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Transport through two interacting resonant levels connected by a Fermi sea

Elena Canovi, Alexander Moreno, and Alejandro Muramatsu
Institut für Theoretische Physik III, Universität Stuttgart, Pfaffenwaldring 57, 70550 Stuttgart, Germany
(Received 1 February 2013; revised manuscript received 14 October 2013; published 4 December 2013)

We study transport at finite bias, i.e., beyond the linear regime, through two interacting resonant levels
connected by a Fermi sea, by means of time-dependent density-matrix renormalization group. We first consider
methodological issues, such as the protocol that leads to a current-carrying state and the characterization of the
steady state. At finite sizes, both the current and the occupations of the interacting levels oscillate as a function
of time. We determine the amplitude and period of such oscillations as a function of bias. We find that the
occupations on the two dots oscillate with a relative phase which depends on the distance between the impurities
and on the Fermi momentum of the Fermi sea, as expected for Rudermann-Kittel-Kasuya-Yosida interactions.
Also, the approximant to the steady-state current displays oscillations as a function of the distance between the
impurities. Such a behavior can be explained by resonances in the free case. We then discuss the incidence of
interaction on such a behavior. We conclude by showing the effect of the bias on the current, making connection
with the one-impurity case.
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I. INTRODUCTION

The study of quantum transport across nanostructures has
been the subject of intense theoretical and experimental atten-
tion for decades. One of the most intensively studied systems is
that of quantum dots, both because of their great experimental
versatility and because they unveil an extremely rich physics,
as exemplified by the Kondo effect1 in quantum dots.2,3 When
considering a system of two quantum dots, a further interesting
phenomenon emerges, the Rudermann-Kittel-Kasuya-Yosida
(RKKY) interaction.4 It describes the indirect interaction
between two magnetic impurities mediated by the electrons of
the surrounding Fermi sea, and is characterized by oscillations
related to the Fermi wave vector. The competition between
the RKKY interaction and the Kondo effect was studied in
the frame of numerical renormalization group5 and conformal
field theory.6,7 An experimental realization with two quantum
dots coupled by a Fermi sea was meanwhile reported.8

Recently, a great deal of progress was achieved towards the
theoretical determination of steady-state transport properties
focusing on a quantum dot described by the interacting reso-
nant level model (IRLM),9–18 that consists of spinless fermions
with a nearest-neighbor repulsive interaction for the sites
adjacent to the dot. This model was studied with several the-
oretical techniques, ranging from integrable field theories and
Bethe ansatz (see Boulat et al.9 and references therein), func-
tional renormalization group,10–14 real-time renormalization
group,15 to density-matrix renormalization group (DMRG)
techniques.9,16–18 These works provide the I -V characteristics
out of equilibrium at finite bias and up to large values of
the interaction9 and a detailed knowledge of the relaxation
dynamics10–12,14,15 in the regime of small interaction, including
also the incidence of finite temperatures.13 The shot noise
and the full counting statistics have been studied by means
of exact diagonalization19 (in the free case), DMRG, and
thermodynamical Bethe ansatz.20,21 Such an attention on a
model that arguably can not be experimentally realized in
an electronic system is due to the fact that, in contrast to
the Anderson impurity model, the important energy scales
of the problem are accessible and controllable in numerical

simulations, avoiding to deal with the Kondo scale, that
requires high resolution in energy.

In contrast to the great attention devoted to the one-impurity
case, little is known about the case with more impurities.22–26

In particular, to the best of our knowledge, the case of two
IRLs separated by a Fermi sea under a finite bias awaits still a
theoretical treatment. Here, we consider two leads modeled
as tight-binding chains with uniform hopping, coupled to
two quantum dots interacting with their nearest-neighboring
sites and a Fermi sea in-between, focusing on the dynamics
of the system when it is taken out of equilibrium with the
application of a finite bias. The setup is that of a quantum
quench, where the initial state corresponds to the ground state
of a Hamiltonian, but the time evolution is governed by a
different (time-independent) one. We considered two different
protocols, where the bias is included either in the initial or in
the final Hamiltonian. We discuss also the characterization of
the steady state and the incidence of finite-size effects.

