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Spectral gaps of Affleck-Kennedy-Lieb-Tasaki Hamiltonians using tensor network methods
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Using exact diagonalization and tensor network techniques, we compute the gap for the Affleck-Kennedy-
Lieb-Tasaki (AKLT) Hamiltonian in one and two spatial dimensions. Tensor network methods are used to extract
physical properties directly in the thermodynamic limit, and we support these results using finite-size scalings
from exact diagonalization. Studying the AKLT Hamiltonian perturbed by an external field, we show how to
obtain an accurate value of the gap of the original AKLT Hamiltonian from the field value at which the ground
state verifies e0 < 0, which is a quantum critical point. With the tensor network renormalization group methods
we provide direct evidence of a finite gap in the thermodynamic limit for the AKLT models in the one-dimensional
chain and two-dimensional hexagonal and square lattices. This method can be applied generally to Hamiltonians
with rotational symmetry, and we also show results beyond the AKLT model.
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I. INTRODUCTION

In quantum many-body systems, the low-energy behavior
is determined by the ground state and low-lying excitations.
When there is a spectral gap above the ground state, the system
is usually robust against small perturbations. Among the
well-known examples are the superconductivity and quantum
Hall effects. The existence of a spectral gap above the ground
state is also an important condition for robust topological
phases.1 In one-dimensional spin chains the relation of the
Hamiltonian and the existence of a spectral gap have been
extensively studied and understood. For example, Haldane
provided convincing field-theory arguments on the existence
of a finite spectral gap for integer-spin Heisenberg chains,2,3 in
contrast to half-odd-integer spins.4 This conjecture was later
substantiated by a rotationally invariant model of a spin-1 chain
constructed by Affleck, Kennedy, Lieb, and Tasaki (AKLT), in
which an exact ground-state wave function is known and the
finite spectral gap can be shown to exist. Their construction
was generalized and extended,5,6 particularly the technique of
establishing the spectral gap.7,8

In addition to the one-dimensional spin-1 model, AKLT
also generalized their valence-bond solid (VBS) construction
to higher dimensions.5 The AKLT Hamiltonians involve
only nearest-neighbor two-body interactions and possess the
rotational symmetry of spins and the spatial symmetry of
the underlying lattice. With suitable boundary conditions,
their ground states are unique and respect the symmetries
of the Hamiltonians. However, the existence of the spectral
gap above the unique ground state has not been established
rigorously. What is known is that the correlations are decaying
exponentially, e.g., for the AKLT ground states on the
honeycomb and square lattice.5 This only suggests that the gap
is likely to exist since it is neither known nor necessary that
exponential-decay correlation functions imply the existence of
a gap unless the system has Lorentz symmetry. However, if the
system has a finite gap above its ground state, the connected
correlation functions are known to decay exponentially. It is
also known9 that if the ground-state correlation functions have
power-law decay, the system is gapless.9,10 These intuitions are

reinforced by numerical studies of the AKLT in the honeycomb
lattice, first performed by Ganesh et al. on finite systems, and
their finite-size scaling suggests a nonzero spin gap in the
thermodynamic limit.11

In a very different research direction, AKLT states have
recently been explored in the context of quantum computation
by local measurement.12–14 In particular, the spin-1 AKLT
chain can be used to simulate single-qubit gate operations on
a single qubit,15,16 and the spin-3/2 two-dimensional AKLT
state on the honeycomb lattice can be used as a universal
resource.17–19 An important question regarding universal
resource states is whether they can be the unique ground state
of a physically reasonable, gapped Hamiltonian.20 If so, these
quantum computational resource states may be created by
quantum engineering the Hamiltonian and cooling the system
to sufficiently low temperature. Therefore, the issue of spectral
gaps in AKLT Hamiltonians in two and higher dimensions
becomes even more pressing.

Here, we study the spectral properties of the AKLT
Hamiltonians, and in particular, we investigate the energy gap
of one-dimensional (1D) spin-1 chains and two-dimensional
(2D) hexagonal and square lattices. The general formulation of
the AKLT Hamiltonian is a set of projectors acting on nearest
neighbors and projecting into the subspace with maximum
spin magnitude that two neighboring can, in principle, form:

HAKLT =
∑
〈i,j〉

P (Sij =smax). (1)

For example, smax = 2 for the spin-1 chain, smax = 3 for the
spin-3/2 AKLT model on the honeycomb lattice, and smax = 4
for the spin-2 model on the square lattice. Defined in this way,
the Hamiltonian is semidefinite positive, and the ground state
has energy E0 = 0. The ground state of this system is a VBS21

