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Axionic field theory of (3 + 1)-dimensional Weyl semimetals
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From a direct calculation of the anomalous Hall conductivity and an effective electromagnetic action obtained
via Fujikawa’s chiral rotation technique, we conclude that an axionic field theory with a nonquantized coefficient
describes the electromagnetic response of the (3 + 1)-dimensional Weyl semimetal. The coefficient is proportional
to the momentum space separation of the Weyl nodes. Akin to the Chern-Simons field theory of quantum Hall
effect, the axion field theory violates gauge invariance in the presence of the boundary, which is cured by the
chiral anomaly of the surface states via the Callan-Harvey mechanism. This provides a unique solution for
the radiatively induced CPT-odd term in the electromagnetic polarization tensor of the Lorentz violating spinor
electrodynamics, where the source of the Lorentz violation is a constant axial 4-vector term for the Dirac fermion.
A direct linear response calculation also establishes anomalous thermal Hall effect and a Wiedemann-Franz law,
but thermal Hall conductivity does not directly follow from the well known formula for the gravitational chiral
anomaly.
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I. INTRODUCTION

Usually topological states possess gapped spectrum in
the bulk. The charge and the spin quantum Hall states in
(2 + 1) dimensions, and the strong topological insulator in
(3 + 1) dimensions are some of the well known examples
of such gapped topological states of matter. Topological
considerations have also been applied to (3 + 1)-dimensional
Weyl fermions, which describe a gapless, semimetallic phase
with nontrivial momentum space topology.1 In the simplest
realization of Weyl semimetal, there are linearly dispersing,
2-component massless Dirac fermions around a pair of diabolic
points in the momentum space, described by the Hamiltonians
ĥ± = ±vF σ .(k − K±), where vF is the Fermi velocity, and
σ is the vector formed out of three Pauli matrices. The two
component Hamiltonians ĥ± respectively describe the source
(monopole) and the sink (antimonopole) of the Berry curvature
in the momentum space. The ± signs also correspond to
the right and the left chirality of the Weyl fermions. For
�k = K+ − K− �= 0, the right and the left Weyl fermions
are separated in the momentum space and the semimetal
is topologically nontrivial. In contrast �k = K+ − K− = 0
corresponds to topologically trivial, 4-component massless
Dirac fermion. A Weyl semimetal as described above, breaks
time reversal symmetry and gives rise to anomalous charge and
thermal Hall conductivities, and also possesses surface states
with chiral dispersion in the directions orthogonal to �k.2

Recently, the (3 + 1)-dimensional Weyl semimetal phase
has been proposed for a variety of condensed matter systems,
such as antiferromagnetically ordered pyrochlore iridates,2

topological insulator-normal insulator multilayers,3–5 magnet-
ically doped topological insulator,6,7 etc. In these systems,
electric charge is a conserved quantity, and the hallmark
of topology can be found in anomalous electrodynamic
properties.3–5,8–12 For example, (3 + 1)-dimensional chiral
anomaly, which occurs for nonorthogonal arrangement of
electric and magnetic fields may lead to a large negative
magnetoresistance.9–12 An anomalous charge Hall effect has
also been predicted3–5,8 when the crystallographic symmetry

does not cause any subtle cancellation of the Berry’s phase
among different pairs of Weyl fermions.8 On the other
hand, Weyl quasiparticles can also occur for superfluids and
superconductors.1,13–15 For Weyl quasiparticles of superfluids
and superconductors, charge is not a conserved quantity.
Therefore there will be no anomalous charge Hall effect.
The topological property of Weyl superconductor will rather
manifest through an anomalous thermal Hall effect.14 There
is also tremendous current interest in high energy physics
community in understanding how field theory anomalies
affect the relativistic hydrodynamics and various transport
quantities.16–19

Conventionally, the low energy, universal physics of a
gapped topologically ordered state is described by a topo-
logical field theory, which involves the conserved currents
and the associated gauge fields. The topological field theories
possess quantized coefficients, and describe the quantized
nondissipative response of the conserved charge. For example,
the charge quantum Hall effect in (2+1) dimensions is
described by a Chern-Simons term for the electromagnetic
field20,21

S[A] = σxy

4

∫
d3x εμνλ Aμ Fνλ, (1)

where σxy is the quantized Hall conductivity and Aμ and
Fνλ are respectively the electromagnetic vector potentials and
the field strengths. By varying S[A] with respect to A1 and
A2, we obtain the quantized antisymmetric tensor of the Hall
conductivity, and a subsequent variation with respect to A0

leads to n = σxyB, which in turn provides the thermodynamic
Streda formula22 σxy = ∂n/∂B, where n is the density of
the matter field. In the presence of a boundary, the Chern-
Simons action becomes gauge noninvariant and the offending
contribution due to the boundary is a (1+1)-dimensional
term, which is proportional to the applied electric field along
the boundary (∝σxyF02/2π = σxyEy/2π , if the boundary is
along y direction). This gauge noninvariant contribution due
to the boundary is precisely cancelled by the chiral anomaly
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term of the gapless, chiral edge states via Callan-Harvey
mechanism.21,23 This is how a topological field theory captures
(i) the quantized response of the conserved charge in the bulk
and (ii) the bulk-boundary correspondence.

