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Correlated charge transport in bilinear tunnel junction arrays
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We study theoretically the nature of correlations in space and time of the current in a one-dimensional bilinear
array of tunnel junctions in the normal conduction limit, using the kinetic Monte Carlo method. The bilinear array
consists of two parallel rows of tunnel junctions, capacitively coupled in a ladder configuration. The electrostatic
potential landscape and the charge-charge interaction length both depend on the circuit capacitances, which in
turn influence transport and charge correlations in the array. We observe the formation of stationary charge states
when only one rail is voltage biased. When a symmetric bias is applied to both rails, the site at which the positive
and negative charge carriers recombine can drift throughout the array. We also calculate charge densities and
auto- and cross-correlation functions.
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I. INTRODUCTION

Tunnel junction arrays are interesting devices as they
straddle the boundary between discrete systems such as
quantum dots and single-electron transistors (SETs) and more
continuous systems such as one-dimensional (1D) quantum
wires. Arrays of tunnel junctions are also a candidate device
for a quantum definition of the ampere.1 Such devices display
correlated transport properties due to the inherent electrostatic
interactions of excitations moving through the array,2 which
can extend across many junctions. These interactions can
manifest as quasibound charge pairs, solitons, or the formation
of a Wigner lattice, where the latter is central to their use
in metrology. These correlated charges have been observed
directly in real time as periodic, discrete spikes of current,
each associated with one electron.3

Bilinear arrays of tunnel junctions consist of two parallel
linear arrays (rails) of tunnel junctions capacitively coupled
by a capacitance CC [see Fig. 1(b)]. Charge transport through
bilinear arrays can be carried by effective excitons,4 whereby
electrons flow through one rail and holes flow in the other
rail. This phenomenon is due to the long-range Coulomb
potential of individual charge carriers, which enables the
rails to exchange momentum and energy and forms the
basis of the current drag effect.5,6 Even in the limit of zero
tunneling between rails, Coulomb interactions between rails
are sufficient to open a charge gap and generate correlations
between charges in opposite rails. Correlated transport has
been measured in bilinear tunnel junction arrays via correlated
noise measurements of the current,6 however, it has not been
measured at the level of single charges.

In this paper we study the nature of the correlations in
space and time of the current in a biased bilinear array
in the normal conduction limit. We begin by discussing
the transport properties in a 1D linear array consisting of
N = 50 identical islands separated by N − 1 identical tunnel
junctions [Fig. 1(a)] to provide a comparison to the 1D bilinear
array, which consists of two N = 50 capacitively coupled
tunnel junction arrays [Fig. 1(b)]. As the probability for
cotunneling events spanning the system dramatically decreases
with increasing resistance R, cotunneling is neglected and
charge transport is dominated by incoherent single-electron
transitions.

As an electron propagates along the array, it not only raises
the potential of its island, but also the surrounding islands,
thereby preventing other electrons from tunneling into the area.
This exponential repulsive interaction U experienced by a pair
of charges on sites m and n is

U ∝ e−|m−n|/�, (1)

where the length � depends on the circuit capacitances—
the junction CJ and the gate capacitance CG—and can be
approximated by7,8

� ≈
√

CJ

CG

. (2)

This interaction length characterizes the spatial separation
between charges and therefore the properties of the correlated
transport.

We used the stochastic kinetic Monte Carlo (KMC)
method9,10 to model the charge dynamics in nonlinear time. By
exploring stochastic sequences of transitions via the Gillespie
algorithm,11 KMC generates highly accurate and efficient
simulations of the temporal evolution of the system that repli-
cate experimental observations. Following the usual orthodox
theory,12–16 the transition rate associated with transition i → j

is governed by

�i→j = �E

q2
e RT

1

e�E/kBT + 1
, (3)

where �E is the change in energy of the transition, qe is
the elementary charge, RT is the junction tunnel resistance,
kB is the Boltzmann constant, and T is the electron tem-
perature. The time between tunneling events �t (i.e., the
time the system spends in a specific charge configuration i)
represents a single KMC time step. The KMC algorithm is
repeated, keeping track of all quantities, until good statis-
tics are obtained. We use at least 106 Monte Carlo steps
and ensure the system has equilibrated before collecting
statistics.

