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We apply diffusion quantum Monte Carlo to a broad set of solids, benchmarking the method by comparing bulk
structural properties (equilibrium volume and bulk modulus) to experiment and density functional theory (DFT)
based theories. The test set includes materials with many different types of binding including ionic, metallic,
covalent, and van der Waals. We show that, on average, the accuracy is comparable to or better than that of
DFT when using the new generation of functionals, including one hybrid functional and two dispersion corrected
functionals. The excellent performance of quantum Monte Carlo on solids is promising for its application to
heterogeneous systems and high-pressure/high-density conditions. Important to the results here is the application
of a consistent procedure with regards to the several approximations that are made, such as finite-size corrections
and pseudopotential approximations. This test set allows for any improvements in these methods to be judged in
a systematic way.
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Although density functional theory (DFT)1,2 is a remark-
ably successful theory for calculating many properties of
matter, DFT does not necessarily constitute the endgame of
predictive quantum mechanical methods. Increasing require-
ments for accuracy, ability to make systematic improvements,
and predictability for a broader range of materials continue
to drive research in fundamental electronic structure theory.
By solving the Schrödinger equation directly using stochastic
sampling methods, quantum Monte Carlo (QMC) and specif-
ically diffusion Monte Carlo (DMC) offers an approach com-
plementary to that of DFT.3–5 In addition, the impending shift
in computational paradigm offers opportunities for methods
that are inherently suited for heterogeneous architectures.6 In
this paper, we present a study of the performance of DMC
for a wide set of solids: insulators, semiconductors, simple
metals, and transition metals. We anticipate that the result of
the study will serve as a guide for when to employ DMC
for condensed systems as well as a foundation from which
systematic improvements can be gauged.

New QMC codes5,7–9 and ever increasing computer power
are making it feasible to perform diffusion Monte Carlo
calculations of a broader range of systems and problems,
just as DFT over the course of the past 20 years moved
from being a niche method practiced by a small number of
experts to being a widely used technique. In the past 10 years,
QMC calculations on energy barriers,10 energy differences
between solid phases,11,12 strongly correlated materials,13 van
der Waals systems,14 and interfaces between surfaces and
molecules where van der Waals is blended with covalent and
hydrogen bonding15 have all appeared in the literature with
impressive accuracy. Several of these applications depend
on the capability to calculate physics such as van der
Waals interactions or the interplay between localization and
itinerancy that are difficult to precisely include in semilocal
Kohn-Sham density functional schemes. Additionally, all of
these applications require the calculation of energy differences
significantly smaller than the previous holy grail of electronic
structure methods: the 1 kcal/mol accuracy often described as
chemical accuracy.

Despite these successes, there is still an open fundamental
question regarding the accuracy of diffusion quantum Monte
Carlo methods. While the method is in principle exact,
several approximations are introduced in practice. These
approximations range from fundamental considerations such
as mitigation of the fermion sign problem to numerical
issues such as the finite size of the time steps. Due to the
relatively large computational cost of QMC calculations, only
rarely have calculations of multiple systems been presented
in the same work. Additionally, there have been numerous
advances in the treatment the systematically controllable
approximations inherent in QMC applied to solids and, due
to the plethora of choices available, only rarely have two
calculations been performed using the exact same technique.
The present article aims to remedy this shortcoming by using
qmcpack to perform DMC calculations of the energy versus
volume for a wide variety of materials. Using the present
approach as a benchmark has numerous advantages in that
it can test several different regimes of interaction while the
end result of the series of calculations is two numbers: the
equilibrium volume, and bulk modulus, both of which can be
directly compared to experimental data with high accuracy as
well as results from other theoretical methods.

The particular set of approximations assessed in this
paper are selected from the state of the art in an effort to
perform high accuracy calculations and also to minimize the
dependence on the mean field method chosen to generate the
trial wave functions and pseudopotentials. There are however
two notable exceptions. The trial wave functions which are
used for importance sampling and defining the nodal surface
are of a Slater-Jastrow form with the single particle orbitals
coming directly from the ground state of the DFT calculations.
No efforts have been made to improve them through for
instance optimizing correlated wave functions. Also, while
great care was taken in the generation and application of
pseudopotentials, these are developed within the mean field
theory and no additional effort (such as performing auxiliary
calculations on all electron systems16) is taken to optimize
them for many body calculations. Although both of these
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approximations are the subject of research, there exists as of
yet no definitive solutions that can be applied at a reasonable
cost in condensed systems. The set of approximations made in
this work can together be characterized as the at present best
possible while computationally realistic to perform for a large
enough set of calculations to allow systematic conclusions
to be made. The approximations are thus representative of
the level of theory available for successful application of
QMC to a broad range of problems in material physics,
high-pressure physics, catalysis, biophysics, and many other
fields.