For a (3 + 1)-dimensional, time reversal invariant, strong
topological insulator the electromagnetic response is described
by the axion term24

S[A] = θ e2

32π2

∫
d4x εμνρλ Fμν Fρλ, (2)

where θ = 0,π respectively describe the quantized mag-
netoelectric coefficients of a topologically trivial and a
nontrivial insulator. In the presence of a boundary between
the topological and the trivial insulators, the axion angle θ

discontinuously changes from π to 0, and gives rise to a
gauge noninvariant boundary term. The boundary term in this
case becomes a Chern-Simons term with σxy = e2/4π and
is precisely cancelled by the parity anomaly term25–27 of the
(2 + 1)-dimensional, two component Dirac fermions on the
surface, via Callan-Harvey mechanism.23,24,28,29 The above
action describes a quantized magnetoelectric effect, which
manifests as a half-integer quantum Hall effect of the two
component Dirac fermions on the surface.24

Therefore it is natural to ask if there is a topological
field theory description of a Weyl semimetal. In the language
of relativistic field theory, the momentum space separation
between the left and right Weyl fermions is captured by
a purely spacelike axial vector, and an axial vector breaks
Lorentz invariance and CPT symmetry.30 The consequences
of Lorentz violation due to CPT odd axial vector have
been widely studied in high-energy physics.31–34 On the
symmetry grounds it is well known that the spinor field
can radiatively induce a CPT odd axion term in the vacuum
polarization tensor.30,32–34 However, the precise coefficient and
the expression of the axion angle has been a subject of dispute.

Recently, in Ref. 35, Zyuzin and Burkov have applied
Fujikawa’s chiral rotation method36 for deriving effective
electromagnetic action of a Weyl semimetal and have found a
spatially varying axion angle θ = �k.x, where x describes the
three spatial coordinates in the bulk. For an axial 4-vector bμ

and zero Dirac mass, the induced axionic action is given by

Sax
W [A] = e2

16π2

∫
d4x bαxα εμνρλ Fμν Fρλ. (3)

From this effective action, they have reproduced the anomalous
Hall conductivity σ jk = e2/(2π2)εijkbi , and the chiral mag-
netic conductivity σch = e2/(2π2)b0. However, all the subtle
aspects of chiral anomaly have not been addressed. In Ref. 37,
without dealing with the chiral anomaly, the bulk-boundary
correspondence for anomalous Hall conductivity has been
invoked to fix the ambiguity of the axion term for a general
axial 4-vector in the presence of a Dirac mass. However,
these papers have not answered the most important question:
why do the available calculations of vacuum polarization
tensor30,32–34 fail to obtain the correct coefficient of the axionic
term?

In this paper, we thoroughly investigate various aspects of
chiral anomaly and the axionic electrodynamics of (3 + 1)-
dimensional Weyl semimetal. When the external electric and
magnetic fields are orthogonal, there is no (3 + 1) dimensional

chiral anomaly. In this case, we show that the (1 + 1)
dimensional chiral anomaly associated with the surface states
precisely cancel the gauge symmetry violating boundary
term arising from the axionic action via Callan-Harvey
mechanism,23 and the net theory indeed remains anomaly free.
When the electric and the magnetic fields are not orthogonal or
a magnetic field is applied in the presence of a chiral chemical
potential (purely timelike axial vector), (3 + 1)-dimensional
chiral anomaly shows up and this bulk chiral anomaly is not
compensated by any surface effects. We also deal with the
direct calculation of the CPT odd part of the polarization
tensor and the anomalous Hall effect. From our detailed
calculations, it will become clear that, due to the violation
of both Lorentz and spatial rotational invariance by a purely
spacelike axial vector, any Lorentz or spatially rotational
symmetric ultraviolet regularization leads to erroneous answer
for anomalous Hall coefficient (inconsistent with the bulk-
boundary correspondence), and renders the overall theory
anomalous. Only when the ultraviolet regularization is in
accordance with the reduced rotational symmetry, we obtain
the correct anomalous Hall conductivity, and simultaneously
satisfy the bulk-boundary correspondence.

Our paper is organized as follows. In Sec. II, we describe
the relevant Dirac Hamiltonian augmented by an axial vector,
and discuss the emergent spectrum in detail. In Sec. III, we
provide the detailed solutions of the chiral surface states
of a Weyl semimetal and a Weyl superconductor. We also
demonstrate how (1 + 1)-dimensional chiral anomaly becomes
embedded in a (2 + 1)-dimensional set up. Based on the
surface state solutions, we provide the relevant formula for
anomalous charge Hall conductivity. In Sec. IV, we obtain
the axion electrodynamics of Weyl semimetal by employing
Fujikawa’s chiral rotation technique. We show how this
axionic field theory captures all the important features of
the anomalous electrodynamics (i) anomalous Hall effect,
(ii) Streda formula and (iii) bulk-boundary correspondence.
In Sec. V, we compute the anomalous Hall conductivity using
Kubo formula, and show the detailed comparison among the
answers obtained with different ultraviolet regularizations. In
this section we also study the dependence of the anomalous
Hall conductivity on the chemical potential. In Sec. VI, we
briefly address the problem of purely timelike axial vector
or an axial chemical potential, and associated formula for
the chiral magnetic conductivity. In Sec. VII, we briefly
comment on the relation between thermal Hall conductivity
and the gravitational chiral anomaly. In Sec. VIII, we present
a summary of our results and the future directions, and a
solution for the chiral surface states of a Weyl superconductor
is presented in Appendix.