We performed our studies by means of a time-dependent
DMRG (t-DMRG) simulation.16,27–29 This method allows us to
study the time evolution of the system up to intermediate times
(∼40h̄/t0, where t0 is the nearest-neighbor hopping between
the sites of the leads) in a nonperturbative way. The time
evolution of the current on each link of the chain and of
the particle density on the dots exhibits oscillations whose
frequency depends on the applied bias, as in the single-dot
case. In the present case, the occupations on the two dots
oscillate with a relative phase which depends on the distance
between the impurities, both in the free and in the interacting
cases. This can be explained in terms of the RKKY interaction.
The currents through the sites connecting the quantum dots
to the leads show also oscillations but with a phase shift with
respect to the density. These oscillations are a finite-size effect,
as already discussed in the single-dot case,17 and vanish in the
limit of infinitely long leads, as shown in the following. For
the approximant to the steady-state current, we find that it
oscillates as a function of the distance between the impurities.
In the free case, the behavior of the current can be understood in
terms of resonances that appear in the transmission coefficient
of a single particle propagating through the system. We
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then show the effect of interaction. While it suppresses the
resonances found in the free case, for strong interaction we
find that large oscillations of the current as a function of
the interimpurity distance arise. Finally, we consider the I -V
characteristics in the presence of two impurities, showing also
in this context the presence of negative conductance.

This paper is organized as follows. Section II is devoted
to the discussion of methodological issues. In particular,
in Sec. II A, we define the model, the observables, and
the numerical technique. We show the effect of different
quench schemes and motivate our choice in Sec. II B. In
Sec. II C, we detail how the approximant of the steady-state
current is obtained and benchmark our DMRG results for the
one-impurity system with those of Boulat et al.9 Section III
displays our results. In Sec. III A, the time evolution of the
occupations and the currents is shown and its relation with
RKKY interaction is discussed. In Sec. III B, we concentrate
on the approximant to the steady-state values of the current as
a function of the distance. We consider first the free case,
for which we establish a connection with the problem of
transmission of a single particle propagating in the system, and
then move to the interacting case. In Sec. III C, we discuss the
I -V characteristics in the presence of interaction, comparing
it with the one-impurity case.9 In Sec. IV, we summarize our
results.

II. MODELS AND METHODS

A. Hamiltonian and observables

We study a system characterized by the presence of two
quantum dots at positions d1 and d2 separated by a distance
R ≡ d2 − d1. The region in-between harbors a Fermi sea. The
Hamiltonian of the whole system is given by

Ĥchain ≡ ĤD + ĤT + ĤF, (1)

where

ĤD = −tC
(
ĉ
†
d1−1ĉd1 + ĉ

†
d2

ĉd2+1 + H.c.
)

− tC
(
ĉ
†
d1

ĉd1+1 + ĉ
†
d2−1ĉd2 + H.c.

)
+UC

∑
α=d1,d2

∑
r=±1

(
n̂α − 1

2

) (
n̂α+r − 1

2

)
(2)

corresponds to the dots and their nearest neighbors, where the
interaction is present. The leads connecting to the quantum dot
are described by the tight-binding Hamiltonian HT:

ĤT = −t0

d1−2∑
j=1

ĉ
†
j ĉj+1 − t0

L−1∑
j=d2+1

ĉ
†
j ĉj+1 + H.c. (3)

Furthermore, the Fermi sea is described by the Hamiltonian
HF:

ĤF = −t0

d2−2∑
j=d1+1

(ĉ†j ĉj+1 + H.c.). (4)

In what follows, we call the sites at positions c1 ≡ d1 − 1 and
c2 ≡ d2 + 1 contacts. The total number of sites of the system
is given by L, which we take even. If R is odd, we choose
the position of the dots such that the left and the right leads
have the same number of sites. If R is even, the position of the

FIG. 1. (Color online) Picture of the model, Eq. (1), for a system
of L = 14 sites and R = 5. The shaded light blue areas indicate the
presence of the bias [Eq. (7)].

dots is given by (L − R)/2 + 1 and (L + R)/2 + 1, implying
that the left lead has one more site with respect to the right
one. In Eqs. (2)–(4), we have n̂j = ĉ

†
j ĉj , where ĉ

†
j (ĉj ) are

creation (annihilation) operators for spinless fermions, UC is
the interaction coupling the dots and their nearest neighbors,
tC is the hopping between the dot and its nearest neighbors.
The hopping elements in the leads and in the Fermi sea are all
set to t0. Energies are measured in units of t0 and time in units
of h̄/t0. The number of particles in the system is N and we
define the average density of particles as ρ ≡ N/L. When not
explicitly specified, we assume the system at half-filling. We
also define Lc ≡ R − 1, Nc, and ρc ≡ Nc/Lc as the number
of sites, the number of particles, and the density in the central
region (from site d1 + 1 to d2 − 1), respectively. The system
is depicted in Fig. 1.

As it will be discussed in more detail in Sec. II B, we
will follow the transport process in the frame of a quantum
quench, where a given initial state |�0〉 evolves in time under
the action of a given Hamiltonian, such that the state of the
system at a time τ is |�(τ )〉 = exp(−iĤ τ )|�0〉. Accordingly,
the time-dependent occupations on each site are given by

nj (τ ) ≡ 〈�(τ )|n̂j |�(τ )〉. (5)

The current on each bond connecting nearest-neighbor sites
can be obtained as

Ij = i
e

h̄
tj 〈�(τ )|(ĉ†j ĉj+1 − ĉ

†
j+1ĉj )|�(τ )〉, (6)

where e is the electron charge and tj is the hopping on the
bond connecting sites j and j + 1.