(see Fig. 1), which is constructed by allocating on each site
as many (virtual) spin-1/2 particles as neighboring sites z

(e.g., z = 2 for 1D chains, z = 3 for the hexagonal lattice,
z = 4 in the 2D square lattice) in their symmetric subspace.
The local spin magnitude at each site is thus z/2. For each
pair of two neighboring sites, the VBS construction places a
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FIG. 1. (Color online) The VBS is constructed by allocating on
each site as many spin-1/2 particles (in their symmetric subspace)
as neighboring sites, e.g., (a) two for 1D chains, (b) three for the
hexagonal lattice, and (c) four in the 2D square lattice. For each pair of
neighboring sites, the VBS state places a singlet between two spin-1/2
particles. Having a singlet connecting sites imposes restrictions on
the total spin evaluated on neighboring sites by P (S=smax).

singlet between the associated two virtual spin-1/2 particles.
Having a singlet connecting sites imposes restrictions on the
total spin evaluated on neighboring sites. In one dimension,
for example, two neighboring sites cannot add up to spin
2, so the projector P (S=2) (more generally, P (S=smax)) to this
subspace will yield a zero value when evaluated over the VBS.
Being a semipositive definite operator, the VBS is the ground
state. With an appropriate boundary condition, it is the unique
ground state.22

Let us briefly explain why the AKLT Hamiltonians are
spin rotation invariant. Consider the spin-1 chain. Let �Sij ≡
�Si + �Sj . Then projection of sites i and j to their joint spin-2
subspace is given by P = λ[S2

ij − 0][S2
ij − 1(1 + 1)], as it

annihilates states in Sij = 0,1 subspaces. The coefficient λ

is determined by the requirement that P is a projection
on the Sij = 2 subspace, i.e., P |Sij = 2,Sz〉 = |Sij = 2,Sz〉,
which leads to 1/λ = [2(2 + 1) − 0][2(2 + 1) − 1(1 + 1)] =
12. Then by expanding S2

ij = S2
i + S2

j + 2�Si · �Sj and using the
fact that S2

i and S2
j are constants (two for spin 1), we obtain the

result that the Hamiltonian contains a polynomial of �Si · �Sj

up to degree 2 (and smax in general). The resultant AKLT
Hamiltonians for the spin-1 chain, the spin-3/2 honeycomb
lattice, and the spin-2 square lattice are shown in Eqs. (3), (7),
and (8), respectively. Thus, we arrive at the conclusion
that the AKLT Hamiltonian is spin rotation invariant and,
additionally, semidefinite positive. Its ground state, the AKLT
wave function, has energy E0 = 0. This ground state, the VBS,

has also total angular momentum S tot = 0 and z component
S tot

z = 0. The AKLT Hamiltonian commutes with (S tot)2

(where �S tot ≡ ∑
i
�S(i)) and S tot

z ≡ ∑
i S

(i)
z ; thus, they are good

quantum numbers, and the eigenstates of the AKLT (or any
such spin-rotation-invariant) Hamiltonian can be labeled by
|S tot,S tot

z ,α〉, where α is some additional labeling for different
ways of constructing |S tot,S tot

z 〉 states. Furthermore, for a given
S tot and α, the different sublevels characterized by S tot

z are
degenerate.

We show here how the conservation of the angular momenta
can be utilized to compute the gap (even in the thermodynamic
limit) by adding a local-field term h S tot

z to the Hamiltonian.
We shall consider the total Hamiltonian

H (h) = HAKLT + h
∑

i

S(i)
z . (2)

Because [S tot
z ,HAKLT] = 0, the VBS ground state does not

interact with the local field and has a ground-state energy
that remains zero for any value of h. For h > 0, any
excited state with Sz �= 0 interacts with the local field, and
the corresponding zero-field degenerate levels split linearly
with Sz. Here we assume that spin triplets are elementary
excitations, as will be justified later. If there is a gap, for some
field value ht > 0 the energy of some level will cross the zero
energy to negative, becoming the ground state of the system at
the field ht . We can observe this transition by computing the
energy or the z-component total angular momentum S tot

z of the
ground state and detecting the transition to Sz �= 0 (nonzero
magnetization). Interestingly, this can be computed efficiently
in the tensor network (TN) description.