II. MODEL HAMILTONIAN OF WEYL SEMIMETAL

For simplicity, we consider the following real-time
(Minkowski space) action involving one species of 4-
component Dirac fermion, described by

S0 =
∫

d4x�̄(iγ μ∂μ − m − bμγ μγ 5)�, (4)
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where h̄ and the Fermi velocity v have been set to
unity, m is the conventional Dirac mass (Lorentz scalar),
and the anticommuting γ matrices satisfy {γ μ,γ ν} = 2gμν ,
gμν = (1,−1,−1,−1) is the metric tensor, γ 5 = iγ 0γ 1γ 2γ 3,
and �̄ = �†γ0. We have added a Lorentz symmetry violating
axial 4-vector term ψ̄bμγ μγ 5ψ in the action for generality.
The Hamiltonian corresponding to the action in Eq. (4) is
described by

H =
∫

d3x�†(−iγ 0γ j∂j + mγ 0 + bμγ 0γ μγ 5)�. (5)

The complete solution for the dispersion relation in the
presence of a general axial 4-vector and Dirac mass has to
be obtained numerically. The exact analytical solution can be
found for (i) a general axial 4-vector and m = 0, (ii) a purely
spacelike axial 3-vector and m �= 0, (iii) a purely timelike axial
vector or an axial chemical potential and m �= 0, and (iv) a
lightlike axial 4-vector and m �= 0. A purely spacelike axial
vector term breaks time reversal symmetry (T ), but preserves
inversion (P) and charge conjugation (C) symmetries, and con-
sequently breaks CPT symmetry. An axial chemical potential
b0 also breaks CPT symmetry, but in a different way. The axial
chemical potential breaksP , but preserves T and C. In this sec-
tion and also in the following, Secs. III–V, we will be mainly
interested in a purely spacelike axial vector, i.e., b0 = 0, which
is pertinent for the realization of Weyl semimetal. The effects
of axial chemical potential b0 will be discussed in Sec VI.

In the basis of even and odd parity bands (also known as
Dirac representation of γ matrices),

γ 0 =
(
1 0

0 −1

)
, γ j =

(
0 σ j

−σ j 0

)
,

(6)

γ 5 =
(

0 1

1 0

)
,

the Hamiltonian operator in the momentum space becomes

ĤD =
[

m 1 + σ · b σ · k

σ · k −m 1 + σ · b

]
. (7)

Thus an axial 3-vector term in Dirac basis, corresponds to a
ferromagnetic order or uniform Zeeman coupling, where both
parity even and odd bands have identical g factors. If we use
the chiral representation of the γ matrices,

γ 0 =
(

0 1

1 0

)
, γ j =

(
0 σ j

−σ j 0

)
,

(8)

γ 5 =
(−1 0

0 1

)
,

the Hamiltonian operator in the momentum space becomes

Ĥch =
[

σ · (k + b) m 1

m 1 −σ · (k − b)

]
. (9)

When m = 0, the above Hamiltonian operators describe
two Weyl fermions separated in the momentum space by the
vector �k = 2b, which becomes particularly transparent from
Eq. (9). In this case, the Ĥch is block diagonal, and the chirality
of the Weyl fermions after momentum space splitting is still
determined by γ 5. For m �= 0, the eigenstates of γ 5 get mixed,
and the dispersion relations are given by

Ek,s=±1 = ±
√

(k × b̂)2 + [|b| + s

√
m2 + (k · b̂)2]2. (10)

Due to the time reversal symmetry breaking, the Kramers
degeneracies of the conduction and the valence bands are
removed, which is captured by the nondegeneracy of con-
duction and valence bands for a given value of s. The bands
corresponding to s = +1 are always fully gapped. But the
bands corresponding to s = −1 are fully gapped, only when
m2 > b2, and the system is an insulator. For m2 < b2, the
conduction and the valence bands corresponding to s = −1,
cross at k = ±b̂

√
b2 − m2, giving rise to right and left Weyl

fermions, with �k = 2b
√

1 − m2/b2. In the subspace of these
emergent Weyl fermions, we can define a new chirality matrix
γ̃ 5, and the low-energy Hamiltonian will acquire the form

Ĥ reduced
ch

=
[

σ · (k + b̂
√

b2 − m2) 0

0 −σ · (k − b̂
√

b2 − m2)

]
.

(11)

III. CHIRAL SURFACE STATES AND
(1 + 1)-DIMENSIONAL CHIRAL ANOMALY

In this section, we find explicit solutions for the surface
states of a Weyl semimetal. To the best of our knowledge, the
explicit solution for the surface states of the Hamiltonian in
Eq. (5) has not been published in the literature. Therefore we
provide the detailed solution of the surface states. In addition,
we also demonstrate for the first time how (1 + 1)-dimensional
chiral anomaly becomes embedded into a (2 + 1)-dimensional
setup, and provides a strong constraint on the bulk effective
field theory.

Consider Ĥch, with b = bẑ and a boundary in the yz plane.
For simplicity, we can model the boundary by a Heaviside step
function of coordinate x, b(x) = b θ (x). To obtain the surface
state solution, we solve the following eigenvalue equation:(

iσ · ∇ + σ3 b θ (x) m 1

m 1 −iσ · ∇ + σ3 b θ (x)

)
�(x) = E�(x).

