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We use group or representation theory and scattering matrix calculations to derive analytical results for the
band structure topology and the scattering parameters, applicable to any chiral photonic crystal with body-
centered-cubic symmetry I432 for circularly polarized incident light. We demonstrate in particular that all bands
along the cubic [100] direction can be identified with the irreducible representations E±, A, and B of the C4

point group. E+ and E− modes represent the only transmission channels for plane waves with wave vector along
the � line, and E− and E+ are identified as noninteracting transmission channels for right- and left-circularly
polarized light, respectively. Scattering matrix calculations provide explicit relationships for the transmission
and reflectance amplitudes through a finite slab which guarantee equal transmission rates for both polarizations
and vanishing ellipticity below a critical frequency, yet allowing for finite rotation of the polarization plane. All
results are verified numerically for the so-called 8-srs geometry, consisting of eight interwoven equal-handed
dielectric gyroid networks embedded in air. The combination of vanishing losses, vanishing ellipticity, near-perfect
transmission, and optical activity comparable to that of metallic metamaterials makes this geometry an attractive
design for nanofabricated photonic materials.
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Optical properties, such as optical rotation or circular
dichroism, that are caused by a chiral structure of a light-
transmitting medium or of its constituent molecules, remain
of great interest in many different contexts. Circular dichroism
spectroscopy of optically active molecules in solution is used
in biochemistry where left-handed (LH) and right-handed
(RH) molecular architectures cause different absorption prop-
erties for left-circularly polarized (LCP) and right-circularly
polarized (RCP) light.1 Optical activity of natural crystals
such as quartz (see, e.g., Ref. 2) and of liquid crystals,
both in the twisted nematic3 and the blue phases,4,5 is
well known. Circularly polarized (CP) reflections of insect
cuticles were observed by Michelson a century ago,6 with
circular-polarization effects an active topic in biophotonics of
beetles,7,8 crustaceans,9,10 and butterflies,11 and also the plant
kingdom.12 Nanofabrication technology nowadays allows for
the fabrication of custom-designed chiral materials, both di-
electric photonic crystals13–15 and metallic metamaterials,16–18

with the potential for technological photonic devices. This
ability to fabricate custom-designed structures has led to
noteworthy chiral-optical behavior, including strong circular
dichroism,19 negative refractive index20 based on Pendry’s
prediction,21 optically induced torque,22 handedness switching
in metamolecules,23 and circular-polarized beam splitting.15

Metallic or plasmonic metamaterials have been designed to
give strong optical activity16,18,24,25 that is orders of magnitudes
stronger than in the natural materials.

This article makes a two-fold contribution to a deeper un-
derstanding of circular polarization effects in chiral materials.
First, we combine group theory and scattering matrix treatment
of chiral photonic crystals (PCs) to predict those properties of
the band structure that are relevant for coupling to circularly
polarized light. This analysis applies to all structures with cu-
bic symmetry with at least one point that has 2-, 3-, and 4-fold
point symmetry. Many of the ideas underlying this formalism

are not specific to this symmetry group and apply, upon suitable
adjustments, to structures with other symmetries. Second,
we analyze in detail a specific chiral geometry that fulfils
the symmetry requirements, namely the so-called 8-srs struc-
ture consisting of eight interwoven non-overlapping gyroid
(or srs) nets. Numerical data for its band structure and trans-
mission coefficient, obtained by finite element simulations
and finite-difference time-domain methods, are in perfect
agreement with our theoretical predictions. Further, these
simulations demonstrate that the 8-srs geometry exhibits a
particularly strong chiral-optical response. Specifically, in
parts of the frequency spectrum, the lossless dielectric 8-srs
material with ε = 5.76 is fully transparent for left- and
right-circularly polarized (LCP and RCP) light, yet exhibits an
optical activity that is comparable to metallic metamaterials.
This suggests that the use of multiply intertwined gyroid nets,
that can be realized with current nanofabrication methods, is
promising for custom-designed photonic materials.

Polarization conversion measures the relative ratio of LCP
to RCP light transmitted through a photonic material if the
incident light was purely LCP. We will here use the term
optical activity (OA) to denote the rotation of the polarization
plane as a linearly polarized plane wave transmits through
a chiral medium and circular dichroism (CD) is utilized to
describe the difference in transmission rates for LCP and RCP
light. The definition of OA and CD represent a slight deviation
from the conventional nomenclature27,28 where both refer to a
respective phenomenological origin, i.e., a respective differ-
ence of the refractive indices and the absorption coefficients
between LCP and RCP light.

Our use of these terms to describe differences in scattering
parameters for CP light represents a natural adaption for a slab
made of lossless but inhomogeneous material. With t and r

denoting the scalar complex transmission and the reflection
amplitudes, respectively, OA is the phase difference and CD is
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the relative difference in absolute values between the complex
scattering amplitudes s± ∈ {t±,r±} for an incoming left (LCP,
+) or right (RCP, −) circularly polarized plane wave:

CDs = |s+| − |s−|
|s+| + |s−| , OAs = ϕ

(s)
+ − ϕ

(s)
−

2
, (1)

where the complex phase ϕ is given by the equation

eıϕ
(s)
± = s±

|s±| . (2)

Group theoretic approaches to the optical properties of
photonic crystals are motivated by the obvious importance
of spatial symmetries in these systems. The common textbook
example for this is the strict classification of discrete dispersion
bands ωn(k) of a two-dimensional PC into transverse-electric
and transverse-magnetic modes if the wave vector k is
restricted to the plane of periodicity.29 In terms of circular
polarization, the role of four-fold rotational symmetries, and
more generally of (m � 3)-fold rotations, for the transmission
and reflectance coefficients has been recognized.30–38 In
particular, it has recently been shown that any lossless structure
with a 4-fold symmetry axis inclined perpendicular to this axis
shows no circular dichroism and polarization conversion for
normal incidence.30 Our results on the scattering parameters
for chiral PCs presented in this article are generalizations of
previous works that derived related restrictions on reflection
and transmission amplitudes for two-dimensional diffraction
gratings made of quasiplanar particles31–33,35 and also particles
with 3D symmetry.36,37 Group theory, or more precisely
representation theory, is the natural language to deal with
the influence of spatial symmetry on physical properties in
general39,40 and with photonic properties in particular.40

A particularly intricate design for a chiral photonic material
is the so-called single gyroid (SG) or srs net,41 with edges
inflated to solid tubes with a given volume fraction φ. This
periodic network is composed of identical three-coordinated
nodes and has cubic chiral symmetry I4132, without pure
four-fold rotation axes;42 the three-fold and four-fold screw
axes correspond to three-fold and four-fold helical struc-
tures along the [111] and [100] directions, respectively. The
theoretical prediction of circular dichroism for a dielectric
photonic srs crystal11 has been verified by nanofabrication
experiments,14,15 including also a 2-srs structure14 and an
srs beamsplitter prism.15 Recently, the first prediction of
fully three-dimensional Weyl points has been published using
photonic designs based on the SG.43 For metallic srs nets,
discrimination of LCP and RCP modes is observed,44,45 but
its magnitude is lower than what might be expected from its
helical nature.44 The relevance of the SG geometry, which
is inspired by the biological PCs in wing scales of several
butterflies,46 as a chiral photonic material is increased by the
ability to generate this structure at different length scales by
molding from the self-assembly copolymer structure with unit
cell size a = 50 nm,47 replication of the butterfly structures
with a ≈ 300 nm,48 direct laser writing with a � 1 μm,14,15

and cm-scale replica for microwave experiments.49

This article investigates a related geometry called 8-srs
consisting of eight identical equal-handed intertwined copies
of the srs net.50–52 As Fig. 1 demonstrates, the 8-srs can
be obtained by arranging translated copies of the srs net,

1-srs: cubic I4132 (214) 2-srs: tetragonal P4222 (93)

4-srs: cubic P4232 (208) 8-srs: cubic I432 (211)

FIG. 1. (Color online) Construction of the 8-srs by three replica-
tion steps. (a) 1-srs: cubic I4132 (214); (b) 2-srs: tetragonal P 4222
(93); (c) 4-srs: cubic P 4232 (208); (d) 8-srs: cubic I432 (211). In each
step the number of srs nets is doubled by generating translated copies
(blue) of the already existing nets (green). All nets are identical and
equal handed. Numbers in parentheses refer to the symmetry group
numbers as in Ref. 26.