The accuracy of the DMC calculations are determined by
three necessary approximations: approximating the behavior
of a solid in the thermodynamic limit from calculations
on a finite size simulation cell with periodic boundary
conditions, the fixed node approximation,17 and the use of
pseudopotentials to obviate the need to calculate properties of
chemically inert core electrons. With finite computing time
and state of the art methods it is not possible to reduce
any of these to zero except in special cases, so in order to
establish a baseline of accuracy for DMC, a consistent set of
approximations must be chosen. In this work, the following
choices are made. First, the one-body–finite-size effects are
treated with twist averaged boundary conditions,18 the MPC is
used to mitigate the two-body potential energy errors,19,20 and
the Chiesa corrections using the Jastrow factors optimized
within VMC are used to mitigate the kinetic contribution
to the two-body–finite-size effects.21 Second, the instabilities
resulting from the fermion sign problem are mitigated using
the fixed node approximation where the nodes come from
a Slater-Jastrow wave function with single particle wave
functions coming from the local density approximation (LDA)
to density functional theory. Finally, pseudopotentials are
constructed using the opium22 pseudopotential generation
code using the LDA and checking to ensure that ghost states
were not introduced when performing calculations using the
Kleinmann-Bylander form.23

A critical part of this study was the construction of
pseudopotentials suitable for use in solid state DMC calcu-
lations. Other pseudopotential sets24,25 were considered but
eschewed due to two factors. The first of these factors is
the widespread use of a Kleinmann-Bylander23 technique of
representing the pseudopotentials used in most modern plane
wave based DFT codes. Given the desirability of recasting the
semilocal pseudopotentials referenced above in a Kleinmann-
Bylander form, a problem arises that ghost states are often
introduced resulting in a Hamiltonian significantly different
than intended, unless the pseudopotential has been constructed
with this in mind. The second of these factors concerns the
fidelity of the Hamiltonian that results from the use of the
pseudopotential approximation. Ideally, at the single particle
level, the relative eigenvalues of the valence states should
not be shifted by the introduction of a pseudopotential. It is
common in the literature to note the inability of extant QMC
minded pseudopotential sets to do this and subsequent ad hoc
corrections are common.18,26,27 A first step in reducing the
size of this approximation is to use pseudopotentials that have
been validated versus all electron calculations in the same
environment (i.e., in a condensed phase). While this is still
intractable within DMC for many materials, it is possible to

TABLE I. Columns 2 and 4 contain the parameters for a Vinet
equation of state fit to converged LDA calculations performed with
the pseudopotentials used in this paper versus all electron calculations
either performed using LMTO with RSPT28 (for Al, BN, BP, C, Li,
LiCl, LiF, SiC, and Si) or LAPW calculations performed using elk29

(for Ar, Kr, Xe, and Be). Equilibrium volumes are given in bohr3 per
formula unit and bulk modulus in GPa.

V0 V AE
0 B0 BAE

0

Al 105.62 106.84 83.1 82.5
Ar 208.0 204.4 6.71 6.83
Be 49.95 50.03 125.5 124.3
BN 39.33 40.43 395 400
BP 76.04 76.612 170.1 174.0
C 37.57 37.23 466 465
Kr 260.4 264.4 6.17 6.00
Li 128.25 128.22 15.08 15.00
LiCl 104.11 103.31 40.8 41.0
LiF 50.48 50.50 87.0 86.2
SiC 68.43 68.81 226.9 226.0
Si 132.2 132.2 96.0 95.4
Xe 345.2 352.6 5.79 5.03

perform such calculations within the DFT framework in which
the pseudopotentials were produced.

