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Hydrodynamics of Euler incompressible fluid and the fractional quantum Hall effect
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We show that the fractional quantum Hall effect can be phenomenologically described as a special flow of a
quantum incompressible Euler liquid. This flow consists of a large number of vortices of the same chirality. In
this approach each vortex is identified with an electron while the fluid is neutral. We show that the Laughlin wave
function naturally emerges as a stationary flow of the system of vortices in quantum fluid dynamics. Here we
develop the hydrodynamics of the vortex liquid and are able to consistently quantize it. As a demonstration of
the efficiency of the hydrodynamics we show how subtle features of the fractional quantum Hall effect such as
effects of Lorentz shear stress, the structure function, the Hall current in a nonuniform magnetic field, and Hall
conductance in a curved spatial landscape naturally follow from the hydrodynamics approach.
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In the fractional quantum Hall regime (FQH) electrons form
a perplexing quantum liquid. Some major characteristics of this
liquid are well established theoretically and experimentally:
the liquid is incompressible,1 almost dissipation free,2,3 the
Hall conductance is quantized,2 excitations are vortices which
carry a fraction of the negative electronic charge,1 and neutral
bulk excitations are gapped.3 More subtle properties in the
focus of recent interest are the Lorentz shear force and odd
viscosity (also known as anomalous or Hall viscosity).5–10

A natural approach to the fractional quantum Hall effect
(FQHE) advocated in a seminal paper4 is quantum hydrody-
namics. Quantum hydrodynamics is based on a set of funda-
mentally restrictive assumptions that long and slow waves are
described exclusively by a closed system of conservation laws.
Hydrodynamics is often difficult to derive from an ab initio
microscopic basis, but once developed has a predictive power
and could be tested against the known properties.

Here we extend this approach. First, irrespectively of the
FQHE, we develop the quantum hydrodynamics of the vortex
flow in the two-dimensional incompressible Euler fluid. Then
we see how major concepts of the FQHE, such as Laughlin’s
wave function and fractionalization of the Hall conductance
and excitations, emerge in the Euler hydrodynamics. Then
we obtain more subtle properties of FQHE, the Lorentz shear
force and anomalous viscosity. All naturally follow from the
hydrodynamics of the quantum Euler fluid.

This is, of course, not an accidental coincidence, but rather
a confirmation of the conceptional viewpoint that the major
properties of the FQHE are governed by symmetries and the
underlying geometry of the states. The hydrodynamics reveals
and clarifies the symmetries.

As a demonstration of the effectiveness of the hydrody-
namic approach, we compute the spectral function and linear
response of the electronic fluid to nonuniform electric and
magnetic fields, the density profile at the quasihole, and
accumulation of charge on a curved surface.

We consider only Laughlin’s cases, where fraction ν is
an inverse of an odd integer, say 1/3. Extensions of the
hydrodynamic approach to FQH states possessing external
symmetries will be discussed elsewhere.

Historically the quantum hydrodynamics goes back to
studies of the superfluid helium by Landau11 and Feynman.12 A

quest for the hydrodynamics of the FQH liquid was originated
in Ref. 4. Earlier approaches to FQHE13–16 were essentially
related to hydrodynamics as explained in Ref. 16. Hydrody-
namics of FQH liquid is a focus of renewed interest.5–10

Among the vast variety of flows in the incompressible Euler
fluid only one special class of flows is relevant to FQHE. This is
a turbulent flow where vorticity is proportional to the volume.
Such flow consists of a dense system of quantized vortices,
all oriented in one direction. We will be interested in a regime
where vortices themselves constitute a liquid, the vortex liquid.

In this Rapid Communication we present the development
of the hydrodynamics of such vortex fluid in a close analog of
the Feynman theory of rotating superfluid helium;12 see also
Ref. 17, where a similar setting occurs in the regime when the
lattice of vortices is melted. The difference, however, is crucial:
in contrast to helium, the FQH liquid is incompressible.

Then we observe that properties of the vortex liquid are
identical to the FQH electronic liquid. In other words, external
forces applied to the vortex liquid (not to the liquid itself, but to
vortices) generate the same motion as FQH-electronic liquid
under electric and magnetic fields.