such that all 8 networks remain disjoint and to yield body-
centered-cubic (BCC) symmetry I432; this is achieved by
three orthogonal copy translations along the perpendicular
[100] directions of the original 1-srs net by a = a0/2 where a0

is the crystallographic lattice parameter of the 1-srs in its space
group I4132. Figure 2 illustrates an alternative construction
where the 8-srs is obtained by the decoration of the hexagonal
facets of a Kelvin body53 by a degree-three network, such that
4-fold (square), 3-fold (triangle), and 2-fold (oval) rotations of

a a0 = 2a

FIG. 2. (Color online) An alternative construction method that
yields the same 8-srs structure shown in Fig. 1. Left: The BCC
translational unit cell is obtained by placing degree-three vertices at
the midpoints of the hexagonal facets of a Kelvin body. Edges connect
the hexagon’s center point to every second vertex, such that rotational
symmetries of the Kelvin body are maintained. Right: When repeated
periodically, the 8-srs consists of 8 equal-handed interwoven srs nets;
only one of the eight nets is shown for clarity.
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t = 0 (”eyes”)

432

t = a/4 (”dog bones”)

FIG. 3. (Color online) Different cross sections with [100] incli-
nation through the 8-srs reveal its four-fold symmetry. The parameter
t denotes the position of the termination plane within the cubic unit
cell. 4-fold rotation and 42 screw axes are marked by the square and
barred square symbols, respectively. The gray square represents the
cross section of the cubic unit cell whose vertices are located at the O

(432) symmetry point marked by a blue square symbol (same choice
as in Ref. 26).

the Kelvin body are maintained. This provides the BCC unit
cell of the uncolored 8-srs structures, with all components
undistinguishable, whose lattice parameter a is half the size
of the parameter a0 of the individual 1-srs nets. Note also
the similar construction of the 8-srs as an embedding on
a Schwarz periodic primitive minimal surface in Fig. 12 of
Ref. 52. In crystallographic notation, the 8-srs has a single
vertex at (1/4,1/4,1/4) at Wyckhoff site 8c (symmetry 32)
and a single edge with midpoint (1/4,0,1/2) at Wyckhoff
position 12d (symmetry 222), in the body-centered-cubic
(BCC) space group I432 (No. 211 in Ref. 26) with lattice
parameter a = a0/2.54 The 8-srs has four-fold rotation axes
and four-fold screw axes along the [100] lattice directions (see
Fig. 3).

The spontaneous formation of the 8-srs geometry by
self-assembly is a long-term challenge, despite substantial
recent progress in self-assembly of simpler polynetwork
geometries.55–58 However, the 8-srs structure provides an
immediately suitable design pattern for nanofabrication by
direct laser writing technologies. Considering the realization
of 1-srs structures in low-dielectric polymers14,15 and in
high-dielectric chalcogenide glasses,59 the fabrication of the
8-srs material appears feasible.

This article is organized as follows: Section I introduces
group theoretical concepts used in Sec. III to develop a
treatment of band structure modes valid for any photonic
crystal with symmetry group I432 (we henceforth refer to
any such crystal as a I432 PC), including the 8-srs geometry
as a specific case, that can be readily extended to symmetries
P 432 or F432. This theory predicts the topology of the band
structure at the � and H point and identifies LCP incident light
with modes with irreducible representation E−, and RCP with
E+. Numerical data for the band structure of the 8-srs (Figs. 4
and 5) is in perfect agreement with these predictions, provided
that the symmetry of the spatial grid is equally high as the
structural symmetry; see Appendix B. A gap map providing
the width and position of the band gap in the [100] direction as a
function of dielectric contrast and volume fraction is provided
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FIG. 4. (Color online) Photonic band structure and transmission
spectrum of the 8-srs PC. Left: Band structure for k along � (see
Fig. 3). The bands are colored according to their symmetry behavior
corresponding to the irreducible representations i ∈ {A,B,E+,E−}
of the C4 point symmetry (cf. Table I). The E± bands that can couple
to plane waves at normal incidence are further underlaid by dots
of size proportional to the coupling constant β. Dots are smaller
than the linewidth for β � 0.1 and hence invisible. See discussion
in Sec. III B for the meaning of the inset. Right: Transmission of
light at normal incidence through a quasi-infinite slab of thickness
Nz = 53, [100] inclination, and the two terminations shown in Fig. 3:
t = 0 or the eyes cut shown in black and T = 0.25a or the dog bones
cut shown in brown. The spectrum is the same for any polarization
state and is illustrated by the thin lines. The thick and more saturated
lines represent a convolution with a Gaussian of width δ
 = 0.002
eliminating the sharp Fano and Fabry-Pérot resonances. The teal
points in the transmission spectrum mark the transmission minima
at the pseudo–band gap at roughly 
g = 0.64 for a slab of thickness
NZ = 4, . . . ,53, respectively.

(Fig. 6). In particular, we analytically prove the following main
statements in Sec. III:

Section III A: Three-fold degeneracy at the H point. The 4
lowest eigenstates at the H point are 3-fold degenerate. There
are two T1 and two T2 modes (defined in Table I) and classified
by their respective point symmetry behavior.60

Section III B: Degeneracy fully lifted on �. The degeneracy
is fully lifted when going away from the high-symmetry
points onto the � line. Each mode split is summarized by a
compatibility relation T1 = A + E+ + E− or T2 = B + E+ +
E− (Table I).

Section III C: Inversion symmetry and slope at � and H .
Each band ωi(k) along � is characterized by its irreducible
representation i ∈ {A,B,E+,E−}. It has inversion symme-
try ωA/B(−k) = ωA/B(k) and ωE±(−k) = ωE∓ (k). The bands
ωA/B(k) hence approach the points T1 and T2 with zero slope
and the bands ωE± with slope of same magnitude but opposite
sign.

Section III D: The irreducible representations
{A,B,E+,E−} correspond to noninteracting scattering
channels; E− and E+ represent RCP and LCP, respectively,
and A and B are dark modes. Modes of distinct representation
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FIG. 5. (Color online) Band structure of the inverse 8-srs PC for ε = 1 within the networks and ε = 5.76 outside and volume fraction
� ≈ 41% (upper left quadrant in Fig. 6). The PBS is calculated using BCC and simple cubic (SC) symmetry. In the plots labeled “SC” the
band structure of the simple cubic lattice is calculated for a grid discretization of M3 = 323 and unfolded to the BCC � path (Ref. 73). The
bands are colored by their respective symmetry behavior corresponding to i = {A,B,E+,E−}. Some of the interesting regions around H and
� are magnified to demonstrate the excellent agreement between theory and numerics in the SC calculations. Plots labeled “BCC” use a BCC
Fourier grid that does not maintain all symmetries of the BCC symmetry; see Appendix B. The BCC calculations illustrate that the violation
of correct symmetry lifts the degeneracy of the bands at 3-fold degenerate points, even for a fine grid with M = 64.

do not interact. Scattering takes place in four independent
channels characterized by the four representations
A,B,E+,E−. For each channel, a well-defined scattering
matrix relating the amplitudes of the outgoing plane waves
to those of the incoming plane waves is found. Both A and
B representations represent dark modes that do not couple
to any plane wave at normal incidence. At normal incidence,
any E+ mode couples only to RCP and any E− only to LCP
plane waves. This implies that the channels corresponding
to A and B do not contribute to the scattering process and
there is no polarization conversion between LCP and RCP in
transmission and reflection at any wavelength.

Section IV uses scattering matrix methods to provide
analytical results for the scattering parameters, both for
transmission and reflectance, that are valid for any structure
with 4-fold symmetry that is inclined normal to its symmetry
axis. The following two statements can be made:61

TABLE I. Character tables for the O and C4 point groups relevant
for the H (�) point and � line (Fig. 7), respectively. The time-
reversal-symmetry type TR of the irreducible representations of C4

are added in the last column (see Sec. III C).

O 1 6C4 3C2 8C3 6C
′
2 C4 1 C41 C2 C43 TR

A1 1 1 1 1 1 A 1 1 1 1 (a)
A2 1 −1 1 1 −1 B 1 −1 1 −1 (a)
E 2 0 2 −1 0 E+ 1 i −1 −i (b)
T1 3 1 −1 0 −1 E− 1 −i −1 i (b)
T2 3 −1 −1 0 1

Section IV C: No CD and OA in reflectance. The reflection
matrices on both sides are identical for the E+ (LCP) and the
E− (RCP) channel. For the reflection spectrum, CD and OA
are hence strictly zero for all wavelengths.

