival of the Dirac states at a
common interface with preserved mirror symmetry can be
understood by means of a sum rule for the associated mirror
Chern numbers.7 For Bi2Te3 and SnTe, the Bloch states with
mirror eigenvalue +i possess the Chern numbers nBiTe

+i =
−1 and nSnTe

+i = −2, respectively. At the common interface,
nSnTe

+i − nBiTe
+i = −1 holds, which indicates that one interface

state with eigenvalue +i survives. The same rule applies
for the Bloch states with eigenvalue −i; thus, there exists
one topologically protected interface state with this mirror
eigenvalue, too.

Concerning Sb2Te3 and Bi2Te3, nSbTe
±i = nBiTe

±i = ∓1 holds
because both subsystems show identical mirror Chern num-
bers. For the interface, this leads to nBiTe

±i − nSbTe
±i = 0 which

implies that Dirac states do not “survive,” in agreement with
the electronic-structure calculations (Fig. 7).

IV. CONCLUDING REMARKS

The Dirac surface states of Z2 topological insulators are
protected by time-reversal symmetry which makes them
robust against structural disorder. In the present study, the
remaining Dirac interface state is topologically protected by
mirror symmetry because it is derived from the topological
crystalline insulator SnTe. Hence, structural disorder which
breaks the reflection symmetry would lead to opening of a
band gap at the Dirac point. Since the Dirac point lies within
the conduction bands, in-plane transport would be marginally
affected by this band gap. Hence, a Bi2Te3/SnTe(111) interface
is expected suitable for future electronic applications. In
a recent transport experiment on a SnTe/Bi2Te3(111) pn

junction,26 a signature of a conducting interface channel has
not been found, which is attributed to electric decoupling of
the subsystems due to doping.

To experimentally prove our theoretical findings, one could
think of a film geometry investigated by angle-resolved
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photoelectron spectroscopy in the soft x-ray regime.42 This
range of photon energies overcomes the too small electron
mean free path in the vacuum ultraviolet range43 and the
too small photoionization cross sections in the hard x-ray
regime, thus allowing Fermi surface mapping at the buried
interface. Depth selectivity could be achieved by soft x-
ray standing wave spectroscopy, e. g., Refs. 44 and 45.
Considering spin-dependent transport, the interface state could
be proven in (SnTe/Bi2Te3)n heterostructures: the conduc-
tance parallel to the interfaces increases with the number

of interfaces in steps of the conductance quantum. The
spin polarization could be probed by the inverse spin Hall
effect.46
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(“quantum confinement”). These artificial gaps could falsify the
topological character of the surface or interface states.

49Termination by Sn atoms instead of Te atoms shifts the Dirac
points from the conduction band edge to the valence-band edge;

our calculations for Sn-terminated SnTe(111) confirm the results
presented in Fig. 2 of Ref.47.

50Due to spin-orbit coupling, the parity of the spatial part of a wave
function and its spin polarization are entangled.35
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