This observation suggests a phenomenological picture of
FQHE: collective electronic states are localized on vortices, the
topological configurations, of a neutral incompressible liquid.
The liquid itself is a neutral agent which mediates interaction
between electrons. The similar picture is known in organic
conductors (see, e.g., Ref. 18). There electrons occupy the core
of topological configurations (kinks) of ion displacements, the
neutral field mediating electronic interaction.

Quantization of incompressible hydrodynamics is a subtle
matter due to its nonlinear nature. In this Rapid Communi-
cation we present the consistently quantized hydrodynamics.
We achieve it through quantization of Kirchhoff equations for
vortices dynamics.

We start by a brief discussion of the energy and length
scales in the fluid mechanics and FQHE. In hydrodynamics
only few basic principles, symmetries, and phenomenological
parameters suffice to formulate fundamental equations. The
phenomenological parameters of the quantum hydrodynamics
is the circulation of each vortex 2π�. The characteristic of the
flow is the mean density of vortices ρ̄. We assume that the
liquid performs a solid rotation with the frequency � = π�ρ̄,
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such that the net vorticity vanishes. The energy of the solid
rotation h̄� is the only energy scale of the flow.

On the other hand the only energy scale in the FQHE is
given by the gap in the excitation spectrum �ν , typically �ν ∼
10 K.3 This scale is controlled by the Coulomb interaction. It is
customary to introduce a scale of mass associated with the this
energy setting mν ∼ h̄2/�ν�

2, where � = √
h̄/eB is magnetic

length. The very existence of the FQH state requires that the
gap to be less than the cyclotron frequency �ν � h̄ωc, so that
all states are confined on the lowest Landau level. This means
that mν exceeds the band electronic mass mb.

In the absence of other scales it appears that h̄� and �ν ,
and that ρ̄ and �−2 are of the same order. Then the scale of the
vortex circulation is � ∼ h̄/mν and mν is the inertia of the fluid.

The states on the lowest Landau level are holomorphic. We
will see that this property means that the electronic liquid is
incompressible. Velocity is divergence free.

The existence of the energy scale within the Landau level is
the physical input justifying the hydrodynamics of the FQHE.
For that reason the hydrodynamics description does not extend
to the integer case, where interaction is weak and the cyclotron
energy is the only scale. The role of interaction could be seen
within the hydrodynamics itself. An incompressible liquid
does not possess linear waves except on the edge.19 All flows
are nonlinear.

Fractional and integer Hall effects can be treated in parallel
and within the hydrodynamic approach only in the topological
sector singled out by the limit �ν → ∞. Flows in this sector
are steady, such as the Hall current. After these comments we
turn to the Euler hydrodynamics. We start from the classical
case.

Incompressible ∇ · u = 0 flows in two dimensions are fully
characterized by its vorticity ω = ∇ × u, where u is the fluid
velocity. Vorticity obeys a single equation, which in the case of
inviscid fluid has a simple geometrical meaning: the material
derivative of the vorticity vanishes

Dtω ≡
(

∂

∂t
+ u · ∇

)
ω = 0, ∇ · u = 0. (1)

Vorticity is transported along divergence-free velocity.
In the class of Helmholtz solutions the complex velocity is

a meromorphic function. In the rotating frame

u(z,t) = −i�z̄ + i

N∑
j=1

�j

z − zj (t)
. (2)

Here �j and zj (t) are circulations and positions of vortices.
The Kelvin theorem insures that the number of vortices N and
their circulations �i do not evolve.

A substitution of the “pole Ansatz” into the Helmholtz
equation (1) expresses the velocity of vortices as a sum the
Magnus forces exerted by other vortices

vi ≡ żi = i�z̄i + i

N∑
i �=j

�j

zi(t) − zj (t)
. (3)

This dynamical system is called the Kirchhoff equations.20 It
replaces the nonlinear PDE (1). The equations describe chaotic
motions if N > 3. In a proper limit of large N and small �

solutions approximate virtually any flow.

We will be interested in the system of a large number
of vortices N → ∞, the turbulent flow, and specifically in
the chiral flow, where all vortices have the same (minimal)
circulation �i = �. In this limit the vortex system must be
treated as a liquid itself.

In the turbulent flow we distinguish two types of motion:
a fast motion of the fluid around vortex cores, and a slow
motion of vortices fluid. In particular, in the ground state of
the vortex liquid, the vortices do not move, but the fluid does.
In the stationary flow vortices are distributed uniformly with
the mean density ρ̄ = �/(π�).