Section IV D: No CD in transmission below a critical
frequency 
c. The matrix norm of the transmission matrices
is identical for E+ and E− channels. Henceforth, at low
frequencies 
 := ωa/2πc < 
c := 1, where the portion of
energy that leaves the crystal in the (00) Bragg order �± =
|t±|2 + |r±|2 is strictly 100%, CD is zero. The matrix norm
imposes no condition for circular dichroism above 
c. Optical
activity may be finite at any frequency.

The predictions that OA and CD are always zero in
reflection and that CD is zero below a threshold frequency
in transmission are shown to be correctly reproduced by
simulations of the 8-srs (Fig. 9). The potential of the 8-srs as a
design for photonic materials, and in particular the magnitude
of its optical activity relative to metallic metamaterials, is
discussed in the conclusion section.

I. REPRESENTATION THEORY

A photonic band structure (PBS) can be seen as a classifi-
cation of the eigenmodes of an infinite PC by their transfor-
mation behavior under its translational symmetry operations
characterized by the Bloch wave vector k. This classification
yields a deeper understanding of the underlying physics and
is also of practical use; the transverse dispersion for example
yields a matching condition at interfaces. In this context, k

acts as a continuous quantum number. Here, we additionally
classify the band structure modes in the crystallographic [100]
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direction by their transformation behavior under the PCs
point symmetries (rotations, mirrors, etc.) and introduce a
corresponding second discrete quantum number i.

The PBS eigenmodes are shown to belong to several orthog-
onal classes characterized by their symmetry transformation
behavior. Group theory (or more specifically representation
theory39,40) is used to show that there are four such classes with
respect to the 4-fold rotation axis along the [100] direction
that can be seen as noninteracting transmission channels.
A circularly polarized and normally incident plane wave
decomposes into one of the 4 symmetry classes alone and
therefore couples light into the respective transmission channel
only.

In the following, we use Dirac notation where the basis
functions are denoted |αi〉 and any operator acting on elements
of the corresponding Hilbert space is marked with a hat. The
basis functions are orthonormal; see theorem (iv) below. In
this notation, a point group is a mathematical (in general
non-Abelian) group with (unitary or length-preserving) point
symmetry operations R̂ as its elements and the operator · that
is defined by the action onto any arbitrary function |f 〉 via
(R̂1 · R̂2)|f 〉 := R̂2(R̂1|f 〉).

The operator R̂ defines the operation of a point symmetry
R ∈ S where the point group S is a finite subgroup of the
orthogonal group O(3,R) for I432 and any other symmor-
phic space group. It can be represented by complex square
matrices D (R) so that the corresponding map is linear; i.e.,
D (R1 · R2) = D (R2)D (R1). A matrix representation D (R)

inverse 8-srs 8-srs
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FIG. 6. (Color online) Relative gap width δG = 2(ω2 −
ω1)/(ω2 + ω1) of the symmetry-induced band gap of midgap fre-
quency 
G; ω1 is the maximum frequency of the two fundamental
bands of character E+ and E−, respectively, and ω2 the minimum of
the two air bands of the same character. Left: Color-coded map of δG

as a function of volume fraction � and dielectric contrast ψ = ε8−srs :
εbackground on a logarithmic scale. The join frequency �J ≈ 38%
indicates a topological change: For � < �J , the individual srs nets
are disconnected; for � > �J they overlap to form a single connected
component. The orange point “x” marks the choice of parameters for
Fig. 4. Right: Gap map along the line indicated by the white arrow
on the left including the x point. The frequency is scaled by the
effective index neff := √∑

m �mεm with m ∈ {8 − srs,background}
on the ordinate. The position of the band gap hence does not depend
on the choice of the absolute value of dielectric constants. It turns
out that the x point is close to a band structure topology change at
� ≈ 31% and ψ ≈ 6.5 where the T1 (black curve) and T2 (green
curve) points at H are accidentally degenerate.

is called irreducible if no similarity transformation D ′(R) =
D (R0)D (R)D −1(R0) with R0 ∈ S exists that simultaneously
transforms all D (R) into the same block form; i.e., the
representation cannot be split into representations of lower
matrix dimension. Each representation has a set of basis
functions |α〉 for which the symmetry operator can be replaced
by the representation matrix R̂ |α〉 = ∑

β Dαβ(R)|β〉, with
α and β being partners of i and the corresponding indices
denoting the rows and columns of D . In general, the matrices
of an irreducible representation of dimension >1 and the
corresponding basis functions are not unique due to similarity
transformation gauge freedom. An irreducible representation
i is uniquely characterized by the similarity transformation
invariant trace of the respective matrix χ (i)(R) = ∑

α D(i)
αα(R)

that is also known as the character:62

(∀R ∈ S : χ (i)(R) = χ (j )(R)) ⇔ i = j.

For our photonic mode analysis below we use four repre-
sentation theorems that are all implications of the Wonderful
Orthogonality Theorem39 and the length-preserving nature of
all point symmetry operations of I432:

(i) The eigenfunctions |n〉 of any operator ϑ̂ that commutes
with all operations R̂ of a point group S are generally given
by the superposition of basis functions |iα〉 of one irreducible
representation i of S only:

(∀R̂ ∈ S : [ϑ̂,R̂] = 0) ⇒ |n〉 =
∑

α

c(i)
α |iα〉 := |ni〉.

(ii) The characters of any arbitrary representation of a group
S can be decomposed into the characters of the irreducible
representations i by

χ (R) =
∑

i

di χ (i)(R) with di = 1

h

∑
R

χ (i)(R)χ (R),

where z denotes the complex conjugation of a complex number
z and h = ∑

R the number of symmetry operations in the point
group.

(iii) Any arbitrary function |f 〉 can be expressed by the
complete set of basis functions |iα〉 of the irreducible repre-
sentations i:

|f 〉 =
∑
i,α

f (i)
α |iα〉 =

∑
i,α

P̂ (i)
α |f 〉

with the operator P̂ (i)
α that projects onto |iα〉 given by

P̂ (i)
α = li

h

∑
R

D
(i)
αα(R)R̂,

where li = ∑
α is the dimension of the irreducible representa-

tion i.
(iv) The basis functions are orthogonal and can be normal-

ized so that we assume for all representations i and j and
partners α and β

〈αi|βj 〉 = δij δαβ.

Representation theorem (i) is used to classify the band
structure by the symmetry behavior. The magnetic wave
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H

Γ

Δ

FIG. 7. (Color online) Brillouin zone of the BCC lattice: A
rhombic dodecahedron whose edges are illustrated by yellow bars.
The irreducible BZ (1/48 of the BZ due to 24 rotations in O (Table I)
and another 24 time-inverted rotations) is the pyramid framed in
orange. The � line marked in blue is one of its edges and connects
the � point in the origin with the H point that is a 4-connected vertex
of the BZ at 2π/a · (1,0,0)T .

equation is given by

ϑkukn(r) := (ık + ∇) ×
[

1

ε(r)
(ık + ∇) × ukn(r)

]

= ω2
kn

c2
ukn(r)

with the periodic part of the Bloch field ukn(r), the periodic
dielectric function ε(r), the eigenfrequency ωkn, the imaginary
number ı := √−1, and the velocity of light c. The operator63

ϑ̂k of a PC that has a given point symmetry S commutes with
any symmetry element R̂ that transforms the wave vector k

into an equivalent wave vector k + G that is translated by a
reciprocal lattice vector G only (see Appendix A for a detailed
proof of this statement). The set of all those operations R̂ form
a subgroup Sk � S and is called the group of the wave vector.