All simulations presented here assume an electron temper-
ature of T = 30 mK. At this temperature the total capacitance
of each island is sufficiently small so that the charging energy
EC = q2

e /2C� of the islands is much greater than the energy
of thermal fluctuations kBT . We assume that RT is much
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FIG. 1. (a) Linear array circuit diagram consisting of N − 1
tunnel junctions. Voltage can be applied at either or both ends and each
junction has a junction capacitance CJ . Each island is capacitively
coupled to a ground plane through a ground capacitor CG. (b) Bilinear
array circuit diagram consisting of two capacitively coupled linear
tunnel junction arrays. Each island is capacitively coupled to the
corresponding parallel island in the opposite rail by a capacitance
CC .

greater than the quantum (Klitzing) resistance RT � RK =
h/q2

e . For these simulations RT = 106 �, but the exact value
is unimportant as this simply rescales the time between
Monte Carlo steps. The ground and junction capacitances
are CG = 2 aF and CJ = 50 aF, respectively, which gives
our interaction length � = 5. We can also reasonably assume
that the energy relaxation is significantly faster than all other
dynamics, allowing the electrons to be described by a Fermi
distribution. These conditions ensure that the system is always
in a well-defined charge state, therefore the orthodox theory
of single-electron tunneling14–16 applies.

Beginning with an empty array, we equilibrate the cir-
cuit (evolve until a stable charge configuration is reached)
before collecting statistics. In an experimental array, un-
controlled charged impurities (background charges) induce
an additional random offset charge on every island. Such
background charges affect both threshold voltages V(th) and
the soliton flow.17–19 Arrays with a short soliton length
are more sensitive to these irregularities in the potential
from island to island. Here we neglect background charges
as we specifically consider correlations in relatively long
arrays.

II. LINEAR ARRAY

We begin by summarizing the important results for corre-
lated charge transport in a symmetrically biased (V = −U =
�V/2) linear array of N = 50 islands [see Fig. 1(a)]. This
investigation provides a comparison to that of the bilinear
array.

Using the N × N capacitance matrix,

Cmn =

⎛
⎜⎜⎜⎜⎜⎝

CG + 2CJ −CJ 0 . . .

−CJ CG + 2CJ −CJ

. . .

0 −CJ

. . .
. . .

...
. . .

. . .

⎞
⎟⎟⎟⎟⎟⎠, (4)

and the method proposed by Devoret20 and recently sum-
marized by Fay et al.,21 we describe the system by the
Hamiltonian,

H =
∑
n,m

[
1

2
C−1

mnQnQm + δn,1C−1
mnQmCJ V

+ δn,N C−1
mnQmCJ U

]
, (5)

where Qn is the charge on the nth site and δ is the Kronecker
delta function. Using the Hamiltonian we can compute the
energy of an arbitrary charge configuration.

Taking the analytic form of the Hamiltonian, we can
understand the origin of correlated transport. Using an analytic
inverse of the capacitance matrix,8 we derive the interaction
energy between two charges in the linear array. Assuming
an infinite array (i.e., N → ∞) and setting V = U = 0, the
interaction energy between two charges Qm and Qn close to
the center of the array (m,n ≈ N/2) is given by

U (Qm,Qn) = Q2
m

4CJ

(
1

sinh λ

)
+ Q2

n

4CJ

(
1

sinh λ

)

+ QmQn

2CJ

(
e−|n−m|/�

sinh λ

)
, (6)

where λ = 1/�. In the limit of long interaction length (� � 1)
this gives

U (Qm,Qn) = Q2
m

4
√

CJ CG

+ Q2
n

4
√

CJ CG

+ QmQn

2
√

CJ CG

(e−|n−m|/�). (7)

This expression is composed of two charging energy terms
plus an interaction energy term.