The results presented in this work are obtained with
t-DMRG.16,27–29 We typically simulate systems with L ∼ 100
sites. In order to implement the time evolution, we use
the Trotter decomposition.27,28,30 Our code is adaptive,27,28,30

meaning that the number of states used at each time step
changes dynamically keeping the discarded weight below a
given threshold. The maximum number of states used in our
computation is m ∼ 1000 and the discarded weight ε is kept
below ∼10−7. In the absence of interactions, we employ also
exact diagonalization. Comparing the latter and DMRG for
typical values of m and L, we find that the relative error of
the occupations is less than 10−4 for times �40h̄/t0, while for
the currents it is always less than 10−3 in the same interval of
time.

B. Quench schemes

In order to initiate transport processes in the system
described by Eq. (1), a bias �V has to be applied on the
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FIG. 2. (Color online) I -V characteristics for a system with one (a) and two impurities (b). Black empty circles and red full squares refer to
quench schemes (A) and (B), respectively. All the curves are obtained with L = 100, except for R = 7, scheme (A), for which L = 300 sites
are used. Data for tC = 0.8t0 and UC = 0.0. The current is shown in absolute value.

left and the right leads. It is described by

ĤB = �V

2

⎛
⎝d1−1∑

j=1

n̂j −
L∑

j=d2+1

n̂j

⎞
⎠ . (7)

As previously discussed for a single impurity,17 we can start
with the ground state of Ĥchain and follow the evolution of
the system dictated by a Hamiltonian Ĥchain + HB. We denote
such a procedure scheme (A). In such a scheme, however, the
bounded nature of the spectrum of a lattice model becomes
evident whenever the bias exceeds the bandwidth. In that case,
there are no states available for transport through the system,
as shown in Fig. 2 (the determination of the currents depicted
will be discussed in detail in Sec. II C). It was suggested
previously9,17 that in order to avoid such an artifact of a lattice
model, the opposite scheme can be used, namely, the initial
state is the ground state of Ĥchain + HB, and the evolution is
studied switching off HB. As shown in Fig. 2, such a quench
scheme leads to a saturation of the attained current, with similar
behavior for a single impurity or two of them with a Fermi sea
in-between. The current in scheme (B) saturates at large values
of the bias because of the finite bandwidth of the system.17,31

For �V smaller than half the bandwidth, both schemes lead to
the same result. Moreover, for the whole range of biases studied
in the one-impurity case,9 the I -V curves can be brought in
this way to coincide with analytical results from conformal
field theory.

In scheme (B), the initial state is characterized by a particle
imbalance between the left and right leads, due to the presence
of the bias, and the distribution of particles in the central region
is not uniform. However, we find ρc = ρ if the system is at
half-filling. In the other cases, there is a discrepancy which
can be controlled by performing a finite-size scaling.

In the rest of the work, we choose quench scheme
(B) because it avoids the artifact introduced by a bounded
spectrum.

C. Time averages

As already discussed in Refs. 17 and 32 in the case of a
single quantum dot, the time evolution of a current in a finite
system is affected in various ways. On the one hand, right after
switching the bias on (or off), there is a transient time, where
the current grows from zero to a quasistationary state. On the
other hand, at long times, the current bounces back at the ends
of the system. In the intermediate quasistationary state, pe-
riodic variations previously denoted Josephson oscillations,17

due to their similarity with the ones in a Josephson junction,
appear with a period TJ ≡ 1/νJ = 2π/�V determined by the
bias, with an amplitude that vanishes17 as 1/L. Hence, in
the free case one can extract an approximant to the steady-
state current fitting the Josephson oscillations with a cosine
function17 of the form Iα(τ ) = Ĩ + ĨJ cos(2πτ/TJ + ϕ̃), where
α = c1 or c2 denotes the left or right contact, and the free
parameters of the fit are Ĩ , ĨJ, and ϕ̃.