In our work we consider all modes of a bulk I432 PC
that can couple to a normally incident plane wave at a
(100) interface.64 We choose a symmetric set of basis vectors
a1 = (−d,d,d), a2 = (d, − d,d), a3 = (d,d, − d), with d =
a/2, for the body-centered-cubic translational symmetry. The
Brillouin zone of the BCC lattice illustrated in Fig. 7 and
the reciprocal lattice vectors are given by b1 = (0,b,b), b2 =
(b,0,b), b3 = (b,b,0), with b = 2π/a. All coupling modes65

lie on a straight line within the Brillouin zone parametrized by
ks = s ∗ (b2 + b3 − b1), s ∈ (−0.5,0.5]. The points at s = 0
and s = 0.5 are denoted by � and H , respectively. At both
points, the group of the wave vector is equal to the full point
group that together with the BCC translation gives the full I432
space group: That is the O (Schoenfliess)66 point group that
includes the point symmetries of a cube, i.e., 6 4-fold (C4) and
3 2-fold (C2) rotations around the [100] axes, 8 3-fold (C3)
rotations around the [111] axes, and 6 2-fold (C

′
2) rotations

around the [110] axes (cf. Table I). On the � line that connects
� and H [s ∈ (0,0.5)], the (Abelian) group of the wave vector
is C4, which only contains the 3 rotations around the [100]
axis where positive (C41 ) and negative (C43 ) 4-fold rotations
fall into distinct classes.67

II. PARAMETERS FOR NUMERICAL CALCULATIONS
OF 8-srs PCs

A photonic crystal geometry with finite volume fraction
is obtained by inflating all edges of the 8-srs structure to
solid cylindrical struts with permittivity ε, embedded in air or
vacuum. For the quantitative results in Figs. 4 and 9 we assume
a value ε = 5.76, which closely resembles high-refractive-
index chalcogenide glass at telecommunication wavelengths68

or titanium dioxide at optical wavelengths;48 the solid volume
fraction is set to φ ≈ 31%, corresponding to a rod diameter of
d ≈ 0.115; this value is well below the threshold where the dis-
tinct nets overlap to form a single connected component.69,70

We consider in particular an infinitely wide slab of size
∞ × ∞ × nza (nz = 4 in Fig. 9 and nz = 53 in Fig. 4),71

with the crystallographic lattice vector [100] aligned with the
z axis; all analyses are for wave vectors k along that axis. The
two different terminations72 illustrated in Fig. 3 for the 8-srs
crystal are chosen for the transmission simulation in Fig. 4.

III. TOPOLOGY AND SYMMETRY CLASSIFICATION
OF THE BAND STRUCTURE

While the exact shape of the PBS strongly depends on ge-
ometry and dielectric contrast, the topology, i.e., degeneracies
and hence also band connections at high-symmetry points, is
generally induced by symmetry alone. This fact combined with
symmetry-based selection rules is what makes group theory
a powerful tool. Here, we derive the topology of the band
structure of any I432 PC and show that, for the 8-srs PC,
these results are in perfect agreement with numerical results.

A. Degeneracies at the lowest � and H points

To derive the irreducible representation of the eigenmodes
at the high-symmetry points in the BZ, it is suitable to
group the plane wave components uGσ (r) = uGσ eı(k+G)·r of
a Bloch mode ukni

(r) = ∑
Gσ uGσ (r) with σ ∈ u,v denoting

a linear polarization basis by the length of k + G, i.e., its vac-
uum frequency, in equivalence classes [k + G] := {uGσG′ :
|k + G| = |k + G′|}. We sort the equivalence classes at the
high-symmetry points by ascending vacuum frequency and
denote the corresponding class by �(n) and H (n) (n ∈ N0),
respectively. All elements within each equivalence class form
a basis for a (generally reducible) representation of the group
of the wave vector k by its definition. This representation can
then be reduced into irreducible representations of the group
of the wave vector with representation theorem (ii).

We first consider the H (0) point with |k + G| = b. There
are 6 points in the group of the wave vector with k = ±bei

(i ∈ x,y,z). Hence, there are 12 plane waves that form a
closed set of basis functions for a reducible representation
R(H (0)) within the O point group. The character of this
reducible representation is determined by the corresponding
representation matrix of a point symmetry R. First, we need
to know how many of these points are unchanged under R

as we only count diagonal elements to obtain the trace, i.e.,
equivalent to the number of points on the axis (or plane) of
symmetry. Then we multiply by the character of the point
symmetry acting on a two-dimensional vector in the plane
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perpendicular to the axis of symmetry which is the contribution
of the polarization mode pair on each point: The character of
the identity transformation 1 is 2, of the C4 rotation 0 and
of the C2 rotation −2. All other operations change all k on
the Hn or �n points into k + G with G �= 0 and hence cannot
contribute to the trace. The described procedure yields the
following characters:

R 1 6C4 3C2 8C3 6C
′
2

χR(H (0))(R) 12 0 −12 0 0

Note that the number −12 for the C2 rotation already includes
the number of elements in that class, i.e., 3. Applying
representation theorem (ii) using the characters in Table I
we obtain the compatibility relation R = 2T1 + 2T2 that tells
us that the 12-dimensional representation of the plane waves
at the high-symmetry points is reduced into respectively 2
three-dimensional representations T1 and T2 that are irre-
ducible within O. This result is also numerically obtained
and illustrated in Fig. 4.

Analogously, the irreducible representations for all higher
order �(n) and H (n) points can be obtained. For example,
�(1) = [(b,b,0)T ] has 24 elements yielding the reducible
representation with the following characters:

R 1 6C4 3C2 8C3 6C
′
2

χR(�(1))(R) 24 0 0 0 −24

and the compatibility relation R(�(1)) = 2A2 + 2E + 4T1 +
2T2. H (1) = [(b,b,b)T ] has 16 elements on a C3 axis. The
compatibility relation is R(H (1)) = 2E + 2T1 + 2T2. These
results are summarized in Table II.

B. Degeneracy fully lifted on the � line

Instead of also reducing an equivalent representation to R
on the respective � line we reduce the irreducible representa-
tions of O in the C4 point group to learn how the degeneracies
are lifted when going away from the high-symmetry points
onto �. The characters are

R 1 C41 C2 C43

χA1 (R) 1 1 1 1
χA2 (R) 1 −1 1 −1
χE(R) 2 0 2 0
χT1 (R) 3 1 −1 1
χT2 (R) 3 −1 −1 −1

The same reduction procedure as above yields the compat-
ibility relations listed in Table III. The degeneracy is in each
case completely lifted as all the irreducible representations of
C4 are one-dimensional (cf. Table I).

For the 8-srs PC, the modes perfectly match in the
predicted manner in numerical calculations if the Fourier
lattice maintains the full O symmetry (Fig. 5). The eigenmodes

TABLE II. Summary of the results of Sec. III A. The vacuum
frequency 
0, a representative wave vector, and the compatibility
relation are respectively listed for the 4 lowest points where the group
of the wave vector exhibits O symmetry. We use a dagger (†) at the T1

representation for �(0) to indicate that the T1 representation does not
split into A + E+ + E− but only into E+ + E−. The static A mode
exists at �(0) itself to give a full basis for a homogeneous 3D vector
field. However, it violates the divergence theorem for k � 0.

[k] 
0 k R =
�(0) 0 (0,0,0)T T

†
1

H (0) 1 (b,0,0)T 2T1 + 2T2

�(1)
√

2 (b,b,0)T 2A2 + 2E + 4T1 + 2T2

H (1)
√

3 (b,b,b)T 2E + 2T1 + 2T2

of the band structure in Fig. 4 that are colored by their
respective C4 irreducible representation show the predicted
behavior. Each mode representation is obtained numerically by
projecting the corresponding normalized magnetic field |H 〉
onto the respective basis function with representation theorem
(iii). The representation is determined with the norm Ni =∑

α〈P̂ (i)
α H |P̂ (i)

α H 〉 (see also Ref. 74) of each projection onto
one of the 4 one-dimensional irreducible representations. Up
to numerical accuracy, the projection onto the true irreducible
representation yields Ni = 1 while all other projections vanish
if a simple cubic lattice with full O symmetry is used (cf.
Appendix B) for the MPB calculations of the PBS; see Fig. 5.

The Maxwell version of the Hellmann-Feynman theorem,
i.e., (d/dλ)〈H |ϑ̂H 〉 = 〈H |(dϑ̂/dλ)H 〉 for any parameter λ,
yields directly that the band function ωni(k) is continuously
differentiable and has a slope given by the average energy
flow of the corresponding eigenmode which can be shown to
be always less than the velocity of light c.75 Orthogonality
of the irreducible representations further implies that the
function Hnik(r) does not change its representation i if the
k vector does not change its point symmetry behavior under
the transformation k → k + δk. The argument also holds at
accidental degeneracies where the different representations
are still orthogonal and usually even at symmetry-triggered
degeneracies.76 Bands can therefore either cross (A and B

band in the lower half of Fig. 5 “ii, SC”) or anticross (two red
bands in Fig. 5 “i, SC”).77

C. Time-inversion symmetry and slope at � and H

Due to time-reversal symmetry it is sufficient to show the
band structure along the � line (including � and H ). To
obtain the mode representations of the other half we examine
the action of the time-reversal operator T̂ on the modes and
eigenfrequencies. T̂ is defined by T̂ f (t) = f (−t). The action
on the (complex) spatial part f (r) of a monochromatic field
f (r,t) = Re{f (r) exp(−ıωt)} is then given by the antiunitary
complex conjugation operator, i.e., T̂ f (r) = f (r), that obeys

TABLE III. Compatibility relations obtained by reduction of the
irreducible representations of O in C4.