As shown schematically in Fig. 2, the response of the
nonzero angular momentum states is linear with the field,
so from the slope in the energy curve for h > ht we can
determine (by linear extrapolation) the energy of each state
at h = 0. As for the gap, we are interested in the first excited
state(s). It might be possible that as the field is increased, such
states never appear as the ground state (of the field-dependent
Hamiltonian) because (i) they may be insensitive to the field,
i.e., also characterized by S tot = S tot

z = 0, or (ii) before they
cross the zero-energy curve, higher-energy states already cross
the zero. We shall argue and provide evidence from exact
diagonalization on small systems that the first excited states
of antiferromagnetic Hamiltonians (such as Heisenberg and
AKLT) are never characterized by S tot = S tot

z = 0 but by S tot =
1,S tot

z = ±1,0. If case (ii) occurs, then the determination of
the gap from our method will turn into a set of lower bounds.
However, we shall also show numerical evidence that case (ii)
does not occur in our consideration. Moreover, analysis from
field-theory treatment on the spin-1 Heisenberg chain predicts
that triplets are indeed the lowest excitations.23 An important
part of this work is dedicated to showing that the identified
transition shows the exact value of the gap.

In this work we utilize various numerical methods. We use
exact diagonalization for small system sizes and TN techniques
to study systems directly in the thermodynamic limit. In par-
ticular, we use the 1D matrix product state (MPS) variational
method infinite time-evolving block decimation (iTEBD)24

for the AKLT and Heisenberg spin chains. For 2D systems, we
use a projected entangled pair states (PEPS)25 description of
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FIG. 2. (Color online) (left) A schematic picture for the level
splitting under the external field h for a generic antiferromagnetic
spin-rotation-invariant Hamiltonian. A represents the location of the
ground-state energy at the zero field. The crossings at B, C, etc.,
represent the ground-state switching to one with a different set of
quantum numbers. In the thermodynamic limit, the envelope curve
for the E0 plateau (if it exists) and the successive crossings form
the ground-state energy curve for the system in the presence of the
external field h. Knowing the first crossing and the slope, one can
extrapolate to obtain the zero-field spectral gap. If the first crossing
is by the one with a slope of −1, then the value of h at the crossing
point gives the spectral gap. One is interested in the gap in the
thermodynamic limit, i.e., the property of this crossing in such a limit.
(right) The actual spectrum of a N = 8 AKLT chain with external
field [Eq. (2)]. Notice the presence of singlets as excitations at high
energies.

the quantum system and compute expectation values using
the tensor network renormalization group (TNRG). These
methods have now become standard tools to obtain physical
properties in the thermodynamic limit.

We compute the gap of the AKLT Hamiltonian in one
dimension for finite chains of increasing length, and we
directly study as well the infinite case by means of MPS
techniques. The resulting gap value � = 0.350 agrees with
previous bounds, but under the above-mentioned assumptions
our value is a direct estimation of the gap. We apply the same
ideas to the spin-3/2 hexagonal lattice and find a gap � = 0.10
using infinite-size tensor network methods. Our value is in
excellent agreement with previous results obtained by exact
diagonalization over small clusters11 of N = 12–18 spins. We
also obtain a value of the gap � = 0.03 for the spin-2 square
lattice. Notice that all these gap values are obtained from the
AKLT Hamiltonian formulated to be the sum of projectors
[see Eqs. (3), (7), and (8)], with a coupling term J < 1 that
rescales the energy spectrum, compared to the corresponding
Heisenberg Hamiltonians.

We organize this paper by showing first exact results for the
1D spin-1 AKLT model in Sec. II. We apply MPS techniques to
compute the gap in the thermodynamic limit in Sec. III, where
we check our method against density-matrix renormalization

group (DMRG) results for the spin-1 Heisenberg chain.
Then we show how similar techniques can be used for the
computation of the gap in 2D systems: in Sec. IV we show
results for the hexagonal spin-3/2 lattice, and in Sec. V
we compute the gap of the square spin-2 lattice. Finally,
conclusions are presented in Sec. VI.

II. 1D AKLT HAMILTONIAN

In this section we put on solid ground and elaborate the
ideas presented in the Introduction by running some exact
calculations for small 1D systems. We explore the energy
spectrum around h = 0 for the total Hamiltonian in Eq. (2),
where for spin-1 systems we have

HS=1
AKLT = 1

2

∑
〈i,j〉

[
�Si · �Sj + 1

3
(�Si · �Sj )2 + 2

3

]
. (3)

We note that due to the requirement of being a projector
for nearest-neighbor interaction, there is a factor J = 1/2
compared to the usual Heisenberg Hamiltonian with J = 1.
In order to ensure the uniqueness of the ground state in finite
calculations we impose periodic boundary conditions (PBC).