In the case of two impurities without interaction we find
the same time scales, with minor differences. In particular, the
transient time also depends on the distance between the two
impurities, and the amplitude of the Josephson oscillations is
also affected by R. Nevertheless, as we show in Fig. 3, it is
still possible to extract the approximant to the steady-state
current by fitting the Josephson oscillations as mentioned
above, obtaining an amplitude that also vanishes in the
thermodynamic limit. In the presence of interaction, both
for one and two impurities, additional frequencies emerge.
In Fig. 4, we show the current on the left contact for UC = 5t0
as an example, where additional oscillations superimposed to
the Josephson oscillations (they have in this case a period
TJ ∼ 12.6h̄/t0) are clearly visible. In order to deal with the
appearance of several frequencies, we perform a discrete
Fourier transform (DFT) by first identifying an interval of
time where the evolution is quasistationary, with a duration
that is an integer number of Josephson periods TJ. Then, we
do a reconstruction of the current by picking up only the
few most important frequencies from the DFT, which always
include the zero-frequency component (the approximant to the

245105-3



CANOVI, MORENO, AND MURAMATSU PHYSICAL REVIEW B 88, 245105 (2013)

0 0.005 0.01 0.015
1 / L

0

0.02

0.04

0.06

0.08

0.1
I~ J [ 

e 
/ h

 ]

ΔV0 = 0.5, R = 7
ΔV0 = 1.0, R = 7
ΔV0 = 1.5, R = 7
ΔV0 = 0.5, R = 0
ΔV0 = 1.0, R = 0
ΔV0 = 1.5, R = 0

FIG. 3. (Color online) Finite-size scaling of the oscillation ampli-
tudes ĨJ from cosine fits as discussed in the main text, extracted from
the left-contact current Ic1. Data refer to a system with tC = 0.8t0,
UC = 0, R = 0 (empty symbols), and R = 7 (full symbols).

steady-state current), the Josephson frequency νJ , and the one
due to interaction with the highest Fourier weight νU , as dis-
played in Fig. 4, where the quality of such a reconstruction can
be seen for two different numbers of frequencies considered.
We associate to the approximant to the steady-state current the
uncertainty

�I ≡ 1

M

√ ∑
i=1,M

(I (τi) − Ĩ (τi))
2, (8)
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FIG. 4. (Color online) (a) Black continuous line: left-contact
current Ic1 for a system of L = 100 with two impurities at distance
R = 7, tC = 0.8t0, �V = 0.5t0, and UC = 5t0. Horizontal continuous
straight line: zero-frequency component of the DFT in the interval
[20,45] (delimited by vertical dashed lines). (b) DFT of the black
curve in (a). The red dotted curve in (a) corresponds to Nν =
2 frequencies: the zero-frequency component and the Josephson
frequency νJ. The green dashed curve in (a) is found using also the
frequencies framed by the dashed line in (b).
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FIG. 5. (Color online) I -V characteristics of a system at tC =
0.5t0 with quench scheme (B). The crosses are data from Ref. 9,
the symbols are those obtained with our code (the parameters of our
simulations are L = 96, m = 600 states, discarded weight ε < 10−7).

where τi , with i = 1,M , are the equally spaced times lying
in the interval where the DFT is performed, I (τi) is the
current measured at τi , and Ĩ is the reconstructed current.
The uncertainty �I is typically within the size of the symbols
in our plots.

By using the procedure described above, we reproduce in
Fig. 5 the I -V characteristics of a single impurity in the full
range of interactions and biases with excellent agreement with
the original work.9

III. RESULTS

A. Phase relations

As is well known, the RKKY interaction is an indirect-
exchange interaction between two localized spins mediated by
the surrounding electrons of the Fermi sea.4 In the present case,
since we are dealing with spinless fermions, only a coupling to
the density will result. The RKKY interaction depends on the
distance between the impurities R via 2kF oscillations4 and is
expected to induce correlations between the densities on the
two dots and, consequently, on the currents in the contacts. We
now show that the occupations on the dots closely fulfill the
predictions of the RKKY interaction, first considering half-
filling, and then a case away from it. The same correlations are
also visible in the currents, but with a phase shift.

We consider first the system at half-filling, i.e., N/L = 0.5
in the free case and concentrate on the quasisteady regime. In
the left panels of Fig. 6, we show the occupations on the two
quantum dots. They oscillate with the Josephson frequency
νJ, which characterizes also the current (see Sec. II C). More
interestingly, we observe that when R is odd the densities
oscillate in opposition of phase, while if R is even they
oscillate in phase. This is a regular pattern which we find
in all the range of R considered. This behavior is compatible
with the 2kF oscillations of the RKKY interaction, as shown by
Fig. 7. There, it can be seen that the static susceptibility, which
displays 2kF oscillations as a function of R, is positive for R
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FIG. 6. (Color online) Panels (a) and (c): time evolution of the number of particles on the left (blue continuous line) and right dots (red
dashed line); panels (b) and (d): time evolution of the left-contact (blue continuous line) and right-contact (red dashed line) currents. Data for
a system of L = 100, tC = 0.8t0, �V = 0.5t0, half-filling, quench scheme (B), and UC = 0.

odd and negative for R even. Therefore, for R odd the densities
at the dots experience an effective repulsive interaction, while
for R even it is attractive.