A similar analysis can be used to determine the thresh-
old voltage where conduction begins. To find V(th) we set
the voltage equal to the energy of a charge on the first
island,8

V(th) = qe

2CJ (eλ − 1)
. (8)

In the limit of long interaction length (� � 1) this gives

V(th) ≈ qe

2
√

CJ CG

, (9)

where, for our model, Eq. (8) gives �V(th) = 14.5 mV.
The charge occupancy diagram in Fig. 2(a) shows that

both charge carriers—electrons and holes—exhibit strong
time-correlated charge transport at every site n. Due to the
symmetric potential �V , charges of the same sign cannot
tunnel from one end of the array to the other. Instead electrons
recombine in the middle of the array with holes tunneling
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FIG. 2. (Color online) (a) Charge occupancy diagram as a
function of time and position within the linear array at �V = 20 mV.
Correlated electrons (red) and holes (blue) flow in opposite directions.
White represents the zero charge state. Many dipole states form near
the recombination site. (b) Average charge distribution as a function of
position. For low voltages there are periodic oscillations in the charge
distribution. This can be attributed to the (temporally) correlated
transport seen in (a) and the effect of the boundaries of the array.

in the opposite direction, resulting in a net flow of current.
Furthermore, the correlations are more spread out at the center
of the rail as the potential drop between sites is not even
throughout the length of the array, i.e., there is not a uniform
drop in potential per site.

A dipole state is created within the array when a charge
induces a neighboring charge of opposite polarity. The creation
and recombination of such dipole states increases with �

as the charges can exert a greater influence on their nearest
neighbor sites and the creation of a hole is more energetically
favorable.22 The energy required to create a dipole within the
array (relative to the energy of a single charge) is

U (1,−1)/U (1,0) = 1/2�, (10)

therefore the energy required to create a dipole decreases as
the separation between charges (�) increases.

We can already see evidence of correlated transport in the
average charge distribution within the array [Fig. 2(b)]. At
low �V , the charge distribution exhibits periodic peaks, a
signature of correlated transport.

To investigate these correlations, we compute the charge-
charge correlation spectrum F[〈Qn(τ )Qm(0)〉] (see Fig. 3).
In principle, we can calculate the correlations between
charges directly from the KMC output.9 However, we find
that performing a linear sampling of the data (we use a
bandwidth BW = 20 GHz throughout) and then taking the
fast Fourier transform (FFT) provides a more efficient method
for calculating the spectrum of the charge-charge correlations.
Note that while state-of-the-art charge detectors have a lower
BW than the 20 GHz used in our simulations, the parameters
in our model (CJ , RT ) could be optimized experimentally to
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FIG. 3. (Color online) Spectral response of the linear array
charge-charge correlation function measured at n = 5, for increasing
voltage in steps of 5 mV. For increasing voltage, the peak frequency
increases but the peak amplitude diminishes due to higher average
charge densities which reduce the formation of correlated charge
states. At low voltages, the peak frequency fp corresponds to
an effective charge carrier of precisely qe, i.e., fp = I/qe. Inset:
Current-voltage characteristics measured at the first junction and
characterized by a Coulomb blockade—a zero-current state for bias
|�V | below the characteristic �V(th) = 14.5 mV [Eq. (8)].

produce spectra within the detection window of the chosen
detector.

The correlation functions show clear and distinct peaks,
indicating strong correlations in the transport carriers in these
junction arrays. The correlations are robust due to the large
correlation length (� = 5). This is consistent with the charge
occupancy diagram Fig. 2(a), where we also saw strong
correlations between charge carriers—even the annihilation of
the electron-hole pairs occurs periodically. As �V increases
and the applied bias exceeds the force of Coulomb repulsion,
correlations begin to decay. We see this as the gradual flattening
out and disappearance of the correlation peak.