We compute the energy of the six lowest-energy states for
different values of h and evaluate S tot

z for the ground state.
In Fig. 3 we plot these values for a system of N = 12 as an
illustration. In the top panel we plot the energy per particle
of each energy level, and the bottom panel shows S tot

z of the
ground state. At h = 0 we observe a ground state with E0 = 0,
the AKLT state, and a gap with the first excited state with a
triple degeneracy and S tot

z = −1,0,1. The fact that the energy
splits into three levels linearly with the field shows that they
have Stot = 1. Of these three lowest-energy excited states, one
with S tot

z = −1 interacts with the field h > 0 linearly with
slope S tot

z = −1. At a given value of ht = �, this excited state
has energy E1 = 0 and becomes the ground state for h > ht .
Other higher levels will come down and cross this level for
larger h. The original ground state, having S tot

z = 0, keeps
having E0 = 0 for any finite h. In this scenario there are two
ways to extract the gap. First, we can extrapolate from the value
of h = ht back linearly to h = 0 and locate the cross point with
the y axis. Second, without extrapolation, this value of the field
ht provides a direct reading of the exact value of the energy gap.
(This second view will be useful in the thermodynamic limit,
where one has access to only energy and magnetic moment per
site.) The transition to a ground state with S tot

z = −1 is just the
first of a series of successive transitions to ground states with
increasing S tot

z which appear after the crossing of the current
ground state with excited states with higher S tot—and thus
the field-dependent ground-state energy will have increasingly
steeper slope as the field increases. Moreover, for each value
of h, S tot

z is the derivative of the energy, and we can observe
the transition from these two magnitudes.

Our exact results for different values of N are shown in
Table I, including similar calculations for the Heisenberg
model. Unlike this latter case, in the AKLT we observe
a growing energy gap for longer systems, converging to a
value � = 0.350. This is in agreement with previous upper
bounds.7,26 The second transition converges to �2 = �,
which suggests that even in the thermodynamic limit the first
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FIG. 3. For the Hamiltonian equation (2) we plot (top) the energy
per particle of the six eigenstates with lower energy and (bottom)
S tot

z of the ground state as a function of the field h, with system
size N = 12 and PBC. At h = 0 we observe a gap � between the
ground state and the triple-degenerate first excited state. Of these three
states, one crosses the ground state at h = � after interacting linearly
with the field. At this point, the ground state makes a transition to
S tot

z = −1. Successive crossings of higher S tot
z will further decrease

the total S tot
z of the ground state, and they become the new low-energy

states, up to a total S tot
z = Ns.

transition to a S tot
z �= 0 ground state will take place for a state

with S tot
z = 1. As shown in Fig. 4, the gap for the AKLT has

a clear 1
N

dependence. We will complete this result in the
following sections with direct numerical calculations in the
thermodynamic limit using tensor network methods, but this
finite-size scaling suggests that our readings of the transition
in the ground state at ht provide a direct measurement of
the gap.

TABLE I. Exact gap calculation for spin chains in periodic
boundary conditions with increasing length N . We show also the
energy gap of the second excitation.

AKLT Heisenberg

N E1 − E0 E2 − E0 E1 − E0

8 0.349849122 0.4988577 0.5935552
10 0.350091873 0.4477184 0.5248079
12 0.350120437 0.4187836 0.4841964
14 0.350123733 0.4009563 0.4589653
16 0.350124109 0.3892351 0.4427955

−2.8 −2.7 −2.6 −2.5 −2.4 −2.3 −2.2 −2.1 −2 −1.9
−4
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log(1/N)

lo
g(

Δ/
N

)
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/N = 0.998/N − 1.05
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FIG. 4. (Color online) From the exact diagonalization we extract
estimations of the gap in the thermodynamic limit of the AKLT Hamil-
tonian. The energy gap per site �/N vs 1

N
for N = {8,10,12,14,16}.

The slope of this plot, with a good linear fitting, provides the gap
estimation � = 0.350. We plot in blue the difference between the gap
to the first excitation and to the second excitation (E2 − E1)/N vs 1

N

for N = {8,10,12,14,16}. With a good square fitting, we observe at
1
N

→ 0 a small but positive value of (E2 − E1)/N , so we expect that
the first transition to Sz = −1 is robust in the thermodynamic limit.