While it would be ideal to use a PAW construction30 to
eliminate the core electrons due to its excellent transferability
and ability to accurately treat the higher energy states and
angular momentum channels that are exercised by correlated
methods31 this is currently not possible because of the lack
of a suitable algorithm to treat the nonlocal projectors that
are necessary for this formalism within DMC. We have
instead chosen to generate norm conserving pseudopotentials
(see Supplemental Material32) with Kleinmann-Bylander pro-
jectors and no nonlinear core corrections using the opium
code22 and taking advantage of the optimized pseudopoten-
tial construction of Rappe.33 These are then tested against
LAPW or LMTO calculations of the energy versus volume
of representative solid phases of the elements in question.
A very high degree of agreement is demanded between
the equilibrium lattice constant (volume) and bulk moduli
of the pseudopotential and all electron calculations. The
discrepancies between these two methods are shown in Table I
and are typically less than 0.1% in the lattice constant and 0.3%
in the bulk modulus. Due to these requirements, the cutoff radii
are typically small and the resulting pseudopotentials are rather
hard (see Table II), requiring a large number of plane waves
to accurately represent them. While this introduces additional
demand on the DFT calculations used to generate trial wave
functions, it does not affect the cost of the DMC calculations,
which employ a real space b-spline representation to evaluate
the trial wave function.34,35 However, the effects of using such
hard pseudopotentials on the size of the locality approximation
is potentially larger than for softer potentials, particularly if
the potential is significantly different for the different angular
momentum channels. The suitability of these pseudopotentials
for DMC will largely rest on the cancellation of these errors
(largely confined to the core region) between calculations
of similar phases. Such pseudopotentials frequently result in

245117-2



QUANTUM MONTE CARLO APPLIED TO SOLIDS PHYSICAL REVIEW B 88, 245117 (2013)

TABLE II. Converged parameters for the DMC calculation
reported in this work. The DFT cutoff energies are given in hartree
and together with the spline factor define the basis in which the QMC
wave functions are represented. The spline factor, a, is a prefactor to
the spacing in the direction of each primitive translation vector such
that the splines are spaced by a π

Gi
. The supercell sizes are multiples

of the smallest primitive cell that could be constructed for the given
symmetry. In the case of the monatomic systems, this is one atom per
cell except for Si, Be, and C, which require two. Likewise, all of the
biatomic systems have two atoms in the primitive cell.

DFT Ecut Spline factor Time step Twists Supercell size

Al 75 0.65 0.01 64 108
Ar 110 1.0 0.01 8 108
Be 120 0.8 0.01 27 66
BN 100 0.65 0.005 64 32
BP 112.5 0.75 0.005 64 32
C 105 0.8 0.0025 64 32
Kr 110 1.0 0.01 8 108
Li 225 1.0 0.005 216 28
LiCl 212.5 1.0 0.01 27 32
LiF 212.5 1.0 0.005 27 32
SiC 125 0.75 0.005 27 32
Si 75 0.7 0.005 125 32
Xe 125 0.8 0.005 8 108

dynamical instabilities in the walker population when treated
within the locality approximation,36 so Casula t-moves are
used throughout this work.37

With the Hamiltonian fixed by the choice of pseudopo-
tentials, the task is to compute the equation of state (energy
versus volume) for the most stable phase of a wide range
of materials and determine the accuracy of the equilibrium
properties (equilibrium volume and bulk modulus) compared
to experiment. These calculations are performed using a
Slater-Jastrow form of the trial wave function with one- and
two-body Jastrow factors. While other wave functions (such as
inhomogeneous backflow38 or multideterminant expansions39)
could possibly result in improved nodal surfaces, these are
beyond the scope of the current paper which intends to probe
the accuracy of the most common wave functions as evidenced
by their extensive use in the literature.3–5

The procedure for performing the quantum Monte Carlo
calculations proceeds as follows. DFT calculations are per-
formed for the primitive cell of the material under construction
both near ambient conditions and at elevated pressure (typi-
cally 300 GPa). Then the Slater determinant part of trial wave
functions are extracted using the converged charge density and
k-points corresponding to the supercell and twisted boundary
conditions under consideration. Supercells of 16 to 32 atoms
are typically used to avoid overly large finite size effects from
biasing the convergence during this initial stage of calculation.
The Jastrow factors are optimized using a VMC calculation
for purely periodic boundary conditions and these optimized
Jastrow factors are used for all twists. For these optimization
calculations, the plane wave cutoff in the DFT calculation is
increased until the stress tensor converges to within 0.001 GPa
and the b-spline spacing in the direction of each primitive
translation vector for the ensuing Monte Carlo calculation is set
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FIG. 1. (Color online) Three panels showing the convergence of
the total energy, the variance, and the kinetic energy as the spacing
between the b-splines representing the Slater determinant part of
the wave function is decreased. Larger spline factors correspond to
having more real space basis functions. In fact, the memory used to
store the wave function goes as the factor on the x axis cubed. In this
case the total energy and kinetic energy have converged by a spline
spacing of 0.5 but the variance still appears to be decreasing until 0.6.
In this way the memory necessary to perform the calculations can be
tuned to both give accurate answers and if possible optimal variances
within VMC.