Kirchhoff equations are scale invariant. They do not change
under a dilatation zi → λzi,t → λ2t,ρ̄ → λ−2ρ̄ and for that
reason do not consist of any energy scale. In order to write the
Hamiltonian one needs to introduce an ad hoc scale of energy.
Bearing in mind application to FQHE, we set it to be �ν . Then
the Hamiltonian

H = �ν

∑
i

⎛
⎝πρ̄|zi |2 −

∑
j �=i

log |zi − zj |2
⎞
⎠ , (4)

and the Poisson brackets {z̄i , zj }PB = �
i�ν

δij reveal the Kirch-
hoff equation (3). The scale �ν disappears from the equations.

Now we proceed with the quantization. The first step is to
replace the Poisson brackets by the commutators

{z̄i , zj }PB → [z̄i , zj ] = 2�2δij , (5)

where we denote 2�2 = h̄�/�ν . It has a dimension of area. The
ratio between this scale and the area per particle ν = 2πρ̄�2

is the dimensionless semiclassical parameter. We will see in a
moment that ν appears to be the filling fraction, and � to be
the magnetic length.

At the next step we must specify the space of states. We
assume that states are holomorphic polynomials of zi . Then
operators z̄i are canonical momenta

z̄i = 2�2∂zi
. (6)

The last step is to specify the inner product. We impose
the chiral condition: operators z̄i and zi are assumed to be
Hermitian conjugated

chiral condition : z̄
†
i = zi . (7)

The conditions (6) and (7) identify the set of states with the
Bargmann space:4,21 the Hilbert space of analytic polynomials
ψ(z1, . . . ,zN ) with the inner product

〈ψ ′|ψ〉 =
∫

e
− ∑

i

|zi |2
2�2 ψ ′ψ d2z1 . . . d2zN . (8)

Equations (3) and (6) help to write quantum velocity operators
as

pi = −ih̄

⎛
⎝∂zi

−
∑
j �=i

β

zi − zj

⎞
⎠ , β = ν−1, (9)

where we set pi = mνvi and the effective mass mν = h̄/(ν�).
Operators pi are the many-body version of the guidance center
coordinates or coordinates of magnetic translations.

At this stage the Kirchhoff equations are readily identified
with the FQHE in a disk geometry. There the electronic droplet
occupies a volume confined by a weak potential.
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We recall that the Bargmann space is just another way to
say that all states belong to the lowest Landau level. In that
representation the wave functions are written in the radial
gauge with respect to a marked point (the origin) inside
the droplet (see, e.g., Ref. 4 for details). Apart from the
factor exp(−∑

i |zi |2/2�2), treated as a measure, the states
are holomorphic polynomials.

Let us determine the ground state of the vortex liquid. There
all velocities vanish, piψ0 = 0. The common solution of the
set of first-order PDEs is the Laughlin function

piψ0 = 0, ψ0 =
∏
i>j

(zi − zj )β, ν = β−1. (10)

The wave function is single valued if β is an integer. Depending
on whether β is chosen to be an odd or even integer the vortices
are fermions or bosons. In particular, β = 2 is believed to
describe the rotating Bose condensate of trapped atoms. At
β = 3 we obtain the Laughlin ν = 1/3 state.

We observe that the Laughlin states, fermionic or bosonic
alike, naturally emerge from the quantum hydrodynamics of
the vortex fluid. In this approach, the fraction appears as a
parameter of the quantization.

In the hydrodynamics interpretations “particles” entered
into the Laughlin function are vortices of the incompressible
fluid. In the FQHE particles are electrons, with electric charge.
To complete the hydrodynamics description we must identify
electric and magnetic field as field acting on vortex cores. To
this end we add a potential