If we now move to the right panels of Fig. 6, we find the
opposite situation. When R is odd, the currents oscillate in
phase (they are exactly equal in this case) and when R is even,
they are in opposition of phase. In the latter case, averaging
the currents of the two contacts cancels out the oscillations.
This effect is visible only in the quasistationary regime, as we
can see from the left panels of Fig. 6. The phase shift between

0 5 10 15 20 25 30
R
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-0.1

0

0.1

0.2

0.3

χ

tC = 0.5 t0

FIG. 7. (Color online) Static susceptibility connecting the dots at
sites d1 and d2 for tC = 0.5t0 for half-filling.

densities and currents can be understood by noticing that when
the mean density on a dot increases, transfer of a particle to
(from) the dot is suppressed (enhanced). Then, for R odd,
while one dot has a higher density, the other has a lower one.
Considering the current on the links to the left of d1 and to
the right of d2, charge flow is enhanced on both links when d1

has an increased density and d2 a reduced one, while in the
opposite case current is suppressed. On the other hand, when
R is even, both dots have an enhanced density or a suppressed
one, such that when charge can be transferred on one link, the
current is suppressed on the other.

Although the evolution of the current is more involved in
the presence of interaction due to the appearance of additional
oscillations, the same qualitative considerations hold also at
half-filling for UC �= 0. As an example, in Fig. 8, we show
the currents and the densities in the presence of interaction,
namely, at UC = 5t0. The behavior of the densities is very
clear and analogous to the free case. However, the interaction
enhances the amplitude of the oscillations as can be seen
comparing Figs. 6 and 8. In spite of the interaction, it is clearly
visible that for the odd-R case the currents are exactly equal
and for even R an opposition in phase is evident.

Next, we consider a situation away from half-filling. In
this case, however, already in the absence of interactions and
for values of tC different from t0, the density in the central
region (composed of the sites d1 + 1 to d2 − 1) ρc does not in
general coincide with ρ = N/L, in contrast to the half-filling
case. Yet, as we discuss in the following, an examination of
the phase differences between the densities at the quantum
dots and currents across them displays a pattern that can be
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FIG. 8. (Color online) Same as Fig. 6 but for UC = 5t0.

consistently assigned to the RKKY interaction. As an example,
we show in Fig. 9 the density and the current for a system of
L = 400 accommodating a number of particles N such that
ρc, the density in the internal region, is as close as possible
to quarter-filling for each R considered there. In particular,
we chose N = 105, which gives ρc = 0.246 for R = 9.
Figures 9(a), 9(c), and 9(e) display the oscillations of the
density on each dot as a function of time. The density between
them being approximately 1

4 , a phase difference �φ � 3π/2
is expected, while the actual value is 1.23 π . Such a deviation
corresponds to a departure of the mean density in that region of
around 10%. In spite of the slight deviation from the expected
value of the phase difference for a given R, the periodicity four
expected from the RKKY susceptibility at kF = π/4 is indeed
found on going from R = 7 to R = 11 (�φ � 1.26π ). This
fact is, moreover, clearly seen on Figs. 9(b), 9(d), and 9(f),
where the current through the dots is plotted.

In the interacting case, the presence of additional fre-
quencies has to be taken into account, as already discussed
for half-filling. Moreover, we have to consider also the
departure of ρc from ρ. In Fig. 10, we show an example of
the instantaneous densities and currents with UC = 1.0t0. In
order to tune ρc as close as possible to quarter-filling, we
chose to work with N = 24 particles, giving ρc = 0.252 and
0.248 for R = 5 and 7, respectively. Performing a discrete
Fourier transform on an integer number of Josephson periods
(also considering different choices of the initial and final
times), we computed the reconstructed densities and currents
using only the Josephson frequency. For the time interval
shown in Fig. 10, the phase between the densities and the
currents changes by roughly π going from R to R + 2, in

reasonable agreement with the free case. However, due to the
difficulty to fix the density in the central region, the results
away from half-filling do not allow for a clear identification
of phase changes as expected on the basis of the RKKY
interaction.

The previous results were obtained on systems where
the leads are finite, and hence allowed for a change in
density. It would be on the other hand interesting to see
how much the results change in the limit of macroscopic
leads. While, as shown in Fig. 3, it should be expected that
the Josephson oscillations vanish, macroscopic leads will
provide also an essentially infinite reservoir of fermions.
It is therefore interesting to see how such reservoirs affect
the region between the dots. Although it is not possible to
answer this question numerically, we can obtain an insight by
considering a noninteracting system with infinite leads within
the Keldysh formalism14,33,34 in the wide-band limit, where the
density of states in the leads is considered constant. Following
Kennes et al.,14 we choose a quench scheme where the bias is
always present, the coupling to the leads is switched on at time
τ = 0, and the sites in the central region are initially empty.
The wide-band limit is reached taking both the hopping in the
contacts and the bias much smaller than the hopping in the
leads, so tC � t0 and �V � t0. For the Fermi sea, instead of
t0, we take a hopping t ′C of the same order of tC, in particular,
we choose tC = 0.1t0 and t ′C = 0.12t0 and �V = 0.01t0. In
Fig. 11, we show our results for two impurities obtained within
the Keldysh formalism, where we compute the current leaving
the left lead (Ic1−1) and entering the right lead (Ic2+1). We
have also checked (not shown) that we obtain an excellent
approximation of the curves shown in Fig. 11 by taking
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C = 0.12t0 (see main text), and �V = 0.01t0. Panels (a) and (b): R = 7; panels (c) and (d):
R = 8.