by π
Gi

where Gi is the magnitude of the largest plane wave in the
direction corresponding to the given reciprocal lattice vector.
Next, using this converged Jastrow factor the total energy and
variance of a VMC calculation are converged with respect to
the density of the b-splines. This step is necessary to avoid
exhausting the memory available for individual nodes of the
computer on which the calculations are performed for larger
supercells. Typically the energy converges much faster than
the variance (shown in Fig. 1) although, when possible, using
the finer mesh needed to converge the variance is worthwhile
as it decreases the computational time necessary for the much
more expensive DMC calculations.

Next DMC calculations are performed for these same
moderate sized supercells of the material in question in order
to converge the DMC time step and the number of supercell
twists necessary to reduce one-body–finite-size effects. These
calculations are performed both for the material near solid den-
sity and also at a pressure corresponding roughly to 300 GPa
in the LDA so as to account for the difference between the
electronic structure between the ambient and high pressure
material. The time step is taken to be converged whenever
the energy is within 1 mHa per atom of the extrapolation to
zero time step (shown in Fig. 2). The one-body–finite-size
effects are similarly converged to the 1 mHa per atom level by
simultaneously increasing the density of the grid of supercell
twists in reciprocal space in each direction; this is shown in
Fig. 3.

Furthermore, the two-body–finite-size effects are studied by
using a succession of supercell sizes generated in an effort to
maximize the simulation cell radius given the number of atoms
in the supercell. Supercells are chosen by finding the arbitrary
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FIG. 2. (Color online) Representative calculation of convergence
of DMC energy with respect to time step. In all cases the energy is
converged to within 1 mHa per atom. For most calculations, the time
step error is no larger than the statistical error.

tiling of the primitive cell such that the size of an inscribed
sphere is maximized. This construction is selected to maximize
the distance between periodic images of electrons and thus
decrease spurious correlations. Unfortunately, it was not
possible to achieve absolute convergence to within the desired
1 mHa/formula unit. However, this level of convergence is
not a necessary condition for achieving converged values for
the equilibrium volume and bulk modulus, properties which
depend only upon relative energies between different densities
of the material. To this end, calculations were performed for
different sized supercells for both the ambient and 300 GPa
densities. Calculations were performed with supercell twists
given by the earlier convergence tests and taking into account
the two-body–finite-size corrections described earlier. Conver-
gence was deemed to have been achieved when the change in
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FIG. 3. (Color online) Representative calculations of conver-
gence of DMC energy with respect to twist averaging. The top panel
shows the energy per beryllium atom for a volume near the ambient
pressure. The bottom panel shows the energy for the same system, but
at a pressure near 300 GPa. In both cases the energy has converged
to well within 1 mHa per atom for 64 supercell twists.
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FIG. 4. (Color online) Representative calculations of conver-
gence of DMC energy with respect to supercell size. Energies are
shown after applying finite size corrections as described in the text,
including twist averaging and two body corrections. The top panel
shows the energy per beryllium atom for a volume near the ambient
pressure. The bottom panel shows the energy for the same system,
but at a pressure near 300 GPa. The total energy change from one
supercell size to the next is deemed sufficiently equal for both volumes
by the time the supercell contains 132 atoms.

total energy from one supercell size to the next is equal within
0.1 mHa/formula unit. An example of this sort of convergence
study is shown in Fig. 4. As a rule, the total energy was also
converged for each volume to within 2 mHa, although this was
not universally the case. The final parameters used for each
material are summarized in Table II.

Finally, using the converged parameters for these simula-
tions, we performed a series of calculations at a variety of
lattice constants equally spaced by 3% of the equilibrium
lattice constant and ranging from −10 GPa to 300 GPa
according to the LDA results (see Supplemental Material40).
The resulting energy vs volume curves are fit using the Vinet
form of the equation of state41 to extract the equilibrium
volume and bulk modulus. As expected, these quantities show
sensitivity to the range of E(V ) data which is included in the
fit: in all cases we have reported the fit to the full range from
the largest volume calculated to the smallest, corresponding
roughly to a pressure range of −10 to 300 GPa. In reporting
these quantities, we show the errors resulting from the least
square fit of our results to the Vinet form.