R(O) A1 A2 E T1 T2

R(C4) A B A + B A + E+ + E− B + E+ + E−
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T̂ 2 = Ê and transforms the Bloch-Maxwell operator into one
with opposite wave vector:

ϑ̂ ′
k = T̂ ϑ̂kT̂

−1 = T̂ ϑ̂kT̂ = ϑ̂−k.

The action on an eigenfunction |ki〉 characterized by its wave
vector k and representation i is generally given by

T̂ |ki〉 = | − k,i ′〉.
The positive-definite29 nature of ϑ̂k yields the frequency

“degeneracy” ωi(k) = ωi ′(−k).78 We distinguish two cases79

(cf. Refs. 39 and 80):

(a) ∃R′ ∈ G : ∀R ∈ G

D (R′) D (R) D (R′)−1 = D (R′) D (R) D (R′)−1,

(b) �R′ ∈ G : ∀R ∈ G

D i(R) = D (R′) D i(R) D (R′)−1.

As time inversion T̂ commutes with the point symmetry
operations R̂, i ′ is equal to i in case (a). As a proof for that
statement we choose the representation whose matrix entries
are all real so that the time-reversal state transforms as a state
of irreducible representation i:

R̂| − ki ′α〉 = R̂T̂ |kiα〉 =
∑

β

T̂ D
(i)
αβ(R)|kiβ〉

(a)=
∑

β

D
(i)
αβ(R)T̂ |kiβ〉

=
∑

β

D
(i)
αβ(R)| − ki ′β〉.

Contrarily, i and i ′ are different irreducible representations (of
the same dimension) in case (b) that form a quasidegenerate
pair so that

ω2
i (k)/c2 = 〈ki|ϑ̂kki〉 = 〈T̂ 2ki|ϑ̂kT̂

2ki〉
= 〈(T̂ ϑ̂kT̂ )T̂ ki|T̂ ki〉 = 〈ϑ̂−k − k,i ′| − k,i ′〉
= ω2

i ′ (−k)/c2.

This quasidegenerate pair naturally meets at both the � and
the H point. The respective case for each irreducible repre-
sentation can be determined by the Herring rules.81 The pair
of two-fold rotations in O perpendicular to the [100] direction
is responsible for a nontrivial behavior along �. The different
cases are listed in Table I. At the � and the H point, the irre-
ducible representations of O are all of time-inversion type (a).

In accordance with the compatibility relations above, a pair
of E+ and E− modes along � hence always meets at the H (�)
point. Their group velocity in the vicinity is further of same
magnitude and opposite sign. The A and B representations on
the other hand always have vanishing group velocity close to
� and H .

D. {A,B,E+,E−} correspond to noninteracting
scattering channels

The mode structure of the C4 representations is strongly
connected to a plane wave propagating along the axis of
symmetry. We derive the symmetry behavior of such a plane
wave using a circular polarization basis; i.e., we make use of

representations theorem (iii) to calculate the composition of an
RCP/LCP wave. The modulation factor exp{ıkz} is obviously
unchanged by any operation within C4 so that R̂ is only acting
on the Jones vector for which we obtain⎛

⎝ 1
∓ı

0

⎞
⎠ =

∑
i

li

h

∑
R∈C4

χi(R)R̂

⎛
⎝ 1

∓ı

0

⎞
⎠

=
∑

i

1

4

⎧⎨
⎩χi(1)

⎛
⎝ 1

∓ı

0

⎞
⎠ + χi

(
C41

)⎛⎝±ı

1
0

⎞
⎠

+χi(C2)

⎛
⎝−1

±ı

0

⎞
⎠ + χi

(
C43

)⎛⎝ ∓ı

−1
0

⎞
⎠
⎫⎬
⎭

=

⎧⎪⎪⎨
⎪⎪⎩
⎛
⎝ 1

∓ı

0

⎞
⎠, if i = E∓,

0, else.

Therefore, any LCP/RCP mode transforms purely according
to the irreducible representation E±, respectively; there is
strictly no contribution of an A or B representation to any
plane wave traveling along a C4 axis. As a result, the two
distinct circular polarization states scatter in orthogonal and
hence independent channels corresponding to E± because of
representation theorem (iv). Polarization conversion vanishes
for any scattering process at a 4-fold symmetric structure.

While the rigorous proof is provided above, an intuitive
understanding is easily obtained by going the reverse logical
way starting from the four irreducible representations and
calculating the coupling strength with a plane wave. This idea
is illustrated in Fig. 8.

A

B

E+

E−

plane wave

FIG. 8. (Color online) Illustration of the four mode structures of
a monochromatic vector field that spatially transform according to
the respective irreducible representation of C4 (cf. Table I). The field
is shown at an arbitrary point in time at four symmetry-equivalent
points. For the E± modes for which the characters are not all real,
the transformation depends on the polarization state and we split
each mode into a red RCP part with temporally right rotation as
seen from the receiver and a blue LCP part rotating opposite. The
A and B profiles do not couple to a plane wave (center) as opposite
contributions with a phase shift of π cancel out. The RCP part of an
E+ mode and the LCP part of an E− mode cannot couple to a plane
wave for the same reason.
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FIG. 9. (Color online) Simulated circular dichroism (CD) and
optical activity (OA), defined in Eq. (1), and transmissivity T± in
both transmission channels E± for the reflection and transmission of
a plane wave at normal incidence: The 8-srs PC slab has termination
t = 0.25a and thickness Nz = 4. Since optical experiments cannot
measure phase differences >±90◦, OA is wrapped onto the interval
[−90◦,90◦] by OA �→ arctan[tan(OA)].

We finally note that time inversion exchanges the represen-
tations E± that are defined respective to a static Cartesian coor-
dinate system whereas it leaves the circular polarization state
unchanged. (Note that is defined respective to a right-handed
coordinate system depending on the propagation direction k

that changes its sign under time-inversion symmetry.)

IV. GENERAL PREDICTIONS FOR SCATTERING
PARAMETERS

General features of the scattering matrix for a finite slab of
an I432 PC with (100) inclination can be derived by its 4-fold
symmetry alone. In the following, no energy dissipation in
any of the PC materials is assumed. Kaschke et al. recently
calculated in Ref. 30 that there is no circular dichroism in
the reflectance and transmittance for any lossless structure if
any higher order scattering is neglected. Here, we show more
precisely that the reflectivity matrix of the same system is
identical for RCP and LCP light at all frequencies; i.e., circular
dichroism and optical activity are zero. In the transmission
spectrum, optical activity is present and particularly strong
above the fundamental bands whereas circular dichroism is
zero at frequencies below 
c = 1. Above the critical frequency

c, the (10) Bragg order becomes leaky so that transmission +
reflection = 1 is no longer a valid statement if both are just
measured within the (00) Bragg order (Fig. 9).

A. Introduction of a well-defined scattering matrix

We first show that a scattering matrix for any photonic
crystal slab with 4-fold symmetry normal to its clipping planes

can be well defined. We use representation theorem (iii) to
define a set of symmetry-adapted Floquet basis functions of
the in-plane vector r = (x,y)T that transform according to the
irreducible representations of the C4 point group:

|(nσ )i〉 ≡ f (i)
σ,n(r) = 1

2

∑
R∈C4

χi(R)R̂ eσ eıGn·r .

Those basis functions are characterized by their irreducible
representation i ∈ {A,B,E+,E−} (Table I), polarization σ ∈
{s,p}, and a corresponding unit vector eσ

82 and Bragg order
n = (n1,n2) (with n1 ∈ N1 and n2 ∈ N0) that defines the
reciprocal grating vector Gn = (2π/a)n. To obtain a complete
set for the normal incidence scattering problem, only two
additional (00) Bragg order basis functions f

E±
x,(0,0)T (r) are

added to the above.83 The symmetry-adapted basis functions
are easily shown to be plane orthogonal using the orthogonality
of plane waves, the Cartesian basis vectors, and the Wonderful
Orthogonality Theorem of representation theory:

1

a2

∫ a/2

−a/2
dx

∫ a/2

−a/2
dy f

(i)
σ,n f

(i ′)
σ ′,n′ = δi,i ′δσ,σ ′δn,n′ .