III. MPS CALCULATIONS OF FINITE
AND INFINITE 1D SYSTEMS

The exact results in Sec. II confirm the picture described in
Sec. I and show how one can extract the value of the gap from
the magnetization of ground states. Unfortunately, by exact
diagonalization, this can be computed for only a few particles.
We complete these calculations by showing results computed
using tensor network techniques in 1D systems. The following
sections will present results for 2D lattices.

MPS and tensor networks provide a detailed description of
ground states of local Hamiltonians and are efficient methods
for systems with an energy gap. This implies that for the
gapped phase we are exploring here, we can obtain good
approximations to the ground state at h = 0 if there is a gap in
the AKLT model. However, we have seen that this gap closes
for higher h and then follows a succession of transitions to new
ground states. The region near the first transition represents a
region close to a continuous quantum phase transition. This
translates into a not-so-efficient description of the ground state
in this region, so we expect a need for higher bond dimension
χ for the ground-state representation. Nevertheless, a good
estimation of the phase-transition point can be identified by
suitable scaling analysis.27

Even though we can complete the finite-size calculations
using finite MPS to obtain the gap for larger systems, due to
the fast convergence of this transition value for short chains
this task brings little additional information. Moreover, the
precision required to assess the 1

N
dependence found above

is numerically demanding. This requires, e.g., χ = 20 for
size N = 12 in order to obtain the transition for a value of
h compatible with the exact diagonalization. Lower values of
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FIG. 5. Ground-state energy per site of the AKLT Hamiltonian
for an infinite chain computed using iTEBD with χ = 30. We can
identify a plateau around h = 0, and the transition to e0 < 0 indicates
a change in the ground state. The value hc is used to obtain the
gap �.

D will place this transition at higher h, which exemplifies the
need for relatively high χ values even for small chains due to
the critical character of the transition.

We can access directly by means of the iTEBD algorithm
a representation of the infinite chain by imposing translational
invariance in the tensor description (for details see Ref. 24).
The final process, however, will produce energy and magnetic
moment per particle, as opposed to the total energy and total
magnetic moment of the exact diagonalization and MPS for
finite systems. This means that we cannot extrapolate the
energy from the transition point back to h = 0 to obtain the
vertical offset as the energy gap. However, using the second
viewpoint mentioned earlier, the field value at which the energy
density and the magnetization becomes negative is the value
of the energy gap, and no extrapolation is necessary.

We show the iTEBD results for the energy per site
in Fig. 5, where we can observe clearly a plateau up to
h ∼ 0.35, indicating the gapped phase. This result resembles
those in Fig. 3 for N = 12 due to the fast convergence of
the spectrum. The solid line in Fig. 6 shows M = Sz per
site in the thermodynamic limit as computed using χ = 60
iTEBD. The energy curve displays a plateau followed by a
transition at h = 0.350. The points in Fig. 6 are results for
N = 10 obtained by exact diagonalization, displayed here for
reference. For an accurate estimation of the transition, we
study the scaling Sz ∼ (h − hc)β to obtain � = 0.350. These
results are computed using χ = 60 and are shown in the inset
of Fig. 6.

At this point it is interesting to consider the limiting
cases we have already explored. Observing the magnetiza-
tion curves, new plateaus of the magnetization appear for
increasing N , corresponding to the new values available to
the magnetization from the new spin combinations. However,
the gap and the value of the field for the totally polarized
state are similar for different sizes. This restricts the existing
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g(

M
)

 

 

FIG. 6. (Color online) Sz per site of the AKLT Hamiltonian for
an infinite chain computed using iTEBD with χ = 30 (red solid line).
The exact results for N = 10 are shown as black crosses for reference.
In the inset, with a scaling fit of Sz close to the transition, we obtain a
value of the transition � = 0.350. A bigger bond dimension χ = 60
is used to perform this fit.

and new plateaus of the magnetization to the same range of
field values. Progressively with increasing N , the plateaus will
shorten their width, and in the limit N → ∞ the plateaus will
appear at any value of Sz (per particle) with an infinitesimal
width. This is clearly depicted in Fig. 6. The transition point, as
read from the magnetization, agrees with the value � = 0.350
obtained from the finite-size scaling.

We comment on an interesting observation. The last
plateau where the spins become completely polarized,
|−1,−1,−1, . . . 〉, begins at h = 2. This is due to a transition
from a previous plateau characterized by a state of the form

|ψ〉 = 1√
N

N∑
j=1

(−1)j |−1〉|−1〉

· · · |−1〉j−1|0〉j |−1〉j+1 · · · |−1〉. (4)

By direct calculation, we can show that this is an eigenstate
and has energy (N − 2) − h(N − 1). Comparing with the
completely polarized state, which has energy N − hN , we
find that the crossing occurs at h = 2. As we shall see in
the two-dimensional case, the same type of states gives the
last crossing at h = 3 in the honeycomb lattice and at h = 4
in the square lattice case (in general, h = z, the number of
neighbors).