This breakdown of correlated transport can be understood
from Fig. 4, where we show the average charge density
for the entire array. Correlated charge transport begins at
the onset of conduction �V(th) when at least one charge is
present in the array. For � = 5, one could expect that the
optimal separation between charges is ∼5 sites, i.e., this
is the period. Therefore there are optimally ∼10 charges
in the linear array at any one time. However, increasing
�V injects more charge carriers into the array, increasing
the charge density (thereby reducing the average charge
separation). As charges are pushed closer and closer together,
the applied voltage overwhelms the Coulomb force responsible
for periodic separation of the charges. When charges can no
longer maintain their well-defined positions with respect to
one another, correlations are destroyed and so the peaks are
suppressed. We observe transport through the array to become
predominately uncorrelated when �V � 50 mV.

The strength of the correlations also varies with position
within the array, where correlations become progressively
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FIG. 4. (Color online) Average charge density within the linear
array as a function of �V . For �V � 44 mV, on average the
charges are separated by less than �. For higher voltages, the charge
separation is reduced and this ultimately leads to the breakdown of
correlated transport (see Fig. 3).

weaker towards the center where opposing carriers recombine.
This is consistent with Fig. 2(b), where the charge distribution
is approximately zero at the center of the array.

III. BILINEAR ARRAY

We now turn our attention to a bilinear array, consisting
of two N = 50 linear arrays of islands [see Fig. 1(b)]. The
two arrays are capacitively coupled by CC (i.e., not by tunnel
junctions), so charges cannot tunnel between the two rails.

We consider three different biasing regimes: symmetric
single-rail, symmetric dual-rail, and antisymmetric dual-rail
(escalator) biasing. In the symmetric single-rail case, a
symmetric potential bias �V is only applied to the upper rail,
i.e., �V1/2 = V1 = −U1. In the symmetric dual-rail biasing
regime, a symmetric potential �V is applied to both rails,
i.e., �V1 = �V2. Finally, in the bias regime we term escalator
biasing, a symmetric bias is applied to both rails, but with
opposite sign, i.e., �V1 = −�V2. Two different coupling
strengths are also investigated: weak CC = CG and strong
CC = 5 × CG = CJ /5.

We use the method discussed in Sec. II to construct the
capacitance matrix,

Cmn =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

CG + 2CJ + CC −CJ 0 0 . . . −CC 0 . . .

−CJ CG + 2CJ + CC −CJ 0 0 . . . −CC 0
0 −CJ CG + 2CJ + CC −CJ 0 0 . . . −CC

0 0 −CJ

. . .
. . .

. . .
. . .

. . .
... 0 0

. . .
. . .

. . .
. . .

. . .

−CC

... 0
. . .

. . .
. . .

. . .
. . .

0 −CC

...
. . .

. . .
. . .

. . .
. . .

... 0 −CC

. . .
. . .

. . .
. . .

. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (11)

Note that the bilinear array capacitance matrix is essentially a
double copy of the linear array except for the inclusion of the
coupling terms. Similarly, the Hamiltonian is given by

H =
∑
n,m

[
1

2
C−1

mnQnQm + δn,1C−1
mnQmCJ V1

+ δn,N+1C−1
mnQmCJ V2 + δn,NC−1

mnQmCJ U1

+ δn,2N C−1
mnQmCJ U2

]
, (12)

where we can now apply a bias voltage at either end of both
rails.

There are two cases for the interaction energy in the bilinear
array, either where charges m and n are in the same rail or
where charges m and n are in different rails. Similarly to the
linear case, we can use the analytic inversion of the bilinear
capacitance matrix23 to obtain expressions for the interaction
energy between two charges Qm and Qn,

Uε(Qm,Qn) = Q2
m

8CJ

(
1

sinh λ+
+ 1

sinh λ−

)

+ Q2
n

8CJ

(
1

sinh λ+
+ 1

sinh λ−

)

+ QmQn

4CJ

(
e−λ+|m−n|

sinh λ+
+ ε

e−λ−|m−n|

sinh λ−

)
, (13)

where ε = ±1 corresponds to charges within the same rail or
different rails, respectively, and where λ± is defined by