(12)

The momenta along ŷ and ẑ directions are good quantum
numbers and after we substitute �(x) = eikyy+ikzzψ(x) in
Eq. (12), we find that the spinor ψ(x) satisfies

(
i σ1 ∂x − σ2ky − σ3kz + σ3 b θ (x) m1

m1 −i σ1 ∂x + σ2ky + σ3kz + σ3 b θ (x)

)
ψ(x) = Eψ(x). (13)
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It turns out that only the state corresponding to eigenvalue
+1 of the matrix γ 0γ 2 leads to a normalizable solution. The
general ansatz for such a state is

ψ(x) = u(x)

⎛
⎜⎜⎜⎝

0

0

1

i

⎞
⎟⎟⎟⎠ + v(x)

⎛
⎜⎜⎜⎝

1

−i

0

0

⎞
⎟⎟⎟⎠, (14)

which is a linear combination of the two eigenstates of the
chiral matrix γ 5. The above ansatz for ψ(x) leads to the
dispersion E = +ky and the functions u(x) and v(x) satisfy
the following coupled differential equations:

[∂x + kz + bθ (x)]u(x) + mv(x) = 0, (15)

mu(x) + [∂x − kz + bθ (x)]v(x) = 0. (16)

From these equations by eliminating v(x), we obtain the
following second-order differential equations for u(x):

∂2
xu(x) − (

k2
z + m2

)
u(x) = 0, ∀ x < 0, (17)

∂2
xu(x) + 2b ∂xu(x) − (

k2
z + m2 − b2

)
u(x) = 0, ∀ x > 0.

(18)

From these equations, we obtain

u(x < 0) = A e
√

k2
z +m2 x, (19)

v(x < 0) = − 1

m

(
kz +

√
k2
z + m2

)
A e

√
k2
z +m2 x, (20)

u(x > 0) = B e(−b+
√

k2
z +m2)x + C e−(b+

√
k2
z +m2)x, (21)

v(x > 0) = − 1

m

(
kz +

√
k2
z + m2

)
× [

B e(−b+
√

k2
z +m2)x + C e−(b+

√
k2
z +m2)x]. (22)

The continuity conditions on u(x) and v(x) at x = 0 lead to

A = B + C and A = B + kz−
√

k2
z +m2

kz+
√

k2
z +m2

C, from which we obtain

C = 0, and A = B. Therefore the final solutions for u(x) and
v(x) are given by

u(x < 0) = A e
√

k2
z +m2 x, (23)

u(x > 0) = A e(−b+
√

k2
z +m2)x, (24)

v(x) = −A

m

(
kz +

√
k2
z + m2

)
u(x). (25)

For x > 0, the solution is normalizable only when
−√

b2 − m2 < kz <
√

b2 − m2. These surface state solutions
with E = +ky are responsible for producing Fermi arc in the
ARPES measurements.2

If we modify the Hamiltonian with a particle-hole symme-
try breaking higher gradient term �†∂2

j �, the energy E can can
acquire explicit dependence on kz,4 but chiral dispersion can
occur only along x̂ (in xz plane) and ŷ (in yz plane) directions.
Such perturbations are generically present in a lattice realiza-
tion of Weyl semimetal, and their qualitative effects in the low
energy and momentum limit will be to modify E = +vF ky to

E ≈ k2
z

2m∗ + vF ky , where we have restored the Fermi velocity

of the bulk quasiparticles, and m∗ is a nonuniversal effective
mass. In the presence of an electric field along ŷ direction,
the chiral dispersion along ŷ leads to U(1) chiral anomaly.
For any allowed value of kz, we have chiral anomaly of
one-dimensional states e2/2πEx/y , and the net contribution
from the entire range of −√

b2 − m2 < kz <
√

b2 − m2 is
given by e2Ex/y/2π

∫
dkz/(2π ) = e2/(2π2)

√
b2 − m2Ex/y .

Thus (1 + 1)-dimensional chiral anomaly is embedded in a
(2 + 1)-dimensional setup, and we can express this as the
following effective action:

Ssurface
an = e2

2π2

√
b2 − m2

∫
dt dy dzf (y,z,t)Ey(y,z,t),

(26)

where the function f (y,z,t) is related to a gauge transforma-
tion performed on the vector potential (which is also a chiral
gauge transformation in this case). Under the variation with
respect to f , we will obtain the anomalous Ward identity for the
charge current (which is also the chiral current in this case).
The presence of the chiral surface states and the associated
U(1) chiral anomaly suggests that the bulk electromagnetic
action contains some kind of topological term, which in the
presence of a boundary can cancel the chiral anomaly to make
the overall theory anomaly free.23 Akin to the edge modes of
the quantum Hall problem, the chiral surface states give rise
to the following anomalous Hall conductivity:3,4

σxy = e2

2π2

√
b2 − m2. (27)

IV. AXION ELECTRODYNAMICS IN THE BULK
VIA CHIRAL ROTATION

In this section, we describe the bulk electromagnetic action
obtained via Fujikawa’s chiral rotation technique in Ref. 35.
For simplicity, we choose m = 0, and two Weyl fermions are
now located at k = ±b. The relevant fermion action coupled
to electromagnetic gauge fields is given by

S[�,�̄,b,A] =
∫

d4x�̄[iγ μ(∂μ + iAμ) − bjγ
jγ 5]�.