We use the compact Dirac notation so that the electromagnetic
fields |F(nσ )i〉 in vacuum that are involved in the scattering
process are expressed by

|F(nσ )i〉 :=
( |E(nσ )i〉

|H(nσ )i〉
)

=
(

1
H(nσ )i,qd

)
|(nσ )i〉 ⊗ |qd〉,

where d = ± denotes the sign ambiguity for |qd〉 ≡ eıqdz with
qd = d

√
ω2/c2 − |Gn|2 defined by the vacuum dispersion

relation. The Bloch fields within a thin layer84 of thickness
δ also transform as one irreducible representation i only and
are hence given by

|Fαi〉 =
( |Eαi〉

|Hαi〉
)

=
∑
nσ

(
E (α)

(nσ )i,qd

H(α)
(nσ )i,qd

)
|(nσ )i〉 ⊗ |qd〉,

where within the layer |qd〉 ≡ eıqdz is again a plane wave
whose wave vector qd however has no analytical expression85

and d is hence chosen by sgn(Im{q}) if Im{q} �= 0 and
sgn(Re{q}) else.86 Because of the orthogonality 〈ai|bj 〉 =
δabδij a scattering matrix treatment within each channel i

analogous to the calculation described by Whittaker and
Culshaw87 can be performed and (with δ → 0) yields a
well-defined scattering matrix for the whole structure that
relates the (generally countably infinite number of) amplitudes
c

(a)
O μ of the outgoing symmetry-adapted Floquet waves to the

amplitudes c
(a)
I μ of the corresponding incoming waves; μ = 1

and μ = 2 indicate the lower (zmin) and upper (zmax) surface
of the slab, respectively. Outgoing waves are defined as those
with positive d at surface 1 and negative d at surface 2 (and
vice versa for incoming waves). With a vector c going over all
indices a, the scattering matrix S is defined within each 4-fold
channel i ∈ {A,B,E+,E−} by(

cO1

cO2

)
=

(
S

11
S

12
S

21
S

22

)(
cI1

cI2

)
.

The definition of qd implies that nonzero entries in cI 1/2
are only physical for 
 � |n|, such that the corresponding
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fields are propagating. The same condition applies for all
entries in cO 1/2 that contribute to the far field. Further, if
the incoming field is at normal incidence only the 4-fold
channels that transform as E± are relevant as shown above
with the LCP/RCP Jones vectors. We therefore restrict further
arguments to the square submatrices S ± that relate the
propagating Floquet modes in the respective scattering channel
corresponding to E±.

B. General properties of the scattering matrix

We now prove by energy conservation and time-inversion
symmetry that the reflectance spectrum (in the far field) is
exactly the same for RCP and LCP incident light whereas the
transmittance spectrum has different phases for all frequencies
and different magnitudes if 
 � 1. These predictions are
precisely reproduced for the 8-srs by a numerical calculation
in Fig. 9.

In scattering theory, the scattering matrix is often assumed
to be unitary. We prove that this is also true for the particular
problem. Averaging Poynting’s theorem over time for the
monochromatic fields yields the spatially local equation
∇ · Re{E × H } = 0. We integrate this equation over a box
of size a × a × l that is centered around the photonic crystal
slab with l → ∞. Because of the mode structure of the
4-fold modes the parallel components of the Poynting vector
vanish at each point so that the divergence theorem yields
the equation Re{∫

A
E‖ × H ‖} = 0 where only the propagating

fields parallel to the surface are integrated over the top and
bottom a × a surfaces.

The orthogonality of the basis functions when averaged
yields that all mixed contributions in different Bragg orders
vanish. We show that for interface 2 and s polarization (p
polarization is analogously done) the electric field only has
the following φ component:

Eφ = 1

2
[cOeıqz + cI e

−ıqz]
∑
R

χi(R)eıGR n·r .

Since the z component of the magnetic field is irrelevant here
we only calculate the in-plane field that is purely radial and
obtained by Faraday’s law:

Hr = ıc

2ω
∂zEφ = −cq

2ω
[cOeıqz − cI e

−ıqz]
∑
R

χi(R)eıGR n·r .

The left side of the integrated Poynting’s theorem for s

polarization is therefore given by

−Re

{∫
A

Eφ Hr

}
= Re

{
cqa2

4ω
[cOe−ıqz + cI e

ıqz]

× [cOeıqz − cI e
−ıqz]

∑
R

|χi(R)|2
}

= cqa2

ω
[|cO |2 − |cI |2].

The purely imaginary cross-correlated contributions vanish
(i.e., they average out over time as intuitively expected).
The same result is obtained for surface 1 so that for q > 0
Poynting’s theorem yields for each Bragg order in each 4-fold

channel

|cO1|2 + ∣∣c(a)
02

∣∣2 = ∣∣c(a)
I1

∣∣2 + ∣∣c(a)
I2

∣∣2.
The scattering matrix is hence norm preserving and therefore
unitary by Wigner’s theorem.

A correlation between the scattering matrices in different
channels can be derived by time-inversion invariance. We act
with T̂ upon the equation that defines the scattering matrix
and note that the vectors satisfy cI±(E+) = cO±(E−) (and
also with I and O exchanged) because the basis functions
|ai〉 stay unchanged by the complex conjugation except for
a change in representation χE± (R) → χE±(R) = χE∓ (R)88

whereas the function of z changes its sign T̂ |q+〉 = |q−〉. The
complex conjugated scattering matrix in one channel is hence
the inverse of the matrix in the other channel; i.e., S± = S−1

∓ .

C. No CD and OA in reflectance

We combine both results and identify the diagonal entries
S

ii
with the reflection matrices on either side to obtain R(+) =

R(−); i.e., the reflection matrices are identical and hence OA
and CD vanish to any numerical precision for all frequencies
(cf. Fig. 9). We present an illustrative interpretation of this
result in Fig. 10 based on the assumption that there is only
a single mode per channel and propagation direction. If the
assumptions made in Fig. 10 are met (as is for example the case
for the two fundamental bands), the Airy formula in terms of
the interfacial scattering parameters defined in Fig. 10 yields
for the transmission and reflection amplitudes with p

↑↓
± :=

exp{ϕ↑↓
± }

t = t
↑,L
± p

↑
±t

↑,U
±

∞∑
n=0

(r↑↓,U
± p

↓
±r

↓↑,L
± p

↑
±)n,

r = r
↑↓,L
± + t

↑,L
± p

↑
±r

↑↓,U
± p

↓
±t

↓,L
±

∞∑
n=0

(r↑↓,U
± p

↓
±r

↓↑,L
± p

↑
±)n.

The first two contributions (n � 1) of the infinite geometric
series are shown for transmission and the first (n = 0) for
reflection. As the surface acts as a planar grating, we can use
the previous results of Ref. 31 that report a special case of our
more general treatment: r↑↓

+ = r
↑↓
− , r↓↑

+ = r
↓↑
− , and t

↓
± = t

↑
∓ can

be used. Hence OAR = 0, but there is no general restriction
on OAT , because the number of passes through the structure
is even for reflectivity and each contribution to the sum and
hence t on the lower interface and p come only in pairs so
that t

↓,L
+ t

↑,L
+ = t

↓,L
− t

↑,L
− and p

↑
+p

↓
+ = p

↑
−p

↓
− because of time-

inversion symmetry (see Fig. 10).
The phase shift at the surfaces caused by the respective

scattering amplitudes is usually negligible for frequencies
in the fundamental bands and therefore optical activity is
essentially due to the difference in the wave vectors of both
eigenmodes (cf. Fig. 10). This straightforward interpretation
yields easy and fast numerical analysis of OA that is compara-
ble in magnitude to that of planar, metallic metamaterials16

and therefore makes the frequency region below the fun-
damental band edges (0.5 � 
 � 0.6 in Fig. 9) particularly
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FIG. 10. (Color online) Diagrammatic representation of the processes that lead to different circular-polarization properties of reflected and
transmitted light. Assuming that there is a single propagating mode in each channel and direction (a) at a given frequency ω0, transmission (b)
and reflection (c) can be understood by considering positive, upwards pointing k (↑) and their counterparts for negative k (↓). If the modes
further have a leading Bragg order in propagation direction (i.e., interference may be neglected) and the thickness of the slab L is an integer
multiple of the lattice parameter a, the difference in k between two modes δk corresponds to an optical phase shift δϕ = δkL [cf. Eq. (2)]. The
regions labeled upper (U) and lower (L) interface represent the interfacial two-dimensional planes between free space and the photonic crystal
that are inflated to finite thickness for visualization. The sign and coloration represents the E± channels in the same manner as in Figs. 4, 8, 5,
and 9.

interesting for engineering of optical devices such as beam
splitters based on the 8-srs or similar structures with O point
symmetry.