2 cosh λ± = 2 + CG

CJ

+ CC

CJ

(1 ∓ 1). (14)

Again, similarly to the linear case, we calculate �V(th) for
fixed �V2 for a symmetric bias, assuming positive voltage,

�V1(th) =
{ qeA11

CJ (1−A11) + �V2B11
(1−A11) , �V2 > 0,

qeA11

CJ (1−A11) , �V2 � 0,
(15)

where A11 = 1
2 [e−λ+ + e−λ− ] and B11 = 1

2 [e−λ+ − e−λ− ] for
large N . The threshold voltage is similar for �V2, where the
conduction threshold is whichever of the two (�V1(th) or �V2(th) )
is lower.
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FIG. 5. (Color online) Current-voltage characteristics of the (a)
upper and (b) lower rails with weak CC . �V1 (�V2) is applied to the
upper (lower) rail. White contour lines show the analytical conduction
voltage �V(th).

In Fig. 5, we plot the current-voltage characteristics for
weak CC and show the threshold voltages for the upper and
lower rails, calculated by Eq. (15). The region between these
lines represents the Coulomb blockade state, wherein there
is zero charge flow. Outside these lines (i.e., � �V(th)), the
rail conducts, although conduction begins slowly. The current-
voltage characteristics for strong CC are similar except for the
increased Coulomb gap along the line corresponding to escala-
tor bias, due to the dipole injection effect, discussed in Sec. V.

IV. STATIC STATES: SINGLE-RAIL BIASING

When a symmetric single-rail bias (�V1 �= 0, �V2 = 0) is
applied and the rails are decoupled (i.e., CC = 0), as expected
no parasitic current or static charge states are induced in the
undriven rail because the rails are independent, whereas weak
CC (i.e., CC = CG) allows the undriven rail to weakly feel the
potential of the driven rail. While it is not sufficient to produce
parasitic current, static charge states are created in the undriven
rail, whereby holes enter from the left and electrons enter from
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FIG. 6. (Color online) Charge occupancy diagrams for symmetric
single-rail bias �V1 = 25 mV within the (a) driven and (b) undriven
rails with weak CC . In the undriven rail, we see stationary charge
states, i.e., the rail does not conduct at this value of �V1.

the right [Fig. 6(b)]. These charges penetrate a finite distance
into the array but do not result in a net current, but rather in
stationary charge states (or charge polarization). While these
states are not temporally correlated, they do exhibit spatial
correlation. As a result, in the single-rail bias regime, we
do not observe moving charge correlations in the driven and
undriven rails simultaneously because the energy differences
of the two rails are too great and interrail correlations are
always destroyed before a drag current is observed.
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FIG. 7. (Color online) Average charge distribution per site for
symmetric single-rail bias. For (a) weak CC , the peaks in the driven
rail charge distribution at low �V1 are indicative of correlated
transport. Inset: Stationary states form in the undriven rail. (b) Strong
CC reduces correlations in the driven rail and (inset) induces a greater
number of static states in the undriven rail.
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Figure 7 shows the average charge distribution within the
array for both weak and strong CC . The peaks in the driven
rail charge distribution for weak CC at low �V1 [Fig. 7(a)]
are a signature of correlated transport, whereas stationary
states form in the undriven rail. As �V1 is increased, the site
occupancy in the driven rail becomes much greater than one
and correlations are suppressed.

One typically expects larger CC to lead to current drag
effects, however, increasing CC suppresses charge correlation
in the driven rail [Fig. 7(b)] at lower �V1 and creates a greater
number of static states in the undriven rail, as discussed above.
We therefore see again that single-rail biasing cannot induce
a parasitic current while also displaying correlated transport.