tight-binding leads in system of large size with the same values
of tC, t ′C, and �V , as long as the time τ is smaller than the
reflection time (see Sec. II C). Both the occupations on the dots
and the currents shown in Fig. 11 reach their steady-state value
after a transient and, as expected, no Josephson oscillations
are observed. In both cases, R = 7 and 8, the steady-state
value of the density is close to half-filling, independently
of the initial filling and of the size of the region between
the dots. Therefore, in the wide-band limit, the relevant case
turns out to be that of half-filling. The relaxation of the
density to the steady state can be fitted with an exponential
of the form n(τ ) = n0[1 − exp(−ατ )] giving α = EWB/6.1
and α = EWB/8.3 for R = 7 and 8, respectively, where we
have introduced the energy scale14 EWB ≡ 4t2

C/t0. The time
scale 1/EWB dictates the exponential relaxation of the single
impurity, i.e., n(τ ) = 0.5[1 − exp(−EWBτ )], and with tC =
0.1t0 has the value 1/EWB = 25h̄/t0. If we now consider the
tight-binding case of Fig. 6, corresponding to tC = 0.8, we find
1/EWB = 0.39h̄/t0. This is precisely the time scale over which
the currents of Fig. 6 ramp from zero to the quasi-steady-state
regime where we observe the Josephson oscillations. Moving
back to Fig. 11, the values of the steady-state current are
I ∼ 6 × 10−4e/h for R = 7 and I ∼ 8 × 10−3e/h for R = 8.
Although these values differ significantly from each other, this
difference is negligible with respect to the uncertainty with
which the current can be accessed, for example, in the case
of Fig. 6. The smaller order of magnitude of the steady-state
currents of Fig. 11 with respect to those of Fig. 6 can be

understood taking into account that the bias is 50 times smaller
here and also tC � t0.

The phases characterizing the time evolution of the density
and of the current described above reveal the effect of the
RKKY interaction on the slow dynamics of the Josephson
oscillations, giving rise to sustained and controllable oscilla-
tions of the densities and of the currents in finite-size systems
at half-filling. This fact may turn out to be observable in
experiments focused on quantum dots setups in mesoscopic
systems. Indeed, there have been proposals of simulating
quantum impurity systems and transport properties in cold-
atom systems.35,36 The first experimental progress done so far
in this direction is the realization of a mesoscopic conducting
channel in a cloud of lithium atoms, performed by Brantut and
collaborators.37

B. Average current as a function of the distance

1. Free case

The results shown above indicate that the dynamics of the
current and the density is regulated by 2kF oscillations due to
the RKKY interaction. We now investigate how the behavior of
the steady-state current is affected by the distance between the
impurities and the Fermi momentum. In Fig. 12, we show
the approximant to the steady-state current in absence of
interaction as a function of the distance between the impurities.
The simplest case is tC = t0, for which the data of Fig. 12 show
very small variations as a function of R, which, however, are
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FIG. 12. (Color online) Approximant to the steady-state current as a function of the distance between noninteracting impurities for a system
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[cf. Eq. (11)] applied to the case tC = 0.5t0. From top to bottom, left to right: �V = 0.25,0.5,0.8,1.0,1.2,2.0t0. (The current is plotted in
absolute value.)

only a finite-size effect. On the other side, from Fig. 12, we
see that the curves with tC = 0.5t0 are the most sensitive to R,
showing pronounced fluctuations. Furthermore, for tC = 0.5t0,
there is a range of R where the oscillations have the largest
amplitude. This range changes with �V . As an example, for
�V = 0.5t0 the range is given approximately by R ∼ 7 ÷ 19,
while for �V = 0.8t0 by R ∼ 4 ÷ 13. Moreover, the period
of these oscillations is typically R = 2.