D. No CD in transmission below a critical frequency

For the transmission matrices we derive analogously S(+)
21

=
S(−)

12
. This statement is however of less practical relevance

because it identifies transmission in the E+ channel where
the source is on one side of the structure with transmission
in the E− channel with the source on the other side and
hence corresponds to two distinct experiments. Comparing
transmission matrices for the same experiment, we derive
from the diagonal entries of the unitarity condition in both
channels and the identity of the reflection matrices that the
norm of transmission T †T is the same in both channels.
Therefore, CDT is zero below the critical frequency 
c = 1
above which energy is able to leak into the (10) Bragg order
and hence energy conservation within the (00) order with k

perpendicular to the plane of interface is not valid. There is no
restriction on OAT that can be finite for all frequencies (see
Fig. 9).

Particularly interesting is the magnified region labeled
iv in Fig. 5. Transmission is governed by the respective
calculated mode of the fundamental band in each channel so
that the situation well fits the one illustrated in Fig. 10. If we
further assume that the interfacial reflections are sufficiently
small (which is expected as transmission is almost 100% in
the fundamental bands; see Fig. 9), optical activity is given
by δϕ = δkL which is estimated to be around 10% at

 × neff = 0.88.

V. CONCLUSIONS AND OUTLOOK

We have provided consistent analytical and numerical
results that demonstrate the potential of the 8-srs geometry
as a dielectric photonic material that should be realizable by
current nanofabrication technology. Analytic results, based on

versatile group theory and scattering matrix treatment and
applicable to any photonic crystal with I432 symmetry, are
obtained for transmission and reflection amplitudes, and for
the topology of the band structure. For the 8-srs PC, these
results are in perfect agreement with numerical simulations
that further demonstrate that the 8-srs exhibits strong optical
activity in transmission, comparable to metallic metamaterials,
yet without losses and without any ellipticity.

The potential of the 8-srs for applications as an op-
tically active nanofabricated material, say for the relevant
communication wavelength of λ ≈ 1.5 μm, can be gauged
from the following considerations. First, if robustness of
the optical activity with respect to slight changes in λ is
desirable, the data in Fig. 9 suggest a realization of the
8-srs with a lattice parameter a = 0.55λ ≈ 0.83 μm such
that ωa/(2πc) = a/λ ≈ 0.55; the rotation of the polarization
plane through a layer of four unit cells (of total thickness
3.5 μm) would then correspond to approximately −8◦ and
close to 100% transmission for both RCP and LCP light
and with zero ellipticity, assuming the same values for φ

and ε as in Fig. 9. Second, if a strong dependence of OA
on the value of the frequency is acceptable, or even desired,
a realization of the 8-srs with a = 1.44 μm, corresponding
to ωa/(2πc) ≈ 0.95, gives a very strong optical rotation of
≈50◦, in the optical communication window, again with close
to 100% transmission for both RCP and LCP light and with
zero ellipticity.

Importantly, Fig. 6 suggests that the parameters chosen here
(corresponding to the cross on the white line in Fig. 6) are not
optimized to give the strongest photonic response. Specifically,
the inverse structure, consisting of hollow air channels along
the edges of the 8-srs structure embedded in a dielectric matrix,
has a wider band gap. While the E± frequency split that is
desired for many applications is generally stronger for the
original 8-srs structure (cf. higher order bands in Figs. 4 and 5)
due to the light-guiding topology of the networks, it is found
to be relatively weak in the fundamental bands here as those
cross close to the band edge (Fig. 4).
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SABA, TURNER, MECKE, GU, AND SCHRÖDER-TURK PHYSICAL REVIEW B 88, 245116 (2013)

These values for the degree of optical activity should
be compared to those in other systems. For quartz, the
rotary power varies from 3.2◦/mm at wavelength 1.42 μm
to 776◦/mm at 152 nm,89 for the liquid crystalline BPSmA1
blue phase between 0 and ≈250◦/mm over the visible
spectral range;4 for a smectic phase SmCAPA a value of
100◦–1000◦/mm has been reported.90 For a quasiplanar
“twisted-cross” gold metamaterial of thickness 87 nm, Decker
et al. have reported “strong” rotations of the polarization plane
of up to 4◦, yet with significant losses;16 for the split-ring-
resonator metamaterial of thickness 205 nm, “huge” rotations
of up to 30◦ are observed with different transmittances
for RCP and LCP light of less than 50% (see Fig. 3 in
Ref. 91). Song et al. have reported even “more gigantic”
polarization rotation in a microwave experiment using a
chiral composite material, yet also with the losses typical for
metallic metamaterials. Note that the dependence on sample
thickness (that can be varied in the 8-srs by varying the
number Nz of unit cells) is nonlinear, making a comparison of
polarization rotation normalized to the sample thickness less
meaningful.

Even for the likely nonoptimal parameters chosen here,
the lossless dielectric 8-srs photonic crystal hence has a
significant degree of optical activity, that is combined with
the complete absence of ellipticity, absence of losses, and
transmission rates of close to 100%. Further, for applications
such as beamsplitters where optical properties in various
transmission directions are important, the cubic symmetry of
the 8-srs structure is a further benefit to the uniaxial designs
of the quasiplanar metamaterials. Given that a single srs
net with a0 = 2a = 1.2 μm has been realized,15 it appears
likely that future advances in direct laser writing technology
make a realization of the 8-srs or its inverse structure with
a lattice size a = 1 μm a genuine possibility. Taking all of
these considerations into account, we believe that the 8-srs
is a design for a chiral-optical material that is worth further
investigation.

Evidently, the validity of all theoretic predictions of this
article is not limited to the 8-srs geometry, but applies more
generally to all geometries with symmetry I432. It is therefore
worth exploring structural databases for other designs with
that symmetry; this may include network structures such as
the fcd net,92 sphere packings such as Fischer’s 4/4/c14 or
3/4/c3 packings,93 minimal surface geometries such as Koch’s
NO32-c2 structure,94 rod packings such as utz-b,95 or woven
filaments such as the P129RL( cosh−1(3/2)) structure of Evans
et al. (see Fig. 8 of Ref. 96).

Beyond the specific symmetry group I432, our group
theoretic arguments can be adapted to apply more widely to
other crystalline chiral materials. For example, the suppression
of polarization conversion is expected to be valid for any
chiral structure that has m-fold rotations (as opposed to screw
rotations) with m � 3 along the [100] propagation direction.
These conditions are for example met for all cubic structures
with symmetry groups I432 (No. 211), F432 (No. 209),
and P 432 (No. 207); therefore other network structures with
these symmetries may be alternative photonic designs with
similar properties. From a perspective of photonic materials,
particularly structures with simple cubic P symmetries may
be attractive, because of their robustness with respect to the

incident wave vector angle; for transmission along the [100]
direction of a simple cubic crystal, the X point of the Brillouin
zone represents the center of a facet, in contrast to the H

point which represents a vertex of the BCC Brillouin zone.
Therefore, a small variation in the incident angle will, to first
order, not affect the distance between � and X in the SC case,
again in contrast to the distance between � and H in the BCC
case. As is the case for the I432 symmetry, advanced geometry
and structural databases can provide suitable structure candi-
dates, such as dgn or fce97 or P118RL( cosh−1(

√
6)) (see Fig. 14

of Ref. 96).
In a broader context, our study of the 8-srs geometry

demonstrates the benefit of using advanced unconventional
concepts of modern real-space geometry, such as the max-
imally symmetric intergrowth of multiple minimal nets, for
the informed design process of functional photonic mate-
rials. While numerical photonic methods for transmission
parameters and band structures clearly are indispensable
tools to translate geometric structure into photonic prop-
erties, we have here demonstrated the ability of group
theory to provide a firm theoretical understanding of the
relationship between photonic functionality and geometric
properties for complex three-dimensional chiral photonic
crystals.
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APPENDIX A: PROOF THAT POINT SYMMETRY
OPERATORS COMMUTE WITH THE