V. SYNCHRONIZED CORRELATIONS:
DUAL-RAIL BIASING

We now turn our attention to equally driving both rails,
looking for synchronized correlations. First, we consider
a symmetric dual-rail bias (�V1 = �V2). The space-time
diagrams show strong correlated transport in both rails for
both weak (Fig. 8) and strong (Fig. 9) CC . In addition,
when the upper and lower rail charge occupancy diagrams are
superimposed, we see that the correlations are synchronized.
Rather than seeing the current correlations precisely overlap,
we see that the correlations tend to be out of phase with one
another, signifying charge locking, which results in strong
(anti-) correlations between rails (i.e., cross correlations).

The autocorrelation functions in Fig. 10 show clear and
distinct peaks, indicating strong correlations within a rail.
As the applied voltage begins to dominate over Coulomb
repulsion, the robust correlation peak gradually decays and
flattens out, indicating that correlation has been lost. Similarly
to the linear case, the strength of the correlations varies at
different positions within the array. The charge carriers become
increasingly correlated as they tunnel towards the center of the
array away from edge effects. The autocorrelation functions
are also near identical for symmetric sites (upper and lower
rails). As seen in the linear case, the correlations are weakest
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FIG. 8. (Color online) Charge occupancy diagrams for symmetric
dual-rail bias �V = 25 mV within the (a) upper and (b) lower rails
with weak CC . (c) shows (a) superimposed on (b). The currents are
out of phase with one another, evidence of synchronized correlations.
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FIG. 9. (Color online) Charge occupancy diagrams for symmetric
dual-rail bias �V = 25 mV within the (a) upper and (b) lower rails
with strong CC . The upper and lower rail recombination sites move
in unison, creating an unequal number of electrons (holes) in each
rail. In (c), where (a) is superimposed on (b), we see that the currents
are out of phase with one another, suggesting that the currents are
anticorrelated.

in the center of the array due to the reduced average charge
occupancy.

For the specific case of symmetric bias, Eq. (15) simplifies
to

�V(th) = qeA11

CJ (1 − A11 − B11)
, (16)

which for our model gives �V(th) = 13.5 mV for weak CC and
�V(th) = 11.9 mV for strong CC . These thresholds compare
well to the current-voltage characteristics given in Fig. 10.
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FIG. 10. (Color online) Spectral response of the charge-charge
correlation function for symmetric dual-rail bias with weak CC

calculated at n = 5, for increasing voltage in steps of 5 mV. Similarly
to the linear case, as voltage increases, the peak frequency increases
linearly with increasing current, but higher voltage weakens the
correlations. Inset: Current-voltage characteristics of the upper rail
measured at the first junction. Lower rail characteristics are identical
for this bias type. Strong CC (black) induces slightly larger currents
and smaller Coulomb gaps than weak CC (gray).
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FIG. 11. (Color online) Charge occupancy diagrams for escalator
bias �V = 20 mV within the (a) upper and (b) lower rails with weak
CC . (c) shows (a) superimposed on (b). Nearly identical correlations
suggest temporally correlated currents with charge carriers consisting
of very strongly bound dipole states.

We now consider an escalator bias (i.e., antisymmetric
biasing of both rails, �V1 = −�V2). In this regime, both rails
show very strong spatial and temporal charge correlations in
the current carriers (see Fig. 11). The correlations in each
rail are nearly identical in space and time, suggesting that
the bond between each electron-hole pair (interrail dipole
states) is very strong and that they tunnel as an effective
single entity through the circuit (even though we do not
consider cotunneling in our model). It is considerably more
energetically favorable for a dipole to tunnel as a unit than for a
dipole to break up or induce excess charge. The autocorrelation
functions for an escalator bias in Fig. 12 also show strong
correlations between charges. In addition, the average charge
distribution for both a symmetric dual-rail and escalator bias
show correlations of the charges (Fig. 13). The oscillations in
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FIG. 12. (Color online) Spectral response of the charge-charge
correlation function for escalator bias with weak CC calculated at
n = 5, for increasing voltage in steps of 5 mV. Inset: Current-voltage
characteristics of the upper (solid) and lower (dashed) rails measured
at the first junction. Strong CC (black) induces slightly larger currents
and Coulomb gaps than weak CC (gray).
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FIG. 13. (Color online) Average charge distribution per site in the
upper rails for (a) symmetric dual-rail and (b) escalator biasing (for
weak CC). Insets: Lower rail average charge distribution.

the charge distribution are more pronounced for escalator bias
due to the strongly correlated transport, whereas for symmetric
bias, recombination site drift tends to average out the charge
distribution oscillations.