Following the Landauer-Büttiker approach,38,39 we now
show that the patterns of the current of Fig. 12 can be
understood in terms of the transmission properties for a
single particle. Indeed, the physical mechanism at the root
of the flow of current is that the dot, characterized by
tC �= t0, is an effective tunnel barrier with an energy-dependent
transmission probability ps(ε) (where the subscript s stands for
single). The presence of two dots requires the combination of
the transmission probabilities in order to compute the total
probability pd (ε) (the subscript d standing for double). The
transmission probability through a single dot is given by19

ps(ε) = 1 − ε2
/(

4t2
0

)
1 + ε2

(
t2
0 − 2t2

C

)/(
4t4

C

) . (9)

The total transmission probability can be obtained using the
transfer-matrix approach25,39 and gives

pd = p2
s

1 + (1 − ps)2 − 2(1 − ps) cos[2k(ε)R + 2φ]
, (10)

where φ = kb and b is the size of the single-tunnel barrier.
In our case, we have that tC is present on three sites (the dot
and its nearest neighbors), so b = 3. The expression for the
combined probability Eq. (10) is valid provided R � 3. Indeed,
for R = 1,2, one has to consider a single barrier of size b =
4,5, respectively. In order to obtain the average current, one
has to integrate the transmission probability over the energies
of current-carrying states. This yields38

I (�V ) =
∫ εF+�V/2

εF−�V/2
dε pd (ε). (11)

Our results for tC = 0.5t0 are the blue dashed lines of Fig. 12.
We observe that there is a very good agreement with the current
obtained by doing the time average.

In Fig. 13, we consider a system with filling ρc � 0.25 and
show the approximant to the steady-state current (computed
for a system of L = 400 sites) and the prediction of Eq. (11)
for kF = 0.25. In spite of the difficulties in setting a definite
density in the region between the dots away from half-filling,
a rather good agreement with the Landauer-Büttiker formula
is obtained, with small deviations due to fluctuations of the
density in the central region on going from one value of R to
another.

2. Interacting case

We start by considering the effect of a small interaction,
namely, UC = 1.0t0, and we choose tC = 0.5t0 in order to

245105-9



CANOVI, MORENO, AND MURAMATSU PHYSICAL REVIEW B 88, 245105 (2013)

4 6 8 10 12 14 16 18 20
R

0.2

0.25

0.3

0.35

0.4

I [
 e

 /
h 

]

LB, kF = 0.25 π

FIG. 13. (Color online) Approximant to the steady-state current
for a system with tC = 0.8t0, �V = 0.5t0, and scheme (B) for L =
400 (black dots) and Landauer-Büttiker prediction from Eq. (11) for
kF = 0.25π (red dashed line).

probe if and how the interaction affects the resonances
(Fig. 14). From the comparison with the free case, we can
see first that the current is enhanced, an effect that becomes
stronger at larger values of the bias. The enhancement of the
current by interaction is also observed in the one-impurity
case9 (see Fig. 5 for small UC � t0 and �V � 2t0). Further-
more, it can be seen that the resonances observed in the free
case are suppressed. The deviation of the conductance from
the Landauer-Büttiker combination of probabilities for small
values of the interaction was already observed in Ref. 25.

In Fig. 15, we show our results for the approximant to the
steady-state current with increasing values of the interaction.
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FIG. 14. (Color online) Approximant to the steady-state current
as a function of the distance between the impurities R for a system
of L = 100 sites with UC = 1.0t0 for different values of the bias and
quench scheme (B). The currents in the noninteracting case (dotted,
dashed-dotted, and dashed lines show the current and correspond
to �V = 0.5,0.8,1.2t0, respectively) are shown as reference. The
uncertainty on the value of the average current �I as discussed in
Sec. II C is within the size of the symbols in the plot. (The current is
plotted in absolute value.)
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FIG. 15. (Color online) Approximant to the steady-state current
as a function of the distance between the impurities R for a system
of L = 100 sites with tC = 0.5t0 and �V = 0.5t0 for different
values of the interaction and quench scheme (B). In some cases,
the approximant to the steady-state current is strongly sensitive on
the chosen boundaries of the stationary regime where the DFT is
performed. The resulting different values of the current lie inside the
error bars. (The current is plotted in absolute value.)

While the current does not vary significantly for values of UC

lower than the bandwidth, a qualitatively different behavior
appears when UC is larger than 4t0. For UC = 6,10t0 and
R � 6, we interestingly find that the current oscillates as a
function of the distance with periodicity two, with a rather
large amplitude, which is typical of RKKY oscillations at
half-filling.

