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Two types of surface states in topological crystalline insulators

Junwei Liu,1,2 Wenhui Duan,1 and Liang Fu2,*

1Department of Physics and State Key Laboratory of Low-Dimensional Quantum Physics, Tsinghua University,
Beijing 100084, People’s Republic of China

2Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
(Received 7 April 2013; published 11 December 2013)

Topological crystalline insulators (TCIs) are new states of matter whose topological distinction relies on the
crystal symmetry of periodic solids. The first material realization of TCIs has recently been predicted and observed
in IV-VI semiconductor SnTe and related alloys. By combining k · p theory and band structure calculation, we
present a unified approach to study topological surface states on various crystal surfaces of these TCI materials
based on the electronic structure of the bulk. Depending on the surface orientation, we find two types of surface
states with qualitatively different properties. In particular, the (111) surface states consist of four Dirac cones
centered at �̄ and M̄ , while Dirac cones on (001) and (110) surfaces are located at non-time-reversal-invariant
momenta. The latter types of surface states exhibit a Lifshitz transition as a function of Fermi energy, which is
accompanied by a Van Hove singularity in the density of states arising from saddle points in the band structure.
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Structure and symmetry play an important role in shaping
the electronic properties of periodic solids. It is a common phe-
nomenon that materials made of chemically similar elements
arranged in the same crystal structure, such as diamond and
silicon, often have qualitatively similar electronic properties.
Such an empirical relationship between structure and property
arises from the fact that the essential electronic properties of
many solids are understandable in terms of orbitals and bonds,
the characteristics of which depend mostly on crystal structure.
For example, both diamond and silicon possess sp3 hybridized
orbitals in a tetrahedral structure. On the other hand, the
quantum theory of solids is based on itinerant Bloch waves that
form energy bands in momentum space. The global structure
of band theory has an interesting consequence: There exist
unconventional energy bands that are fundamentally different
from a Slater determinant of atomic orbitals. Instead, these
“nontrivial” band structures are characterized by topological
quantum numbers, and give rise to topological states of
matter such as quantum Hall insulators1 and topological
insulators.2–4

The topological aspect of the band structure implies the
inadequacy of the empirical structure-property relation. As
a proof of principle, we demonstrated theoretically that for
a given crystal structure, there may exist distinct classes of
band structures that cannot be adiabatically connected to each
other while preserving the symmetry of the crystal.5 Those
band structures that cannot be deformed to the atomic limit are
topologically nontrivial and thus define a new category of topo-
logical states, dubbed topological crystalline insulators (TCIs).
A hallmark of TCIs is the existence of gapless surface states
on crystal faces that preserve the underlying symmetry.5,6

The first material realization of TCI was recently pre-
dicted in IV-VI semiconductors SnTe and related alloys
PbxSn1−x(Te,Se).7 Here the nontrivial topology relies on
the presence of reflection symmetry of the rocksalt crystal
structure with respect to the (110) mirror plane (and its
symmetry-related ones), and is mathematically character-
ized by an integer topological invariant—the mirror Chern
number.8 A consequence of topology is that these IV-VI

semiconductors are predicted to possess topological surface
states with novel dispersions on a variety of crystal surfaces
such as (001), (111), and (110), which are normal to at
least one such mirror plane. The (001) surface states have
been subsequently observed in angle-resolved photoemission
spectroscopy (ARPES) experiments on SnTe,9 Pb1−xSnxSe,10

and PbxSn1−xTe.11 In addition, the spin texture observed
in spin-resolved ARPES11,12 provides a direct spectroscopic
measurement of the mirror Chern number.13,14

The materialization of TCI opens up a new venue for
topological phases in a much larger number of material classes
than previously thought,15–19 thereby triggering intensive
activities.20–23 From a material viewpoint, IV-VI semicon-
ductors exhibit a wide range of electronic properties (e.g.,
magnetism, ferroelectricity, and superconductivity) that can be
easily tuned by alloying, doping, and strain.24 The technology
for synthesizing and engineering these materials, in both
bulk and low-dimensional form, has been well developed by
decades of efforts.25 Therefore we anticipate that TCIs in IV-VI
semiconductors will become an extremely versatile platform
for exploring topological quantum phenomena, and, possibly,
novel device applications.