∑
i U (ri) to the energy (4), where

ri are coordinates of vortices. It exerts the force −i[U,z̄i] =
i2�2∂zi

U added to the Kirchhoff equations

vi = −i�z̄i + i
∑
j �=i

�

zi − zj

+ i�2eE, (11)

where eE = −∇U plays the role of the electric field. The
electric field acts normal to velocity. It does not accelerate the
flow since vortices have no “mass.” It must not be confused
with the mν = h̄/(ν�), the inertia of the fluid. Thus we identify
the angular velocity with the cyclotron frequency of vortices
� = eB/mν = (mb/mν)ωc � ωc,� with the magnetic length
� = √

h̄/eB, and ν = h̄/(mν�) the filling fraction.
To illustrate the assignment of electric charges to vor-

tices we invoke a similar phenomena known in organic
conductors.18 There electronic states are localized on cores
of kinks of ion displacements and move together if the motion
is adiabatic. The kinks are the topological configurations of
the 1D phonon field. Here, in a very similar manner electronic
states are trapped by vortices, the topological configurations
in 2D. This is only the illustration. It does not explain a micro-
scopical mechanism of attachment of the vortex circulation to
the electron, but rather provides a hydrodynamics interpreta-
tion to the commonly used concept of the “flux attachment.”

Quantization of the Hall conductance elegantly follows
from the Kirchhoff equations (11). Let us assume that the
electric field is uniform and sum up all the equations. We obtain
the relation between the e.m. current and the electric field
N−1e

∑
i(vi + i�z̄i) = i�2e2E with the fractionally quan-

tized conductance σxy = ν(e2/h). If the electric field is not
uniform, the Hall conductance possesses universal corrections
described below.

The fractionalization of quasiholes is another easy conse-
quence of the Kirchhoff equations. The quasihole1 is a state
with the wave function ψh = ∏

i(z − zi)ψ0. The operator (9)
acting on this state is

piψh = −ih̄

⎛
⎝∂zi

+ 1

zi − z
−

∑
j �=i

β

zi − zj

⎞
⎠ ψ0.

It shows that the Magnus force exerted by vortices to the
quasihole is the the fraction ν of the forces between vortices
and acts in the opposite direction. Thus in the hydrodynamic
interpretation the quasihole appears is a vortex with a fractional
negative circulation −ν, an antivortex, or a hole in the uniform
“Fermi sea” of vortices.

These arguments seem to justify Eqs. (4), (5), (8), and (11)
as a complete minimal set of FQHE dynamics.

Our next goal is to obtain the hydrodynamic description
of the vortex fluid. From the hydrodynamics standpoint, the
coordinates of vortices are treated as Lagrangian specification
of fluid parcels. To pass to the Eulerian specification we must
consider the macroscopic conserved fields, the vortex density
and the vortex flux

ρ(r) =
∑

i

δ(r − ri) = ρ̄ + 1

2π�
(∇ × u), (12)

J (r) =
∑

i

δ(r − ri)vi, (13)

compute them, and determine velocity through the relation

J (r) = ρ(r)v(r).

By construction the flux annihilates the ground state

J |0〉 = 〈0|J † = 0.

To the best of our knowledge this program has never been
set up even for the classical fluids. Below we outline the major
step. To simplify the formulas we compute the flux classically.
The quantum result is the same, providing the ordering of
operators is kept.

We write the vortex flux

J =
∑

i

δ(r − ri)

⎡
⎣−i�z̄i +

∑
j �=i

�

zi − zj

⎤
⎦ (14)

and use the ∂̄ formula πδ = ∂̄( 1
z
) and the identity

2
∑
i �=j

1

z − zi

1

zi − zj

=
(∑

i

1

z − zi

)2

−
∑

i

(
1

z − zi

)2

.

A simple computation yields the important relation between
the vortex flux and the vorticity flux

J = −iρ�z̄ + i
�

2
∂̄

⎡
⎣(∑

i

1

z − zi

)2

−
∑

i

1

(z − zi)2

⎤
⎦

= ρ

⎡
⎣−i�z̄ + i

∑
j

�

z − zj

⎤
⎦ + i

�

2
∂ρ

= ρu + i
�

2
∂ρ. (15)
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The first term on the right-hand side is the vorticity flux ρu.
The second is the anomalous term. It appears because the
velocity of the fluid u diverges at a core of an isolated vortex
[as in Eq. (2)]. However, velocities of vortices are finite. The
anomalous term removes that singularity.