When faced with a research challenge that requires first-
principles simulations, a major consideration when choosing
approach is the performance of a method, for example QMC,
in relationship to other methods. In addition to the results
from QMC, we therefore report seven other sets of results
using the same protocol for calculating the lattice constant
and bulk moduli. For all of the necessary DFT calculations,
we used the Vienna Ab initio Simulation Package to perform
the calculations, using the included PAW potentials to treat
the core electrons.42,43 First, we compare to DFT with the
LDA functional.18,44 Also, we compare results with the most
popular GGA functional, PBE,45 and a next generation GGA
functional, AM05.46 We also include calculations using a state

245117-4



QUANTUM MONTE CARLO APPLIED TO SOLIDS PHYSICAL REVIEW B 88, 245117 (2013)

TABLE III. Results for the equilibrium volume of the solids as determined by a fit of the Vinet equation to calculations. All values are given
in bohr3 per formula unit. The experimental numbers have finite temperature thermal expansion and zero point energy subtracted following
the work of Schimka et al.47 The DMC results include an error estimate due to the statistical error in the individual calculations. The error
statistics are calculated first excluding the noble gases and second including all of the materials. The four statistics compare the calculations to
the experimental value and are the mean error (ME:

∑
xcalc − xexpt), mean absolute error (MAE:

∑ |xcalc − xexpt|), mean relative error (MRE:
∑ xcalc−xexpt

xexpt
× 100), and mean absolute relative error (MARE:

∑ |xcalc−xexpt|
xexpt

× 100). Note that results are omitted for the AM05 functional as
applied to the noble gases as it fails to bind by design and is thus not applicable.

Material DMC Statistical error LDA PBE AM05 HSEsol vdW-DF2 vdW-optB86b Experiment

Al 105.650 0.067 110.832 111.245 108.298 108.217 114.920 110.915 110.585
Ar 248.352 1.224 203.383 353.252 342.882 247.494 250.907 252.805
Be 51.140 0.143 50.956 50.956 52.766 52.401 52.735 53.810 54.776
BN 78.796 0.024 77.603 80.430 79.041 77.863 82.549 79.928 79.173
BP 152.844 0.130 152.815 158.603 155.281 154.146 165.018 158.348 157.663
C 37.762 0.042 37.231 38.477 37.771 37.358 39.619 38.445 38.284
Kr 299.386 1.566 257.230 446.206 394.782 311.798 306.055 303.646
LiCl 220.900 0.297 206.114 230.172 226.304 217.534 237.766 224.189 224.584
Li 143.455 0.302 127.878 136.995 139.159 138.917 132.151 138.797 141.834
LiF 106.096 0.212 100.693 113.240 111.163 105.882 114.582 110.998 108.785
SiC 135.400 0.026 136.962 141.665 138.869 137.342 146.077 140.696 139.636
Si 130.062 0.050 133.049 137.985 135.128 133.938 142.112 136.326 135.054
Xe 404.780 1.275 338.758 586.105 466.665 423.048 395.488 388.952

ME − 1.08 0.05 − 3.88 2.69 1.09 − 0.93 5.46 1.96
MAE 2.39 0.05 4.16 3.63 1.73 0.96 7.02 1.98
MRE (%) − 1.13 0.04 − 2.96 1.73 0.65 − 0.88 4.18 1.65
MARE (%) 2.10 0.04 3.21 3.10 1.39 0.91 5.53 1.66

ME (all) 1.18 0.19 − 12.75 37.39 20.67 8.51 3.51
MAE (all) 3.83 0.19 12.96 38.11 22.12 9.70 3.53
MRE (all) (%) − 0.29 0.07 − 5.52 12.68 6.59 4.46 1.92
MARE (all) (%) 2.20 0.07 5.72 13.69 7.96 5.50 1.93

of the art hybrid functional, HSEsol, which has been shown
to deliver excellent results for these sort of calculations47 but
is computationally much more expensive than semilocal DFT.
Given the difficulties of these standard functionals in treating
van der Waals systems like the noble gas solids in this test set,
we also include two functionals designed for this purpose,
vdW-DF248 and vdW-optB86b.49 Finally, we compare our
results to experiments, corrected for zero point motion and
thermal expansion where appropriate as detailed in work by
Schimka et al.47 The results for the equilibrium volume are
presented in Table III and also graphically in Fig. 5. Likewise,
the results for the bulk modulus are detailed in Table IV and
shown graphically in Fig. 6.