(28)

We can perform a chiral rotation of the spinor fields by an
angle θ = b · x, which removes the axial vector bilinear from
the fermion sector in the action S[�,�̄,b,A] in Eq. (28).
Under the chiral rotation, the spinor fields transform to � →
exp(ib · xγ 5)�

′
and �̄ → �̄

′
exp(ib · xγ 5). However, due to

the noninvariance of the path integral measure under such a
chiral rotation, the effective action acquires a contribution from
the Jacobian of the transformation. This procedure leads to the
following effective action:

S[�,�̄,b,A] =
∫

d4x�̄
′
iγ μ(∂μ + iAμ)�

′

+ e2

16π2

∫
d4x b.x εμνρλ Fμν Fρλ. (29)

The primed spinor fields represent topologically trivial 4-
component massless Dirac fermions, and the entire effects
of the axial vector is now captured by the axionic term for the
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electromagnetic fields,

�S = e2

16π2

∫
d4x b · x εμνρλ Fμν Fρλ. (30)

This term does not reflect chiral anomaly in three-dimensional
bulk. Rather this term is analogous to the condensation energy
derived for a broken symmetry phase. It is more useful to write
the gauge covariant form of this action,

�S = e2bμ

4π2
(1 − δμ,0)

∫
d4x εμνρλ Aν ∂ρAλ, (31)

obtained via integration by parts. The variation of �S with
respect to the vector potential provides the difference between
the currents in the topological and the trivial sectors. Since a
topologically trivial 4-component massless Dirac fermion does
not have any anomalous transport properties, the variation of
�S uniquely specifies the anomalous transport properties of
the Weyl fermions. For b = bẑ, by varying the above action
with respect to A1 and A2, we obtain the Hall conductivity
σxy = e2b

2π2 , and a subsequent variation with respect to A0 leads
to the Streda formula22 σxy = ∂n/∂B. In the absence of a
boundary, the axionic action is gauge invariant. However, in the
presence of a boundary [say b(x) = bθ (x)ẑ], this action is not
invariant under the gauge transformation Aμ(x) → Aμ(x) −
∂μf (x), and there is a boundary term

�Sboundary = − e2b

2π2

∫
d4x δ(x1) f (x) ε31ρλ ∂ρAλ, (32)

which is precisely canceled by the chiral anomaly from the
surface states presented in Eq. (26). For m �= 0, we can
integrate out the higher lying bands corresponding to s = +1
described in Eq. (10) and use an effective action corresponding
to the Hamiltonian operator shown in Eq. (11). Then our
results for the m = 0 problem, can be taken over by replacing
b → √

b2 − m2.
In high-energy physics literature,30,32,34 it has been argued

that a detailed knowledge of the high-energy sector (beyond
QED) or a physical input is required to fix the coefficient of
the axionic term. However, in the present case, notice that the
(1 + 1)-dimensional chiral anomaly of the surface states does
not depend on the precise ultraviolet form of the Hamiltonian.
Rather the emergence of the chiral surface states is precisely
connected to the low-energy physics of the bulk Weyl fermions.
Thus in the present case the condition of an overall anomaly
free theory or the bulk-boundary correspondence, unambigu-
ously fixes the coefficient of the axionic action for the case of
a purely spacelike axial vector to be bμ/(4π2)(1 − δμ,0) [see
Eq. (31)]. For the corresponding massive theory, the coefficient
becomes bμ/(4π2)(1 − δμ,0)

√
1 − m2/|b|2θ (|b|2 − m2).

V. ANOMALOUS HALL CONDUCTIVITY VIA KUBO
FORMULA AND ULTRAVIOLET REGULARIZATIONS

In this section, we will calculate the anomalous Hall
conductivity using Kubo formula, which requires a direct
calculation of the CPT odd part of the vacuum polarization ten-
sor. In order to succinctly describe all the subtleties involving
ultraviolet regularization, we again choose the simplest case of
m = 0. The origin of the anomalous term in the electrodynamic

action is rooted in the trace identity Tr(γ μγ νγ ργ λγ 5) =
−4iεμνρλ. The real-time fermion propagator corresponding
to the action in Eq. (4), for m = 0 is given by

G(k) = i

2

[
(k − b)μγ μ

(k − b)2
(1 − γ 5) + (k + b)μγ μ

(k + b)2
(1 + γ 5)

]
.

(33)

After substituting this propagator in the expression of the
polarization tensor

�μν(p) = −ie2
∫

d4k

(2π )4
Tr[γ μG(k)γ νG(k + p)] (34)

and evaluating the trace over the γ matrices, we obtain the
CPT-odd anomalous part of the polarization tensor:

�
μν

odd(p) = 2e2εμνρλpλ

∫
d4k

(2π )4

[
(k + b)ρ

(k + b)2(k + b + p)2

− (k − b)ρ
(k − b)2(k − b + p)2

]
. (35)

The integral produces a term proportional to bρ . It is important
to take the momentum cutoff along the direction of the axial
vector to infinity, only at the end of the calculations. Otherwise
a naive shift of kμ will make this integral to vanish.32,33

If we now set the external momentum p in the integrand
to be zero, and perform a Wick rotation to Euclidean space,
and perform the k integral in a Lorentz invariant way with a
4-momentum cutoff �, we obtain

lim
p→0

�
μν

odd(p)

pλ

= 4e2

(2π )4b2
εμνρλ bρ

∫ �

0
k3 dk

∫ π

0
sin2 θ1dθ1∫ π

0
sin θ2dθ2

∫ 2π

0
dθ3

b2 + 2kb cos θ1

(k2 + b2 + 2kb cos θ1)2
(36)

= 2e2

(2π )2b4
εμνρλ bρ

∫ �

0
k3 dk θ (b − k)

= e2

8π2
εμνρλ bρ. (37)

This gives rise to an anomalous Hall conductivity and a chiral
magnetic conductivity, which are smaller than the correct
answers by a factor of 4 [see below Eq. (3)].