In Cartesian coordinates the relation between velocity of
the fluid and velocity of the vortex fluid reads [we denote
(∇×)a = εab∇b]22

J ≡ ρv = ρu + �

4
∇ × ρ = ρu − 1

4π
�u. (16)

The meaning of the anomalous term is seen from the
geometric phase of the FQH states. That is the phase acquired
by the state when a chosen particle moved around a closed
path encompassed all other particles. In units of 2π it equals
the number of zeros of the wave function with respect to a
chosen particle Nφ and equals the number of fluxes of magnetic
field Nφ = (N − 1)β in the disk geometry. The “shift,” i.e.,
the difference between N and νNφ , is the contribution of the
anomalous term. It can be seen as a result of integration of the
shift relation (16) over a contour encompassing the droplet.
The condition (16) is the local version of the “shift,” the global
relation between the magnetic flux and the number of particles
(see, e.g., Ref. 23).

We see that the vortex flow is incompressible like the fluid
itself and that the Helmholtz equation (1) emerges as the
continuity equation for the vortex liquid

Dt ρ = 0, Dt = ∂t + v · ∇, ∇ · v = 0. (17)

The relation (16) has far reaching consequences. One of them
is the Lorentz shear stress.

The rotating fluid parcel experiences the Coriolis force
ρF = −mν� × (ρu). This force also acts on vortices. To find
its action we express it through the velocity of the vortex fluid.
With the help of the shift formula (16) neglecting higher orders
in gradients we obtain

ρF ≈ eB × (ρv) − h̄

4ν
ρ̄∇(∇ × v). (18)

The first term here is the familiar Lorentz force; the second is
the Lorentz shear force. The universal coefficient translated to
this formula from (16) is the anomalous viscosity.

The anomalous force could be written as a divergence of
the symmetric Lorentz shear stress tensor Fa = ∇bσ

′
ab, which

is best written in terms of the stream function

σ ′
ab = h̄

2ν

(
∇a∇b − 1

2
δab�

)
�, v = −∇ × �. (19)

The anomalous stress is conservative and traceless. To com-
pare, the dissipative shear viscous tensor is given by the
same formula where the stream function is replaced by the
hydrodynamic potential.

Initially introduced for the integer QHE in Ref. 5 it has been
extended to the FQHE in Refs. 6 and 7. In fact, the Lorentz
shear force is the hydrodynamic and also classical phenomena
reflecting the discreteness of vortices.

The anomalous force could be visualized as a strain of orbits
of the fluid around the vortex cores by the shear flow. The flow
elongate them normal to the shear squeezing together flow
lines with different velocity exerting additional force toward
the boundary.

We see that the Lorentz shear force naturally emerges
in the hydrodynamics of the vortex flow. To obtain further
applications, we need the hydrodynamic form chiral condition
(7). From now on we set mν = 1, or � = h̄/ν.

In classical incompressible fluids positions of vortices
determine their velocities, as seen from the classical Kirchhoff
equation. The chiral condition (7) insures that the same is
true in the quantum case. In hydrodynamics terms this means
that the vortex flux J and the velocity are determined by the
density of vortices ρ. This is the chiral consistency condition
we want to obtain. It reflects the holomorphic nature of states,
or equivalently the incompressibility of the fluid, or that all
states belong to the first Landau level.

The chiral consistency relation is obtained when we apply
“normal ordering” to the shift equation (15). This means
to place the holomorphic operator of velocity u to the left
next to the “bra” antiholomorphic state. Then u possesses no
differential operators and acts classically as a solution of (12)

〈...|u = 〈...|(−ih/ν)∂ϕ, �ϕ = −4π (ρ − ρ̄).

The normal ordering is achieved with the help of canonical
equal point commutation relation [u(r),ρ(r)] = ih̄∂ρ(r). It
essentially changes the coefficient in the shift equation (16)

J = uρ − ih̄∂ρ = i
h

ν
ρ

(
∂ϕ +

[
1

2
− ν

]
∂ρ

)
. (20)

This is the chiral constituency condition.24 It expresses the
flux in terms of one- and two-point density functions. The
consistency condition is especially efficient in the topological
sector, where physics is bound to the leading gradients. In this
regime we may treat the relation (20) classically as we assume
below. In the remaining part of the Rapid Communication we
list an incomplete set of applications emphasizing the role of
the anomalous term.