The existence of a finite nonzero gap in the thermodynamic
limit was already established by AKLT5 via lower bounds,
and their technique was subsequently generalized by Knabe7

and by Nachtergaele.8 However, the lower bounds provided by
these methods are not tight. Our method for accessing the gap
via the external field h = � holds even for N → ∞ whenever
the first excited state, which is a triplet, has total Sz = −1
(as the system approaches infinity28). In this direction is
important to study the structure for the first excited state.
In Ref. 7 the elementary excitations (so-called crackions)
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are expressed as a variational perturbation over the AKLT
state by the superposition of states formed by breaking
one of the virtual singlet bonds. These excitations, in fact,
are not eigenstates of the Hamiltonian in Eq. (3) but pro-
vide an upper bound of the energy of the first excited
state. The value � = 10

27
∼= 0.37 can also be derived from the

single-mode approximation26 and is close to but higher than
our estimation of � = 0.350.

From the proposed excited states we also discard the
existence of other states with S tot = 0 between the ground
state and the first excitations with S tot = 1. These excitations
do not interact with the field h and thus will never cross the
ground state, making them invisible to our method. However,
field-theory arguments23 and numerical results29,30 indicate
that the first excitation is a triplet with S tot = 1, and the first
excitation with S tot = 0 appears with very high energy. This is
consistent with our finite-size results in Table I and Fig. 4.

1D bilinear biquadratic model

The AKLT model is a particular case of the family of the
bilinear biquadratic Hamiltonian written as

HBB =
∑
〈i,j〉

[�Si · �Sj + γ (�Si · �Sj )2]. (5)

We note that the AKLT model corresponds to γ = 1/3.
However, in order to write the AKLT model as a composition
of projecting operators one includes an overall factor J = 1/2
[see Eq. (3) as the Hamiltonian used earlier].

As a direct extension of the previous analysis of the AKLT
model, we use the same techniques to explore the gap of Eq. (5)
for the Heisenberg model, i.e., the case with γ = 0. Previous
DMRG calculations show accurately a gapped phase with
� = 0.4105,29 and bounds to this gap have been calculated
in Ref. 30. In Ref. 31 a bosonic model for the excitations of
the Heisenberg model provides a scaling function around the
transition to e0 < 0 as

M ∼
√

(h − hc)�

2vπ
, (6)

where � is the energy gap and v is the magnon velocity.
Using the method presented above, we compute the gap

and magnon velocity using a fit of Sz around hc, which also
provides the value of the gap �. Our results are shown in
Fig. 7. These results are obtained with iTEBD and χ = 80
with fourth-order Trotter evolution for the state preparation.
From the fit (see the inset of Fig. 7) we obtain � = 0.4105 and
v = 2.37, in good agreement with the results in Refs. 31–33
and the DMRG result in Ref. 29.

IV. HEXAGONAL LATTICE IN 2D

Using PBC, the spin-3/2 AKLT state, e.g., on the hon-
eycomb lattice, is the unique ground state of the following
Hamiltonian with spin-rotational symmetry:

H
S=3/2
AKLT = 27

160

∑
〈i,j〉

[
�Si · �Sj + 116

243
(�Si · �Sj )2

+ 16

243
(�Si · �Sj )3 + 55

108

]
, (7)
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FIG. 7. For the Heisenberg spin-1 model, the transition in the
magnetization M vs the field h. Excitations are states of S tot

z = −1,
and we read directly the gap from the transition in the ground-state
magnetization S tot

z �= 0. The dotted line is included as a reference, not
actual data. The inset shows a detailed view of the transition region.
The solid line is a fit to the function M ∼

√
(h−hc)�

2vπ
. From the fit we

obtain � = 0.4105 and v = 2.37.

defined on trivalent lattices.5 If open boundary conditions are
used or the boundary spin-3/2 particles are terminated by
spin-1/2 particles with Heisenberg-type interaction (between
the spin-1/2 particle and the boundary spin-3/2 particle), the
ground state is unique. Similarly, AKLT states defined on any
tetravalent lattice, such as the square, kagome, and the 3D dia-
mond lattices, are the ground states of a spin isotropic Hamil-
tonian with the highest-order term proportional to (�Si · �Sj )4.