For the calculation of Hall conductivity using Kubo for-
mula, we will choose the finite temperature fermion propagator
and also consider the finite density effects by incorporating a
nonzero chemical potential μ in the propagator. We further
choose a pure spacelike axial vector bμ = (0,b), and the ex-
ternal Euclidean momentum pμ = iωnδμ,0. After performing
a Matsubara sum and an analytic continuation to the real
frequency iωn → ω + iδ, the dynamic Hall conductivity is
found to be

σ ij = e2εij l

∫
d3k

(2π )3

{
(k + b)l

|k + b|[4(k + b)2 − ω2]

×
[

tanh
β

2
(|k + b| − μ) + tanh

β

2
(|k + b| + μ)

]

+ (b → −b)

}
. (38)

Since we are concerned with a nondissipative conductivity,
we obtain the same answer for the zero temperature dc Hall
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conductivity for both limits ω/T → 0 and ω/T → ∞. The
zero temperature dc Hall conductivity for μ = 0 is given by

σ ij = e2

2
εij l

∫
d3k

(2π )3

[
(k + b)l

|k + b|3/2
− (b → −b)

]
. (39)

If we perform the 3-momentum integral in a rotationally
symmetric way, we obtain as in Ref. 30,

σ ij = e2

b2(2π )2
εij lbl

∫ �

0
k2 dk

∫ π

0
sin θ dθ

× (b2 + k|b| cos θ )

(k2 + b2 + 2k|b| cos θ )3/2
(40)

= 2e2

|b|3(2π )2
εij lbl

∫ �

0
k2 dkθ (|b| − k)

= e2

6π2
εij lbl , (41)

which is three times smaller than the correct answer [see
below Eq. (3)]. We notice that both the Lorentz invariance and
the spatial rotational invariance are broken by b. Therefore
the above two methods of regularization do not conform to
underlying symmetry and lead to incorrect answers. Below
we use a regularization that is consistent with the broken
symmetries in the presence of b and obtain the correct result
for anomalous Hall conductivity using the Kubo formula.

There is a rotational symmetry only in the plane perpen-
dicular to b, and if we perform the integral over k in a
cylindrically symmetric way, it will be consistent with the
underlying symmetry. We shall choose a cutoff � along the b̂

direction and keep the cutoff in the perpendicular plane to be
∞. With this regularization we obtain

σ ij = e2

(2π )3
εij l b̂l

∫ ∞

0
k⊥dk⊥

∫ �

−�

dk‖
∫ 2π

0
dφ

× k‖ + |b|
[k2

⊥ + (k‖ + |b|)2]3/2
(42)

= e2

(2π )2
εij l b̂l

∫ �

−�

dk‖ sgn(k‖ + |b|)

= e2

2π2
εij lbl , (43)

which is indeed the correct answer. Therefore we need to
choose (i) a method of integration which is consistent with
the reduced rotational symmetry, (ii) a finite cutoff along
the axial vector, which can be sent to infinity at the end
of calculations, and (iii) we can keep the cutoffs in the
directions perpendicular to the axial vector to be infinity
without any trouble. In the presence of a nonzero Dirac
mass, the expressions become more involved. However, this
physically motivated regularization does yield the correct
anomalous Hall conductivity σ ij = e2/(2π2)

√
b2 − m2εij l b̂l

for b2 > m2. For b2 < m2, the anomalous Hall conductivity
vanishes, which is consistent with the absence of the chiral
surface states, and certainly is the correct answer for the bulk
insulator.

Now we consider the effects of finite density (μ �= 0) on
the anomalous Hall conductivity. For concreteness, we choose
μ > 0. The zero-temperature dc Hall conductivity is then given

by

σ ij = e2

(2π )3
εij l b̂l

∫ ∞

0
k⊥dk⊥

∫ �

−�

dk‖
∫ 2π

0
dφ

× k‖ + |b|
[k2

⊥ + (k‖ + |b|)2]3/2
θ (k2

⊥ + (k‖ + |b|)2 − μ2)

(44)

= e2

(2π )2
εij l b̂l

∫ �+|b|

−�+|b|
x dx

[
θ (|x| − μ)

|x| + θ (μ − |x|)
μ

]

= e2

2π2
εij l b̂l . (45)

This is an interesting result, which implies that the anomalous
Hall conductivity remains unchanged at a finite density.
This is in accordance with the general principle that U(1)
chiral anomaly remains unaffected by chemical potential
or finite temperature.38,39 But, this result is only valid for
unbounded linear dispersion of Dirac fermions. When we
consider a more realistic dispersion of the fermions, such that
the linear dispersion is smoothly cut-off by higher gradient
terms, the contributions from the partially filled or occupied
states generically remain finite. Therefore the anomalous
Hall conductivity of real materials will be modified by a
nonuniversal contribution from the partially filled or empty
states.

For justifying this conclusion, we have used the following
lattice model of Weyl fermions:

H = t(sin k1τ1 + sin k2τ2 + cos k3τ3)

+m(2 − cos k1 − cos k2)τ3

= Nk · τ , (46)

at finite density. When m > t/2, the model supports only one
pair of Weyl fermions. The right and the left-handed Weyl
points are respectively located at (0,0,π/2) and (0,0, − π/2),
leading to b = (0,0,π/2). For μ = 0, the anomalous Hall
conductivity is given by σ 0

xy = e2/(4π ). The Hall conductivity
at arbitrary density is given by the well known formula40,41

σxy = e2 εabc

∑
n

∫
d3k

(2π )3
�k,n,z f (Ek,n), (47)

where f (E) is the Fermi function and the Berry curvatures for
two bands are determined as

�k,n,a = (−1)nεabc

Nk · (
∂Nk
∂kb

× ∂Nk
∂kc

)
4|Nk|3 . (48)

We have numerically computed σxy as a function of μ at T = 0,
by employing Eq. (47), and the results are shown in Fig. 1. We
have plotted the dimensionless quantity σxy/σ

0
xy as a function

of the dimensionless variable μ/t . As μ/t grows, σxy/σ
0
xy

gradually decreases from unity. These results demonstrate the
inadequacy of the linearized continuum theory for calculating
the anomalous Hall current at finite density.
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FIG. 1. σxy/σ
0
xy as a function of μ/t , where σ 0

xy = e2/(4π ) is the
anomalous Hall conductivity at half-filling.