(a) Flux attachment and the profile of the quasihole. Let us
divide Eq. (18) and (20) by ρ and take a curl of (20)

∇ × v = h

ν

[
ρ − ρ̄ + 1

4π

(
1

2
− ν

)
� log ρ

]
, (21)

F ≈ eB × v + h̄

2ν

(
1

2
− ν

)
∇(∇ × v). (22)

If the last term in (21) is ignored the vorticity of the flow follows
the density of particles times the filling fraction. This condition
has been suggested in Ref. 16 as a basis for the hydrodynamics
of FQHE and reflects a popular picture that FQH states are
electronic states with attached additional magnetic flux. The
anomalous term corrects this concept.

In the linear approximation a modulation of the density
ρk = ∑

i e
ik·ri causes velocity

vk ≈ h

ν

k

k2

[
1 − 1

2ν

(
1

2
− ν

)
(k�)2

]
ρk. (23)

Equation (21) can be used to find density profiles for various
coherent states. For example a quasihole is a source ∇ × v =
−hδ(r − r0) in the equation (21). Outside the core and in the
leading gradients the quasiholes cause a modulation:25

ρ
(h)
k ≈ (ρ̄ − ν)δk,0 − [

ν − 1
2

(
1
2 − ν

)
(k�)2

]
.
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(b) Structure function. The structure function

sν(k) = N−1〈0|ρkρ−k|0〉
is the correlation of density modes. To compute it we use the
hydrodynamics commutation relation

[v(r),ρ(r ′)] = −ih̄∂δrr ′

followed from (13) and (9). We recall that the holomorphic
velocity annihilates the “ket” vacuum. Therefore

〈0|vk,ρ−k′ |0〉 = 1

2
h̄kδk,k′ .

Substitute (23) there and obtain the celebrated result of Ref. 4
(see Ref. 26),

sν(k) ≈ 1

2
(k�)2

[
1 + 1

2ν

(
1

2
− ν

)
(k�)2

]
. (24)

(c) Nonuniform electric field. At the steady state the electric
field balances Lorentz force plus the Lorentz shear force (22)
balanced F = eE. Solution of this equation gives the Hall
current eρ̄vk = σxy(k)Ek . The Hall conductance acquires the
universal correction8

σxy(k) = νe2

h

[
1 + 1

2ν

(
1

2
− ν

)
(k�)2

]
. (25)

Equations (24) and (25) reflect a general relation between the
structure function and the Hall conductance. That is esν(k) =
(B/4πν)k2σxy(k).

(d) Nonuniform magnetic field. A similar relation occurs
between the density and a nonuniform magnetic field. A
nonuniform magnetic field enters into the relation (21) through
the mean density ρ̄ = ν

h
eB. At the ground state where velocity

vanishes Eq. (21) becomes the Liouville-like equation for
the density. In the leading gradients this equation yields the
generalized Streda formula, that is the relation between the
density and a weakly nonuniform magnetic field e〈0|ρk|0〉 =
σxy(k)Bk . The Hall conductance σxy(k) in this formula is given
by (25). It has been computed for the case of a uniform
magnetic field and a nonuniform electric field.

(e) Accumulation of charges in curved space. Anomalous
properties of FQHE are seen in a curved space. Here we
mention just one. In a curved space the density (the number
of particles per unit area ρ

√
gdzdz̄) is not uniform but rather

depends on the curvature

ρ = ρ̄ + 1

4π
R + O(�2�R). (26)

The first term of the gradient expansion in the curvature
follows from the shift formulas (16) In the curved space the
density transformed as ρ → ρ

√
g. Under this transformation

the anomalous term in (16) acquires an addition h̄
4ν

∇ × √
g

which yields the term − 1
2π

1√
g
� log

√
g on the right-hand side

of (21) and subsequently (26). Recall that R = − 2√
g
� log

√
g

is the Gaussian curvature. The next term in the expansion (26)
is also universal, but requires a more involved analysis.

Particles/vortices accumulate at curved parts being pushed
there by the Lorentz shear force. For example, a cone with the
deficit angle α possesses extra α/4π particles located right at
the vertex.

Equation (26) can be checked against the known formula
for the number of particles at the Laughlin state on a
Riemannian manifold. Integrating (26) and using the Gauss-
Bonnet theorem we obtain

N = νNφ + 1
2χ,

where χ is Euler characteristic. This formula remains valid for
surfaces with boundaries, cones, and parabolic singularities.
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