In order to study this lattice in the thermodynamic limit
we use the TNRG34 method to obtain expectation values
of the quantum states represented as a 2D tensor network
in PEPS form.35,36 The tensors used in this calculation are
optimized using an imaginary-time evolution. After each step
of the Trotter decomposition one performs a truncation of the
bond dimension of the tensors using a minimal set of tensors
to represent the environment (i.e., simple update36). More
complete environment settings can be obtained using second
renormalization group (SRG) techniques.37 After the tensor
network preparation, the TNRG method is used to compute
the energy and magnetization per site in the thermodynamic
limit from the optimized tensors. The tensor preparation
stage is governed by a parameter D stating the size of
the tensors, and another parameter Dcut is used to truncate
the degrees of freedom during the renormalization group
(RG) procedure.34–36 We proceed to compute e0 and mz

by increasing both D and Dcut until convergence of these
magnitudes is reached.

Obtaining expectation values for finite systems with tensor
networks requires either setting PBC or including boundary
spin-1/2 particles to obtain a unique ground state. These two
approaches are more involved than TNRG, and we are mainly
interested in proving properties of the infinite lattice. For exact
calculations in finite systems, we impose PBC in our numerics.
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FIG. 8. Ground-state energy per site e0 as a function of the field
h, computed with D = 3 and Dcut = 20. We observe a flat region
around h = 0, indicating the presence of a gap �. The transition to
e0 < 0 at hc provides a direct reading of a lower bound to the gap.

The approach to 2D systems presented here is the same as
for the 1D spin chain. In the infinite limit we have access to
only expectation values per site, which is enough to identify the
transition between the ground state and excited states at some
h, as will be shown. Scanning for different values of h and com-
puting the energy and magnetization, we identify the transition
at which they first become negative, i.e., e0 < 0 and mz < 0.

We plot the results of this procedure to obtain the energy
per site in Fig. 8 using D = 3 for the ground-state tensors and
Dcut = 20 for the RG method. The TNRG is performed here as
described in.35,36 We clearly observe a plateau of e0 = 0 up to
a value around hc = 0.1. A more accurate analysis is presented
for the magnetization Sz per site in Fig. 9. We again observe a
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0.2

h

M
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−0.2

−0.15

−0.1

−0.05

0

 

 

D=2

D=3

D=4

D=5

D=6

FIG. 9. (Color online) Sz per site of the AKLT Hamiltonian for
an infinite hexagonal lattice as computed using TNRG with D = 3
and Dcut = 20 (red solid line). The crosses are exact results for a 2 × 4
lattice using PBC. The inset shows the transition in the magnetization
of the infinite hexagonal lattice using D = {2,3,4,5,6} and Dcut = 20.
For D = 6 we obtain almost identical results as for D = 5.

FIG. 10. Disposition of the lattices used for finite-size calcula-
tions of the finite hexagonal lattice with PBC to compute the gap
by exact diagonalization. (left) For a lattice (white circles) we find
�2×4 = 0.092029. (right) Introducing four additional sites (black
circles, with a total size of 3 × 4), we obtain �3×4 = 0.095345.

flat region before the transition around hc = 0.1, indicating the
presence of an energy gap. These results are in good agreement
with finite size calculations11,38 over small clusters of spins.
The inset shows results around the transition point using D =
{2,3,4,5,6} for the ground state tensors, and Dcut = 20 for
the RG method. Note that we observe the transition to the
fully polarized state of the hexagonal lattice at a value of the
field hf = 3. As explained above, this transition happens at
hf = 2s (with s being the local spin).

We compare the TNRG results with exact diagonalization
for small lattices as a reference. We construct a small lattice
with PBC with a size of 2 × 4 and 3 × 4 to obtain the gap
(see Fig. 10). For these settings we obtain the gap values
�2×4 = 0.092029 and �3×4 = 0.095345. Notice that again
the first transition provides an exact reading of the gap: this
suggests that for small systems the single spin excitations are
the lowest excited states, as in the 1D chain. However, without
bounds for the excitation energy in the infinite hexagonal
lattice, we can only conjecture that the transition values
coincide with the gap in the thermodynamic limit; that is, the
elementary excitations have S tot = 1.