VI. CHIRAL MAGNETIC CONDUCTIVITY IN THE
PRESENCE OF AXIAL CHEMICAL POTENTIAL

For an axial chemical potential b0 �= 0, the number of
left and right fermions will be different, and the (3 + 1)-
dimensional bulk chiral anomaly can manifest in the presence
of a magnetic field. When b0 �= 0 and m = 0, left and right
Weyl fermions, respectively, produce particle- and holelike
Fermi surfaces (which will be unstable against interaction
effects, due to the perfect nesting of the Fermi surfaces) to
maintain charge neutrality. For finite chiral chemical potential,
the theory is truly anomalous and the bulk (3 + 1)-dimensional
chiral anomaly in the presence of an electromagnetic field
can not be removed by any surface state. It is also important
to note that for a purely timelike axial vector and m = 0,
there is no surface state solution. By chiral rotation method
we shall find an axion angle θ = b0 t , which leads to an
equilibrium current along the direction of the applied magnetic
field ji = e2b0Bi/(2π2), and the chiral magnetic conductivity
defined by σch = ji/Bi = e2b0/(2π2).

For a purely timelike axial vector, we have spatial rota-
tional symmetry (but no Lorentz symmetry). Our method of
regularization for the direct calculation of the chiral magnetic
conductivity will be to choose: (i) a frequency cutoff �,
(ii) keep the spatial cutoff to be infinity, and (iii) perform
the spatial momentum integral in a rotationally symmetric
manner. This method again produces the correct answer for
the chiral magnetic conductivity e2b0/(2π2). In the presence
of a nonzero Dirac mass and an axial chemical potential, the
dispersion relation is given by

Ek,s=±1 = ±
√

(|k| + s b0)2 + m2, (49)

which describes an insulating bulk. Due to the broken inversion
symmetry, the Kramers degeneracy is absent. With our
regularization, the chiral magnetic conductivity for a massive
Dirac fermion in the presence of an axial chemical potential
vanishes. Therefore we find the chiral magnetic conductivity
is finite for massless Dirac fermion in the presence of an
axial chemical potential, while for the corresponding massive
theory it vanishes. In Refs. 17, 34, and 35, the chiral magnetic
conductivity of the massive problem has been found to be
e2b0/(2π2). However, in these works, the frequency cutoff has

been taken to be infinity and the spatial cutoff has been kept
finite. Hence their regularization procedure is opposite to the
one we have used.

VII. THERMAL HALL CONDUCTIVITY
AND GRAVITATIONAL ANOMALY

Since an axial 3-vector breaks time reversal symmetry,
on symmetry ground we expect an anomalous thermal Hall
conductivity. A linear response calculation in the bulk (after
accounting for diathermal contributions) leads to a Wiedeman-
Franz law between anomalous charge and thermal Hall
conductivities42,43 for a Weyl semimetal. The thermal Hall
conductivity κij is found to be

κij = π2k2
BT

3e2
σ ij = k2

BT

12
εij l�kl . (50)

This result is also consistent with the heat transported by
the chiral surface states.44,45 For a Weyl superconductor there
is no charge Hall conductivity. The anomalous thermal Hall
conductivity for the ferromagnetic superconductor, described
in Ref. 13, is given by

κij
sc = k2

BT

24
εij l

∑
s

�ks,l , (51)

where �ks is the momentum space separation of the Weyl
fermions corresponding to the spin projection s. In contrast to
the Weyl semimetal, there is an additional pre-factor of 1/2,
which reflects that we are dealing with BdG quasiparticles in
the bulk.46 The prefactor of 1/2 is also consistent with the
fact that surface states are now described by chiral Majorana
fermions. Recently, the gravitational chiral anomaly has been
argued to be responsible for a quantized thermal Hall effect on
the surface of a topological superconductor in class DIII.47–49

However, we find that the linear response thermal Hall conduc-
tivity is not directly captured by the well known gravitational
anomaly formula, even though the gravitational anomaly
formula correctly captures the bulk-boundary correspondence
at zero temperature, and the anomaly formula also verifies
the correct conformal charge of the surface states.50 Similar
concerns regarding the connection between the thermal Hall
effect and the gravitational chiral anomaly have also been
raised in Refs. 51 and 52.