The same behavior is also confirmed if we change the
contact hopping, for example, with tC = 0.8t0 (Fig. 16). In
Fig. 12, we saw that without interaction the current is in this
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FIG. 16. (Color online) Approximant to the steady-state current
as a function of the distance between the impurities R, in the presence
of a small bias �V = 0.5t0 for a system of L = 100 sites for different
values of the interaction and tC = 0.8t0. The uncertainty on the value
of the average current �I as discussed in Sec. II C is within the size
of the symbols in the plot. (The current is plotted in absolute value.)
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case almost independent on R because the single tunnel barrier
has a transmission coefficient close to unity [see Eq. (9)].
On the contrary, comparing Figs. 15 and 16, we see that the
approximant to the steady-state current oscillates with R for
both values of tC with the same pattern if the interaction is
large enough, i.e., UC � 5.0t0, hinting at a signature of the
RKKY interaction. It is also remarkable that the maxima of the
current are of the same order as for the single-impurity case.
It is to be emphasized, however, that even-odd oscillations
of the conductance have also been observed in a system
with an impurity separated by a noninteracting lead26 from
a noninteracting potential scatterer.

To test the dependence of the oscillations as a function of
R on filling would be in principle desirable. However, at low
filling the current is drastically suppressed in the presence
of large interactions. Indeed, by considering, for example,
quarter-filling with L = 100 sites, already at UC = 5.0t0 the
current is characterized by high-frequency oscillations around
zero (data not shown), thus precluding the observation of
possible RKKY oscillations. Recalling also the problem of
the deviation of ρ from ρc discussed in the previous sections,
regimes away from half-filling would require the investigation
of much larger sizes, in order both to control precisely ρc and
to avoid strong finite-size effects present in very dilute systems
with large UC, beyond the present computational capabilities.

C. I-V characteristics

For the case of one impurity, the I -V characteristics is
characterized by a regime of negative conductance, where the
current decreases as a power law, with interaction-dependent
exponents9 (see also Fig. 5). Furthermore, it is possible to
define a universal energy scale TB,9 which depends on tC. At
the self-dual point, it gives rise to a universal power-law decay,
i.e., by rescaling different I -V characteristics with TB they all
sit on the same curve.9 In the case of two impurities, we also
find a regime of negative conductance, as we show in Fig. 17.
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FIG. 17. (Color online) Approximant to the steady-state current
as a function of the bias �V , with UC = 2.0, R = 7, and L =
100 sites for different values of the contact hopping tC. Black
empty squares, red full dots, green triangles correspond to tC =
0.2, 0.3, 0.5t0, respectively, while dashed lines are power-law fits.
(The current is plotted in absolute value.)

We observe that the behavior of the current is in some cases
not very smooth. This is due to finite-size effects. The curves
of Fig. 17 show that the current first increases approximately
linearly, has a maximum, and then decreases. However, in
order to verify if a power law may describe the sector with
a negative conductance, as in the case of a single quantum
dot,40 an extended range in values of the bias is necessary.
In the case of two dots coupled by a Fermi sea, such a range
in values of �V becomes very demanding in terms of the
number of DMRG states that have to be kept for a reasonable
accuracy, such that a quantitative answer can not be given to
this question.

IV. SUMMARY

By studying the time dependence of the current and the
density in a one-dimensional chain in the presence of two
interacting resonant levels, we tested the interplay of the
RKKY interaction and the characteristics of the quantum dots,
concerning the dynamical behavior in a finite system as well
as the approximant of the steady-state current.

Focusing on the time evolution, we found that, at finite
size, the evolution of the current in the contacts and the
occupations of the dots are characterized by oscillations,
whose period depends on the applied bias as in the single-dot
case,17 but interrelated in a way that depends on the size
of the Fermi sea. In fact, we show that the densities on
the dots oscillate with a relative phase which depends on
the Fermi momentum of the Fermi sea and on the distance
between the impurities, as expected for the RKKY interaction.
An analogous behavior is found for the time evolution of
the currents in the contacts, which are related to those of
the density, but phase shifted with respect to them. While
at half-filling those correlations can be clearly seen, away
from half-filling it is necessary to precisely control the kF

by appropriately tuning the global density ρ since the latter
does not coincide in general with the density in the central
region ρc, rendering the comparison for different values of R

difficult. The phase relations described above can be exploited
in experimental measurements in mesoscopic systems. As
mentioned before, experimental investigation of transport in
cold-atomic systems36,37,41,42 would be an interesting setup,
where the variations of the density in the quantum dots could be
accessed directly. In the thermodynamic limit, the oscillations
of the current and the density vanish, as we have shown by
an explicit extrapolation, and with analytic calculations in the
wide-band limit.

We have also studied the approximant to the steady-state
current, and its oscillations as a function of the distance
between the dots. In the free case, we identified resonances that
can be traced back to the resonances affecting the transmission
coefficients of a single particle propagating freely in the
system. Turning interactions on the resonances are suppressed.
However, for large values of the interaction, we observe
at half-filling rather large oscillations of the current as a
function of the distance with periodicity two. This matches 2kF

oscillations, hinting at the influence of the RKKY interaction.
Finally, we focused on the I -V characteristics, finding a region
of negative conductance, in analogy with the one-impurity
case.
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