As shown in the inset of Fig. 9 the transition point shifts to
lower values of hc as the bond dimension D increases. Exact
diagonalization results suggest, as in 1D chains, higher values
of the gap for larger systems. Identifying a critical transition
using tensor network methods requires large bond dimensions
and a careful choice of the interval for the scaling fit.39

To identify the infinite-system transition point from our
results using TNRG (see the inset in Fig. 9), we perform
a scaling analysis for different values of D. We use the
scaling relation for the magnetization close to the transition
point M ∼ (h − hc)β . Fitting the energy, we obtain hc =
{0.12,0.108,0.104,0.100,0.100} for D = {2,3,4,5,6}, respec-
tively. Using the magnetization in a similar, way we obtain
hc = {0.12,0.108,0.105,0.102,0.101}. The fitting results for
the magnetization Sz are shown in Fig. 11.

V. SQUARE LATTICE IN 2D: INFINITE
STUDY WITH TNRG

We finally address the 2D square lattice, where the AKLT
state can be viewed as four spin-1/2 particles at each site,
for a total local spin s = 2. The AKLT Hamiltonian projects
two neighboring s = 2 particles into the spin s = 4 subspace,
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FIG. 11. (Color online) Using the scaling relation M ∼
(h − hc)β , we obtain the value of the critical transition for
D = {2,3,4,5,6} at hc = {0.12,0.108,0.105,0.102,0.101}, respec-
tively. Using the energy instead of the magnetization (not shown
here), we obtain similar transition values. Notice the close agreement
between the results obtained with D = 5 and D = 6.

resulting in the Hamiltonian

HS=2
AKLT = 1

14

∑
〈i,j〉

[
�Si · �Sj + 7

10
(�Si · �Sj )2

+ 7

45
(�Si · �Sj )3 + 1

90
(�Si · �Sj )4

]
. (8)

Following the same procedure as for the spin-1 and spin-
3/2 AKLT systems, we compute the transition hc from the
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FIG. 12. (Color online) Magnetization curve for the spin-2
AKLT Hamiltonian in the presence of an external field h on the
square lattice. We show here results for D = {2,3,4} simulations
using TNRG where we set Dcut = 20. Notice the close agreement
between the results obtained with D = 3 and D = 4. In the inset,
using the scaling relation M ∼ (h − hc)β , we plot log(h − hc) vs
log(M), from which we obtain a transition at hc = 0.03.

magnetization Sz. While the results shown here are ob-
tained using the higher order tensor renormalization group
(HOTRG)40 to perform the TNRG after the state prepara-
tion, we have obtained compatible results using other TNR
proposals35,41 at similar working values of Dcut.

Our results are obtained solely using TNRG in the infinite
limit and are shown in Fig. 12 for D = 2,3. Even though the
plateau cannot be clearly observed as in the other models, a
scaling fit of the magnetization (see the inset in Fig. 12) is com-
patible with a gap value � = 0.03. Such a small value has to be
considered together with the prefactor J = 1

14 , so the Hamil-
tonian is formed as a combination of projecting operators.

VI. CONCLUSIONS

The study of the gap of AKLT Hamiltonians conducted
here starts with exact diagonalization for finite systems that
suggests the existence of a gapped phase and provides evidence
supporting that the first excited states form a triplet. For 1D
spin-1 chains we have both lower and upper bounds for this
gap, which agree with our finite-size scaling results. Using
MPS, we can access longer system sizes, but the gap is clearly
observed to converge quickly even at small chain lengths. We
complete the picture in 1D with iTEBD results that also agree
with the finite-size results, resulting in a gap for the spin-1
AKLT chain of � = 0.350.

In two dimensions, numerical exact results reach only
hexagonal lattices of small size. Finite-size PEPS simulations
may complement these results for a proper finite-size scaling;
however, we did not do this. Instead, using TNRG techniques,
we directly access the thermodynamic limit and obtain a value
of the gap of � = 0.10, in agreement with the finite results.
This agreement arises from two observations: the gap increases
with the system size, and the fast convergence of the gap with
N can be observed even in very small systems. For the square
lattice we cannot obtain exact results for appropriate sizes, and
we rely solely on TNRG results. These results suggest also a
gapped phase with � = 0.03.

Our method to compute the gap in the limit of infinite
system size introduces an additional field term in the Hamil-
tonian commuting with it, and this is equivalent to probing
the first quantum phase transition as h increases from zero.
We have shown results for the AKLT Hamiltonian and, in
general, for the bilinear biquadratic model in the gapped phase.
Our results have good agreement with previous bounds and
DMRG results for 1D spin chains. Nevertheless, the general
idea of this method can be applied by identifying symmetries in
ground states of Hamiltonians commuting with the additional
external field. It would be desirable to have analytic proof for
the existence of the gap.

Note added. Similar results on the honeycomb lattice were
recently obtained in Ref. 42.
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