In this Rapid Communication, we combine k · p theory
and band structure calculation to study TCI surface states on
various crystal surfaces of IV-VI semiconductors. We find
that the low-energy properties of these surface states are
determined by the surface orientation, and can be classified
into two types. The (111) surface states consist of four Dirac
cones centered at time-reversal-invariant momenta �̄ and M̄ ,26

while the (001) and (110) surface states consist of Dirac cones
at non-time-reversal-invariant momenta. These low-energy
Dirac cones can be regarded as the descendents of two parent
Dirac points located close to the bulk conduction and valence
band edges, respectively. The presence of two generations of
Dirac fermions on the (001) and (110) surface states results
in a Lifshitz transition as a function of Fermi energy. This
transition is accompanied by a Van Hove singularity in the
density of states arising from saddle points in the surface band
structure, which is a theoretical prediction of this work. These
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results provide a basis for further studies on TCI surface states.
Moreover, by deriving the k · p Hamiltonian for surface states
from the electronic structure of the bulk, our work provides a
microscopic understanding of bulk-boundary correspondence
in TCI.

We begin by reviewing the band structure of TCIs in the
bulk, from which surface states are derived. The band gap of
IV-VI semiconductors is located at four L points. For the ionic
insulator PbTe, the Bloch state of the valence band at L is
derived from the p orbitals of the anion Te, and that of the
conduction band from the cation Pb. In contrast, SnTe has an
inherently inverted band ordering, in which the valence band
is derived from the cation Sn and the conduction band from Te.
This band inversion relative to a trivial ionic insulator gives
rise to the TCI phase in SnTe.7 The band structure near each
L point can be described by a four-band k · p theory in the
basis of the four Bloch states at L, ψσ,s(L), where σ = 1(−1)
refers to the state derived from the cation (anion), and s labels
the Kramers doublet. The k · p Hamiltonian H (k) is given by
(see Ref. 7, and references therein)

H (k) = m0σz + vσx(k1s2 − k2s1) + v′k3σy, (1)

where k3 is along the �L direction, and k1 is along the (11̄0)
axis of reflection. �σ and �s are two sets of Pauli matrices. The
sign of m0 in (1) captures the two types of band ordering: In
our convention m0 > 0 for PbTe and m0 < 0 for SnTe.

The electronic structures of TCI surface states depend
crucially on the crystal face orientations. We distinguish
two types of crystal surfaces of the rocksalt lattice. For the
type-I surface, all four L points are projected to different
time-reversal-invariant momenta in the surface Brillouin
zone. This is the case for the (111) surface, for which L1 is
projected to �̄ and (L2,L3,L4) are projected to three M̄ points.
For the type-II surface, different L points are projected to the
same surface momenta. This is the case for the (001) surface
for which (L1,L2) → X̄1 and (L3,L4) → X̄2, as well as
the (110) surface for which (L1,L2) → X̄ and (L3,L4) → R̄.
The projection from the bulk to surface Brillouin zone is
shown in Fig. 1.

(111) surface. The type-I surface states can be obtained
straightforwardly by solving the continuum k · p Hamiltonian
(1). Following the spirit of Ref. 27, we model the vacuum
as a trivial insulator (such as PbTe) with an infinite gap
m0 = M > 0, where M → +∞. Surface states can now be
obtained by solving a domain wall problem in which the
Dirac mass m0 is spatially varying and changes sign across
the interface between the TCI and the vacuum. It is well
known from field theory that two-dimensional (2D) massless
Dirac fermions form at such an interface.28–30 Due to the
presence of four L valleys, surface states consist of four
copies of such Dirac fermions. These four Dirac fermions
are located at four distinct 2D momenta that correspond to
the projection of the four L points onto the type-I surface.
Because of their different in-plane momenta, the four L

valleys cannot couple with each other as long as in-plane
translation symmetry is present, and therefore independently
give birth to four branches of Dirac surface states.

A prime example of the type-I surface is (111). It follows
from the above analysis that the (111) surface states consist
of four Dirac cones: one at �̄, and three others at M̄ . The
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FIG. 1. (Color online) Bulk Brillouin zone of a rocksalt structure
and its projection to (001), (111), and (110) surface Brillouin zones.
For the (001) surface, L1 and L2 are both projected to X̄1, and L3

and L4 are projected to X̄2; for the (111) surface, L1 is projected to �̄

and the other three L points are projected to M̄ points; for the (110)
direction, L1 and L2 are projected to X̄ and L3 and L4 are projected
to R̄. The shaded plane passing through �, L1, and L2 in the 3D
Brillouin zone is invariant under reflection about the (11̄0) plane in
real space.