At first, ignoring the noble gas solids, the DMC results tend
to provide roughly equal fidelity compared to the experiments
as HSEsol, with the absolute errors from the DMC tending to
be slightly larger than those from HSEsol, but having a slightly
smaller bias. The situation changes somewhat when the noble
gas solids are included. In this case, the HSEsol errors are
considerably larger despite the functional’s explicitly nonlocal
construction. For this reason we considered the van der Waals
functional vdW-DF2. This functional had encouraging results
for the noble gas solids, but performed poorly for the other
materials. Increasing the test set to include vdW-optB86b
provided results which were on par with the accuracy of AM05,
but were consistent when including the noble gases.

The results presented in Tables III and IV validate the use
of DMC for a broad range of solids by showing little bias

across the test set while maintaining an overall high accuracy.
The outcome is for a number of reasons very promising for
QMC. First, the nodal surface employed by the fixed node
DMC calculations in this study remains at the ground state
DFT level; this implies that the sensitivity of the structural
properties upon the nodal surface is not extraordinarily large.

Error in Calculated Equilibrium Volume
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FIG. 5. (Color online) Percentage error in the calculated equi-
librium volumes from each of the different theories as compared to
experiment. The figure is separated into two panels, one showing the
noble gases and one for the other materials because of the disparity
in the scales of the error.
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TABLE IV. Results for the equilibrium bulk modulus of the solids as determined by a fit of the Vinet equation to calculations. All values
are given in GPa. The experimental numbers have finite temperature thermal expansion and zero point energy subtracted following the work
of Schimka et al.47 The DMC results include an error estimate due to the statistical error in the individual calculations. The error statistics
are calculated first excluding the noble gases and second including all of the materials. The four statistics compare the calculations to the
experimental value and are the mean error (ME:

∑
xcalc − xexpt), mean absolute error (MAE:

∑ |xcalc − xexpt|), mean relative error (MRE:
∑ xcalc−xexpt

xexpt
× 100), and mean absolute relative error (MARE:

∑ |xcalc−xexpt|
xexpt

× 100). Note that results are omitted for the AM05 functional as
applied to the noble gases as it fails to bind by design and is thus not applicable.

Material DMC Statistical error LDA PBE AM05 HSEsol vdW-DF2 vdW-optB86b Experiment

Al 83.35 0.58 81.40 76.50 83.90 85.60 60.10 77.00 82.00
Ar 3.80 0.10 7.10 0.74 0.41 4.90 3.62 3.38
Be 119.28 2.42 136.26 136.30 128.50 130.60 126.50 119.70 121.65
BN 399.34 1.92 394.00 373.00 378.00 413.30 343.80 374.70 410.20
BP 172.85 2.08 171.00 161.70 165.00 178.90 146.32 163.30 168.00
C 450.86 3.54 456.00 433.10 442.00 480.40 395.00 431.00 454.70
Kr 3.90 0.10 6.78 0.63 0.50 4.72 3.71 3.66
LiCl 35.53 0.48 40.40 31.80 30.30 36.30 32.30 34.30 38.70
Li 12.64 0.26 13.70 13.90 13.00 13.30 14.70 13.40 13.90
LiF 74.40 1.47 66.70 67.70 65.80 77.20 68.90 70.20 76.30
SiC 239.61 0.48 224.00 211.50 217.00 237.30 191.00 215.00 229.10
Si 105.95 0.44 93.60 88.30 90.20 101.30 79.60 91.20 100.80
Xe 3.60 0.10 6.17 0.53 0.77 4.22 3.65 3.87

ME − 0.15 0.54 − 1.83 − 10.16 − 8.17 5.89 − 23.71 − 10.56
MAE 4.53 0.54 5.95 13.09 9.92 6.49 24.84 10.56
MRE (%) − 1.10 0.40 − 0.96 − 6.15 − 6.22 1.94 − 12.31 − 6.30
MARE (%) 3.94 0.40 4.65 8.55 7.81 4.04 14.26 6.30