MAXWELL OPERATOR

We define the action of the operator R̂ on a vector
field by R̂F (r) = R F (R −1r). The matrices R are here
the common 3 × 3 matrices that transform three-dimensional
vectors according to a point symmetry R, for example given
by the Rodriguez formula in the case of a rotation. In the O

group these matrices are a suitable choice for the irreducible
representation T1 (Table I). The skew can be understood in
terms of an active transformation acting on the vector field
itself whereas the change of its position is achieved by a
passive transformation that changes space itself. With that
definition it is trivial that R̂ 1

ε(r)F (r) = 1
ε(r) R̂F (r) for any

dielectric function that is invariant under R̂ so that we are
left to show that R̂ commutes with the cross products in the
wave equation. The proof is done in a Cartesian basis with
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Einstein convention and the abbreviation r
′ = R −1r:101

[(ık + ∇) × R̂u(r)]i = εijk

(
ıkj + ∂

∂xj

)
Rklul(r

′)

= εijkRkl

⎛
⎜⎜⎜⎜⎜⎝ıkj + ∂x

′
m

∂xj︸︷︷︸
(a)=Rjm

∂

∂x
′
m

⎞
⎟⎟⎟⎟⎟⎠ ul(r

′)

(a)= εojkRopRipRklRjm

×
(

ıRqmkq + ∂

∂x
′
m

)
ul(r

′)

(b)= ±Ripεpml

(
ı(km − Gm) + ∂

∂x
′
m

)
ul(r

′)

= ±[ R {(ı(k − G) + ∇) × u}]i(r ′)

= ±[R̂{(ı(k − G) + ∇) × u(r)}]i .
Here we make use of the facts that (a) point symmetries
are length preserving and hence the matrix representation
is orthogonal, i.e., RijRkj = δik with the Kronecker symbol
δij , and that (b) the Levi-Civita symbol εijk is invariant
under proper [det(R ) = 1] rotations R̂(+) and changes its

sign under improper [det(R ) = −1] rotations R̂(−), i.e.,

R
(±)
il R

(±)
jm R

(±)
kn εlmn = ±εijk . The identity in (b) is evident

through expansion of the Levi-Civita tensor into a triple
product of Cartesian basis vectors (so that R takes a basic
form) and making use of (a).

The change of sign for improper rotations cancels out by
the double cross product in the ϑ̂k so that

ϑ̂kR̂ uk,n(r) = (ık + ∇) ×
[

1

ε(r)
(ık + ∇) × R̂ uk,n(r)

]

= R̂

{
(ık′ + ∇) ×

[
1

ε(r)
(ık′ + ∇) × uk′,n(r)

]}

= R̂
ω2

k′,n

c2
uk′,n(r) = R̂

ω2
k,n

c2
uk,n(r)

= R̂ ϑ̂k uk,n(r),

where we substitute k′ = k − G and use the invariance of the
periodic Bloch function uk+G = uk and the eigenfrequencies
ωk,n = ω(k+G),n.

APPENDIX B: INCOMPATIBILITY OF CUBIC
SYMMETRY AND FFT-BASED ALGORITHMS

IN A BCC OR FCC LATTICE

This Appendix discusses the general problem, applicable
to all methods based on a three-dimensional fast Fourier
transform (FFT) and including the MPB package,100 that a
BCC FFT grid is not compatible with all cubic symmetries.
This error is caused by the fact that a BCC fast Fourier
grid by definition is incompatible with the full O symmetry
(illustrated in Fig. 11) and only has the D3 point symmetry
of the parallelepiped spanned by the three (reciprocal) lattice
vectors.

(a) (b)

(c)

FIG. 11. (Color online) Incompatibility of planar hexagonal and
spatial BCC symmetry with the discrete Fourier grid used in PBS
plane-wave-based frequency domain eigensolvers. For any planar
object with hexagonal symmetry, a discretized representation using
a fast Fourier grid that takes exactly two linearly independent basis
vectors cannot maintain the full hexagonal symmetry, as (a) illustrates
for a circle; a discretization by hexagons (reduced Wigner-Seitz
cells), as shown in (b), would alleviate this problem but cannot be
implemented for the Fourier analysis. (c) The BCC case represents a
3D analogon with the same problem. The Brillouin zone (solid cell) is
a rhombic dodecahedron with full O symmetry, yet the parallelepiped
formed by the basis vectors of the Fourier grid representation (hollow
cell) only maintains D3 symmetry with a single 3-fold axis (red) and
three 2-fold axes (cyan).

We have identified this general problem as a by-product
of our exact group theoretic results for the topology of the
band structure—for the band structure of structures with BCC
and also hexagonal and face-centered-cubic (FCC) symmetry
and possibly others. The BCC Fourier grid can never maintain
the full point symmetry (Fig. 11), and hence discretization
artifacts are unavoidable and, as Fig. 5 shows, significant
even for relatively large sizes of the Fourier grid. We note
again that this is an intricacy that is not specific to our
application or even to optics and needs to be considered for
any numerical algorithm using a three-dimensional FFT on
a structure that has BCC, FCC, or hexagonal translational
symmetry.

To overcome the symmetry mismatch, in the BCC (FCC)
case a simple cubic grid can be used at the price of an
increase in numerical grid size by a factor of 2 (4) to obtain
equivalent spatial resolution. Figure 5 demonstrates that using
a simple (primitive) cubic setup is rectified under certain
circumstances where the gain in accuracy through symmetry
match is more important than the loss of geometrical detail.
A similar approach is not possible for hexagonal lattices
where an FFT grid that maintains the 6-fold rotation does not
exist.
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Here, also FDTD simulations (or any other algorithm
working with on a cubic grid) fail to cover the full symmetry
of the problem. Not affected are however methods on irregular
grids such as finite-element-based calculations that do not yield
systematic errors of this kind.

A zoom into the band structure in Fig. 4 reveals (a) that
bands do not cross on � but are anticrossing correlated with
an interchange of characters which is visible in the inset
in Fig. 4 where the band structure around the point (0.65,
0.68) is magnified102 and (b) that the 3-fold degeneracies at
the high-symmetry points are slightly lifted (Fig. 5). Both
phenomena can be explained with a degenerate perturbation
theory model that in case (a) includes only two modes of
different representation. The diagonal matrix is perturbed
by numerical breaking of the 4-fold symmetry. Case (a)
can be treated analytically with the help of direct product
selection rules. The perturbation matrix is orthogonal to the
A representation and hence the perturbation matrix does not
have diagonal elements. It is however still Hermitian so that
diagonalization results in a repulsive force between two closely
spaced bands. Any crossing becomes an anticrossing. The
modes mix in equal proportions (and with a phase factor
given by the argument of the secondary diagonal entries of
the perturbation matrix) at the point of degenerate frequency
without perturbation. The modes regain their original character
when leaving the degeneracy which can be observed in the
inset of Fig. 4 at coordinates (0.65,0.68) where the color is
gray at the crossing points and changes to the original E− (B)
color when leaving the degeneracy and also in the fundamental
bands at (0.95,0.62).103 With representation theorem (iii) we
can further explain why in case (b) the 3-fold degenerate modes
T1 and T2 split into a 2-fold and a nondegenerate state as
illustrated in Fig. 5 “iiz” and why the E mode does not split

up under the symmetry break. The character table for the D3

point group (cf. Fig. 11) is

D3 1 2C3 3C ′
2

χA1 (R) 1 1 1
χA2 (R) 1 1 −1
χE(R) 2 −1 0

so that we derive

R(O) A1 A2 E T1 T2

R(D3) A1 A2 E A2 + E A1 + E

Note that the reduction of the T1 representation in C4

includes a trivial behavior A whereas the reduction of T2

includes a trivial behavior A1 in D3. The black and blue colors
of the bands in Fig. 5 “iiz, BCC” are not unique, indicating
that the irreducible representation of C4 is not uniquely
determined due to the fact that no symmetry except the identity
transformation of C4 is a symmetry of the discretization and
hence the cannot be perfectly met by the numerics.

All modes have the same irreducible representation in the
trivial group of the wave vector Sk = 1 on �. Modes of same
irreducible representation cannot cross each other; they are
exposed to a “fermionic” repulsion.104 That is the reason
why the upper two bands in Fig. 5 “ii, BCC” cannot cross
each other. Another palpable example for a symmetry-induced
“fermionic” anticrossing that is expected for the C4 symmetry
itself and henceforth not related to a numerical symmetry brake
is provided by Fig. 5 “i, SC”.
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