k · p Hamiltonians at �̄ and M̄ are given by H�̄(k) = v(k1s2 −
k2s1) and HM̄ (k) = v1k1s2 − v2k2s1, where k1 is along the �̄K̄

direction, and k2 is along the mirror-invariant �̄M̄ direction.
The presence of these Dirac pockets is confirmed by our

band structure calculations on SnTe, based on the tight-binding
model31 (see Fig. 2). Similar results are obtained for related
TCI Pb1−xSnxSe.32 The Dirac points are found to lie close
to the top (bottom) of the valence (conduction) band for Sn
(Te) termination. Such surface states are qualitatively similar
to interface states between PbTe and SnTe studied in early
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FIG. 2. (Color online) Band structure of the (111) surface for
Sn and Te termination. Four Dirac pockets are present: one at �̄

and three at M̄ . This leads to two counterpropagating states with
opposite mirror eigenvalues on �̄M̄ , as predicted from the mirror
Chern number nM = −2 in the TCI phase (Ref. 7).
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theoretical works.28–30 The discovery of TCIs has revealed
that such interface states are topologically equivalent to surface
states of SnTe, but not PbTe. Moreover, their robust existence
has a topological origin that relies on the presence of the (110)
mirror symmetry. This symmetry protection can be understood
from the two branches of counterpropagating surface states
on the mirror-invariant line �̄M̄ . They carry opposite mirror
eigenvalues and therefore cannot hybridize with each other to
open up a gap, in agreement with the prediction based on the
mirror Chern number.7

(001) surface. The type-II surfaces are much more inter-
esting. In this case, two L points are projected to the same
momentum in the surface Brillouin zone. As a result, they
interact with each other to create different types of topological
surface states with an unusual band dispersion and spin texture.
The interaction between the L valleys arises from the physics
at the lattice scale, which is not captured by the previous
field-theoretic approach.28–30

To correctly obtain the band structure of type-II surfaces,
we proceed in two steps. First, we study a hypothetical
smooth interface between the TCI and a trivial insulator,
in which the Dirac mass is slowly varying in space and
gradually changes sign over many lattice constants across
the interface. In this smooth limit, scattering between the
two L valleys projected to the same in-plane momentum,
which requires a large-momentum transfer in the direction
normal to the interface, is fully suppressed. We are then
justified to use the continuum field theory to solve the
domain wall problem for each valley independently and derive
an effective Hamiltonian for the resulting multicomponent
interface states. Next, imagine deforming the smooth interface
into the atomically sharp surface to adiabatically connect
interface states to the desired surface states. This deformation
procedure introduces intervalley scattering processes at the
lattice scale, which are represented by additional terms in the
effective Hamiltonian for the surface. Such terms must satisfy
all the symmetry of the crystal surface, and therefore can be
enumerated by a symmetry analysis. By incorporating these
terms into the surface Hamiltonian derived in the previous
step, we obtain the final k · p theory for type-II surface states.

We now apply this approach to study the (001) surface.
Starting from a smooth interface, we find two coexisting
massless Dirac fermions at X̄1 arising from the L1 and L2

valley, respectively, and likewise for the symmetry-related
point X̄2. These two flavors of Dirac fermions have iden-
tical energy-momentum dispersions, resulting in a twofold
degeneracy at every k. The k · p Hamiltonian for this smooth
interface is given by H 0

X̄1
(k) = (vxkxsy − vykysx) ⊗ I , where

the momentum (kx,ky) is measured from X̄1, with kx parallel
to �̄X̄2 and ky parallel to �̄X̄1. Here I is identity operator in the
flavor space, and �s is a set of Pauli matrices associated with the
two spin components (i.e., Kramers doublet) of each flavor.
The velocities in x and y directions are generically different.

Next, we perform a symmetry analysis to deduce the
form of those additional terms associated with the physics
at the lattice scale, which need to be added to H 0

X̄1
(k).

Note that X̄ is invariant under three point group operations:
(i) x → −x reflection (Mx); (ii) y → −y reflection (My);
and (iii) twofold rotation around surface normal (C2). These
symmetry operations, plus time-reversal transformation �, are
represented by the following unitary operators in our k · p

theory:

Mx : −isx,

My : −iτxsy,
(2)

C2 : −iτxsz,

� : isyK.