ME (all) − 0.09 0.42 − 0.70 − 8.54 3.82 − 18.01 − 8.11
MAE (all) 3.55 0.42 5.28 10.76 5.70 19.34 8.16
MRE (all) (%) 0.08 0.48 18.86 − 23.73 − 18.09 − 3.08 − 4.63
MARE (all) (%) 5.03 0.48 23.18 25.58 22.69 17.35 5.94

The second encouraging observation is that the accuracy is not
unduly influenced by the physics responsible for the chemical
bonding. Covalent, metallic, and van der Waals solids are
all described with roughly the same fidelity. The behavior is
fortunate given the desire to have a method which works well
where semilocal DFT fails qualitatively, such as is the case for
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FIG. 6. (Color online) Percentage error in the calculated equilib-
rium bulk modulus from each of the different theories as compared to
experiment. The figure is separated into two panels, one showing the
noble gases and one for the other materials because of the disparity
in the scales of the error.

so called strongly correlated materials such as transition metal
oxides. Finally, it was possible to achieve these results with a
consistent procedure and without making any corrections due
to the use of pseudopotentials. Therefore, we conclude that
DMC will be an extraordinarily interesting technique going
forward due to its accuracy and its extremely favorable parallel
scaling.

All of this is not to say that this work represents the ultimate
accuracy that is possible for the calculation of condensed
matter with DMC. In fact, there are several improvements
to this methodology that would be interesting to explore going
forward and benchmark to the present work. The first and
perhaps most important question would be to understand the
size of the pseudopotential approximation compared to the
fixed node approximation. Reducing the pseudopotential ap-
proximation’s impact could be tried from several perspectives.
However, the most important of these should be attempting
to perform all-electron calculations for at first light elements
followed by progressively heavier ones. Doing so would
provide a baseline against which pseudopotential calculations
can be compared. The pioneering work of Esler et al.16

provides a first step along this path, performing highly accurate
all electron calculations for cubic boron nitride.

However, it is not trivial to decompose the error in these
calculations into fixed node and pseudopotential errors. In
the cubic boron nitride work, the subsequent agreement with
experiment suggested that the fixed node error was also
quite small; however, the fixed node error may reasonably
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be expected to scale with the total energy of the calculation
performed, that is when higher energy core states are included
the fixed node error should get larger. There is reason to believe
that these errors may cancel for materials at different densities,
although the same could be said of pseudopotential errors as
well. Ideally, such work would also include efforts to reduce
the fixed node approximation as well. Reducing the size of
the fixed node approximation may be somewhat more difficult
as existing advanced forms for improved wave functions are
either extremely expensive to apply for large systems (such
as backflow transformations) or pose additional difficulties
for extended systems such as multideterminant expansions
or geminals/pfaffians. Finally, the finite size convergence of
these and other QMC calculations remains a computational
challenge. The unfavorable scaling of the computational
cost of DMC with electron number remains a significant
hurdle; however, increasing levels of parallelism6 and larger
computational facilities may allow for simulations of simple
solids containing enough atoms to render this a small concern
in the near future.

This article has provided a benchmark for structural prop-
erties of solids with DMC; however, absolute energetics are
also important in application and their calculation is a natural
extension of this work. Excellent results for atomization
energies of small molecules have been presented by Morales
et al.39 For solids, defect energy calculations have featured
in the literature, with results for MgO,50 diamond,51 and
aluminum.52 Unfortunately, constructing a benchmark set of
defect calculations may be difficult as the specifics of the
crystal structure are important. A perhaps simpler test would
be calculation of the enthalpy of formation of various solids.

It would be useful in this case to change the methodology
to provide a better description of the isolated atoms as the
description of isolated atoms with a single Slater determinant
times a Jastrow factor are likely worse than that of a solid.
This work would also require further convergence of finite-size
effects for the bulk as relative energetics would no longer be
sufficient. The potential impact of such a work is not to be
understated, however, as this continues to be a particularly
difficult test for density functional theory methods.

To conclude, in this article we have demonstrated that DMC
today offers an increasingly attractive complement to DFT
also for condensed matter systems by offering a different set
of approximations, an opportunity for systematic increase in
accuracy of the calculations, and most importantly a method
with minimal bias between different types of binding: covalent,
metallic, van der Waals, and ionic. We anticipate the results
of this work to encourage a broader application of QMC to
problems across many disciplines, including high-pressure
science, physical chemistry, and material science.
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34D. Alfè and M. J. Gillan, Phys. Rev. B 70, 161101 (2004).
35K. P. Esler, Einspline, http://einspline.sourceforge.net.
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