We can calculate the interaction energy for the escalator
bias case, where we have two charge dipoles (i.e., four charges)
interacting,

U (Qm,Qn) = Q2
m

2CJ

(
1

sinh λ−

)
+ Q2

n

2CJ

(
1

sinh λ−

)

+ QmQn

CJ

(
e−λ−|m−n|

sinh λ−

)
. (17)

Therefore the interacting dipoles have separation 1/λ− ≈ 1.53
for strong CC and much larger charging energy when compared
to an equivalent linear array (1/2 sinh λ− � 1/4 sinh λ). This
configuration is considerably more energetically favorable
than less symmetric arrangements of the four charges, resulting
in strongly locked (and correlated) electron-hole pairs.

This creation of quasibound dipole pairs also results in a
larger Coulomb gap for escalator bias [see Figs. 12 and 16(b)].
The reduced energy required to create a dipole pair means that
a larger voltage bias is required to induce flow when compared
to the symmetric bias case.
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FIG. 14. (Color online) Multiple histograms of the charge distribution plotted as a function of Monte Carlo time step for the symmetric
dual-rail biased array at �V = 20 mV. Electrons (holes) are represented by red (blue) and the recombination site (i.e., point of zero charge)
by white. The color scale is truncated for clarity. For weak CC , we see fluctuation of the opposing charge recombination site back and forth
between ∼15 sites from either end of both the (a) upper and (c) lower rails. Strong CC causes the recombination site in both the (b) upper and
(d) lower rails to fluctuate much more erratically, almost along the full length of the rails. Notice the anticorrelation of the upper and lower rail
charge distributions.

VI. FLUCTUATION OF THE RECOMBINATION SITE

We observed that the position within the array at which
the positive and negative charge carriers recombine (the
recombination site) in symmetrically biased arrays is not
always the central site and is not fixed. In both the linear
and bilinear arrays, the recombination site can drift several
sites left or right from the center of the rail. However, under
certain conditions, the current recombination site can drift
much more widely. While we measured drifting of the current
recombination site in all biasing regimes, the effect is most
prominent with an equal symmetric dual-rail bias. Figure 14
shows fluctuation of the recombination site in both rails for
both weak and strong CC . For weak CC , we see the variation
of the recombination site as it drifts between approximately
n = 15 and 35 in the upper rail. The different possible charge
states of these sites all have approximately the same energy,
therefore the recombination is likely to occur at any of these
sites.

Strong CC causes the recombination site to fluctuate much
more erratically, almost along the full length of the rails. The
drifting of the recombination site is also evident in Fig. 9,
where we see each rail dominated by a particular charge carrier
(i.e., electrons or holes). In general, the recombination site in
each rail is not locked, and in fact we see strong anticorrelation
of the entire charge distribution. As the recombination site
fluctuates back and forth in a particular rail, the corresponding
recombination site in the other rail mirrors this behavior in
such a way as to guarantee an effective net charge of zero
for the entire circuit. This is due to the interplay between the

injection of electrons and holes in the individual rails and that
of the tendency to form electron-hole pairs between rails.

VII. ANTICORRELATED CHARGE TRANSPORT

We now consider the temporal correlations of charges
between rails, 〈Qm(0)Qn(τ )〉. This is a measure of the
anticorrelation of the pairs, i.e., correlation between rails.
This enables us to determine when the charges and therefore
currents are correlated or anticorrelated.