VIII. SUMMARY AND FUTURE DIRECTIONS

In this paper, we have explored the relationship between
the chiral anomaly and the effective electromagnetic action
of a (3 + 1)-dimensional Weyl semimetal in detail. We have
obtained explicit solutions for the chiral surface states and
associated (1 + 1)-dimensional chiral anomaly. Based on the
chiral anomaly of the surface states, we have demanded the
existence of an anomalous bulk action, such that the overall
theory becomes anomaly free via Callan-Harvey mechanism.23

From a subsequent calculation of the bulk charge Hall
conductivity via Fujikawa’s chiral rotation method and also
by Kubo formula, we have established that the anomalous
electrodynamic properties in the bulk are described by axion
electrodynamics. Unlike the strong topological insulator,
which has gapped spectrum and a quantized coefficient for
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axionic action, the coefficient of the axionic electrodynamics
for a Weyl semimetal is proportional to the momentum
space separation of the Weyl nodes. The momentum space
separation of the Weyl fermions can be renormalized due
to disorder and interaction effects. However, weak disorder
and long-range Coulomb interactions turn out to be irrelevant
perturbations53,54 for (3 + 1)-dimensional Dirac and Weyl
fermions at zero chemical potential. Therefore, at zero chemi-
cal potential, the renormalization effects on the anomalous Hall
conductivity will become unimportant at low temperatures.
However, the combined effects of disorder and interaction
on the anomalous Hall conductivity at a finite density is an
interesting open problem.

We have pointed out the subtleties involved in the direct
calculation of anomalous Hall conductivity by using Kubo for-
mula, and also provided a regularization scheme that respects
the underlying symmetry. Our regularization does produce
the correct answer for the anomalous Hall conductivity for
a Lorentz violating spinor electrodynamics, where the Lorentz
violation is caused by a purely spacelike axial vector bilinear
for the Dirac fermions. Our regularization provides the correct
chiral magnetic conductivity for a massless Dirac fermion
in the presence of an axial chemical potential or a purely
timelike axial vector. Based on our regularization, we have
found zero chiral magnetic conductivity for a massive Dirac
fermion in the presence of an axial chemical potential, which
is at odds with the result reported in the literature.17,34,35

Recently, some authors have claimed that the chiral magnetic
effect is an artefact of the linearized continuum theory and
can not be realized in real materials.55–57 These claims have
been subsequently disproved in Refs. 58 and 59, where finite
chiral magnetic conductivities have been calculated based on
different lattice realizations of Weyl semimetal with an axial
chemical potential.

A linear response calculation of the thermal Hall con-
ductivity has shown the existence of a Wiedemann-Franz
law between the charge and the thermal Hall conductivities.
In contrast to the recent claims in the literature, we find
that the thermal conductivity does not directly follow from
the well known gravitational anomaly formula. The detailed
connection between the thermal Hall effect and gravitational
anomaly will be discussed in a separate publication.50

We note that a nonquantized axion angle has also been
found for the magneto-electric response of the doped topo-
logical insulators, when the chemical potential lies in the
conduction or the valence bands.60,61 In contrast to the
Weyl semimetal, the nonquantized theta term of the doped
topological insulators does not describe bulk anomalous Hall
effect. Rather, it corresponds to a nonquantized anomalous
surface Hall effect, when the time-reversal symmetry is broken
on the surface by applying magnetic impurities. An interesting
application of the Callan-Harvey effect has also been discussed
in a recent work,62 when the Weyl semimetal is destabilized
through a charge density wave order.
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APPENDIX: SURFACE STATES OF WEYL
SUPERCONDUCTOR

For a Weyl superconductor described in Ref. 13, we can use
the Hamiltonian operators of Sec. II, as long as we identify
�(x) to be a Nambu spinor. However, to make a direct con-
nection, we choose the ferromagnetic triplet superconductor
described in Ref. 13, which has the same pairing symmetry as
He3 − A2 phase. Due to the ferromagnetic moment there are
spin-split Fermi surfaces in the normal state. In addition, the
same spin pairing is chosen with the symmetry kx − iky , but
with distinct amplitudes for two spin projections. The reduced
BCS Hamiltonian is described by

HBCS =
∑

s=±,k

[(
k2

2m
− μs

)
c
†
k,sck,s + �s

kF,s

(kx − iky)

× c
†
k,sc

†
−k,s + H.c.

]
, (A1)

where μs , kF,s = √
2mμs , and �s are, respectively, the

chemical potential, the Fermi surface radius, and the pairing
amplitude for spin projection s. For each spin projection s, we
have a pair of Weyl fermions located at ks = ±kF,s ẑ. In order to
obtain a qualitative description of the surface states, we choose
a spatially varying chemical potential μs(x) = μs tanh(x/ξ ).46

Again, we retain ky and kz as good quantum numbers, and
replace kx by −i∂x . For small energy and momentum, we can
ignore ∂2

x and k2
y in comparison to ∂x and ky but retain the only

kz dependence through the quadratic term k2
z /2m to obtain

[(
k2
z

2m
− μs tanh

x

ξ

)
τ3 + �s

kF,s

(−iτ1∂x + τyky)

]
ψs(x)

= Esψs(x). (A2)

In order to obtain a normalizable solution, we need to choose
ψs(x) to be an eigenstate of τy with eigenvalue +1, which
leads to the ansatz ψT

s (x) = us(x)(1, − i), and the dispersion
Es = −�sky/kF,s . The function us(x) satisfies

∂xus(x) − kF,s

�s

(
k2
z

2m
− μs tanh

x

ξ

)
us(x) = 0, (A3)

and the solution is described by

us(x) = u0,s exp

[
kF,s

�s

k2
z

2m
x

](
cosh

x

ξ

)−μsξ

, (A4)

which has the following asymptotic property:

lim
|x|→∞

us(x) ∼ u0,s exp

[
kF,s

�s

(
k2
z

2m
x − μs |x|

)]
. (A5)

The above solution us(x) is normalizable only when −kF,s <

kz < kF,s and describes a Majorana fermion with chiral
dispersion along −ŷ direction.
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