We see from the cross-correlation functions in Fig. 15(a)
that a symmetric dual-rail biased array with weak CC exhibits
strong correlations between rails towards the ends of the array.
However, the functions are weaker towards the center as a
result of the slight recombination site drift. These observations
are consistent with the synchronized correlations in the outer
edges of the array and slight drift of the recombination site
in Fig. 8(c). Note that at τ = 0, the functions are negative at
all three positions and the functions have the same period,
which shows that the entire upper and lower rail charges are
anticorrelated.

Due to the extreme drifting of the recombination site in the
strong CC case, there is significant loss of cross correlation
[see Fig. 15(b)]. There is, however, an overall anticorrelation
between rails which increases towards the center of the array.
This result is a direct consequence of the anticorrelation
behavior of the recombination site drift.

When an escalator bias is applied with weak CC , the charges
between rails are strongly locked together with only a slight
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FIG. 15. (Color online) Cross-correlation functions calculated at
�V = 25 mV in the center of the array (n = 25) and the outer edge,
n = 35 and n = 45 for symmetric dual-rail bias with (a) weak and
(b) strong CC and escalator bias with (c) weak and (d) strong CC .

drift of the recombination site [see Fig. 11(c)]. This is also
apparent in the cross-correlation functions in Fig. 15(c), where
the charges in the two rails are strongly correlated at the

edges, but weaker at the center. This is an important point
for experiments in which a SET is used to measure current
correlations through a symmetrically biased array. Placing the
SET in the middle of the array would result in weak current
correlation measurements that are not indicative of those in
the entire array. This point of minimum correlation can also be
modified by applying an asymmetric bias (V1 �= −U1), such
that the charge state of the array is either electron or hole
dominated.

An escalator bias with strong CC produces an anticorre-
lation between rails considerably stronger than that produced
in the symmetric dual-rail, strong CC case, again due to the
locking of effective dipole states.

In Fig. 16, we investigate cross correlation in more depth
by plotting a correlation map as a function of applied voltage.
This map is calculated for the cross correlations of charges
at n = 5, at zero time lag τ [i.e., 〈Qm(0)Qn(0)〉]. As we saw
in the cross-correlation functions (Fig. 15), the charges are
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FIG. 16. (Color online) Correlation map over the �V1-�V2 plane
at n = 5 with (a) weak and (b) strong CC . The currents are either
uncorrelated (zero) or anticorrelated (negative). White contour lines
show the analytical conduction voltage �V(th).
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either uncorrelated or anticorrelated. For weak CC , charges are
most strongly anticorrelated for an escalator bias (sweeping top
left to bottom right), which is also consistent with the cross-
correlation functions (Fig. 15). The strength of the correlations
decreases with increasing voltage. The anticorrelation peaks
in the lower-left and upper-right corners correspond to a
symmetric dual-rail bias. The solid white lines show the
analytical threshold voltages for the upper and lower rails,
calculated by Eq. (15). The peaks within the Coulomb gap
represent anticorrelations between static states in the undriven
rail and current in the driven rail.

For strong CC , we see that charges are again strongly
anticorrelated for an escalator bias (sweeping top left to bottom
right). There are a greater number of peaks within the Coulomb
gap corresponding to anticorrelations between static states in
the undriven rail and current in the driven rail. For strong CC ,
the injection of dipole states in the escalator biasing regime
has a larger Coulomb gap, as previously seen in Fig. 12. In this
case, a hole cannot tunnel through one rail unless its matching
electron is also injected in the other rail.

VIII. CONCLUSION

This work focuses on the nature of the correlations in
space and time of the current in a biased bilinear array of
nonsuperconducting tunnel junctions. We have demonstrated
that both high �V and strong interrail capacitance destroy
charge correlations within a rail. When only one rail is biased,
the undriven rail does not show temporal correlated charge
transport, however, static quasiparticle states are created which
show some spatial correlation. When both rails are biased
we observe temporally and spatially synchronized correlations
between rails. Furthermore, both an escalator and symmetric
dual-rail bias induce anticorrelated currents. We also observed
significant drifting of the recombination site in a symmetrically
biased array.
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