Importantly, Mx preserves the L1 and L2 valley in the
bulk and only acts on the electron’s spin, whereas both
My and C2 interchange L1 and L2 and hence involve a
flavor-changing operator τx . To zeroth order in k, we find
two symmetry-allowed operators, τx and τysx . Therefore our
k · p Hamiltonian for the (001) surface states is given by

HX̄1
(k) = (vxkxsy − vykysx) + mτx + δsxτy. (3)

Note that the two additional terms, parametrized by m and
δ, are off diagonal in flavor space, which correctly describe
intervalley scattering at the lattice scale.

The k · p Hamiltonian (3) is a main result of this Rapid
Communication. We now show that HX̄1

(k) captures all the
essential features of type-II surface states. By diagonalizing
HX̄1

(k), we obtain four surface bands with energy-momentum
dispersions EH (k), −EH (k), EL(k), and −EL(k), respectively,
where EH,L(k) is given by

EH,L(k) =
√

m2 + δ2 + v2
xk

2
x + v2

yk
2
y ± 2

√
m2v2

xk
2
x + (m2 + δ2)k2

yv
2
y. (4)

The corresponding surface band structure is plotted in Fig. 3.
Two high-energy bands ±EH start from energy EX ≡√

m2 + δ2 at X̄ and coexist in energy with bulk bands, whereas
two low-energy bands ±EL lie inside the band gap.

The two terms m and δ arising from the lattice scale play a
key role in forming the (001) surface band structure shown in
Fig. 3. To start with, a finite m turns the two flavors of massless
Dirac fermions into “bonding” (τx = 1) and “antibonding”
(τx = −1) Dirac cones, which are centered at X̄ and have

energy ±m that is close to the bulk conduction and valence
band edges, respectively. If δ were zero, the lower band
of the upper Dirac cone and the upper band of the lower
Dirac cone would cross each other at E = 0 over an ellip-
tical contour C enclosing X̄, defined by v2

xk
2
x + v2

yk
2
y = m2.

However, a nonzero δ turns this band crossing into an
anticrossing via hybridization. Importantly, the hybridization
matrix element depends on the direction of k, and leads to a
p-wave hybridization gap: �(k) = 2δ · vxkx/m, k ∈ C. The
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FIG. 3. (Color online) k · p band structure for the (001) surface
states. A pair of low-energy Dirac cones, located at 	̄1 and 	̄2 on
the line X̄�̄, is formed by the interaction between two high-energy
Dirac bands centered at X̄. k · p parameters are obtained by fitting
with ab initio results (shown by red dots) on SnTe taken from Ref. 7:
vx = 2.4 eV Å, vy = 1.3 eV Å, m = 70 meV, and δ = 26 meV. The
constant-energy contour evolves rapidly with increasing energy from
the Dirac point, changing from two disconnected electron pockets to a
large electron pocket and a small hole pocket via a Lifshitz transition.
At this transition point, a saddle point S̄ on the line X̄M̄ leads to a
Van Hove singularity in density of states at energy ES = δ.

fact that �(k) vanishes along the mirror-symmetric line �̄X̄1

is a consequence of the unique electronic topology of the
TCI protected by mirror symmetry. As can be seen from
(2) and (3), the two low-energy bands ±EL have opposite
Mx mirror eigenvalues on the ky line X̄1�̄, but identical
My mirror eigenvalues on the kx line X̄1M̄ . As a result,
hybridization is strictly forbidden on X̄1�̄, but allowed on
X̄1M̄ . The presence of such a protected band crossing on
X̄1�̄, but not elsewhere, leads to a pair of zero-energy Dirac
points 	̄1,2 located symmetrically away from X̄1 at momenta
	̄1,2 = (0, ±√

m2 + δ2/vy). By linearizing the band structure
near each 	̄, we obtain the two-component massless Dirac
fermion at low energy7

H	̄1
(δk) = ṽxδkxσy − vyδkyσx, (5)

where δk ≡ k − 	̄1 and the Dirac velocity along �̄X̄1 is
reduced from vx : ṽx = vxδ/

√
m2 + δ2.

Our k · p theory thus demonstrates how these low-energy
Dirac cones in type-II surfaces are derived from parent
Dirac fermions at high energy. By doing so, it also captures
essential high-energy features of the (001) surface states that
are previously found in ab initio calculations.7 As shown
in Fig. 3, the band dispersion and constant energy contours
evolve rapidly and undergo a change in topology (i.e., Lifshitz
transition) with increasing energy away from the Dirac point.
For |E| < δ, the Fermi surface consists of two disconnected
Dirac pockets outside X̄. At |E| = δ, the two pockets touch
each other at two saddle points S̄1 and S̄2 located at the
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FIG. 4. (Color online) Band structure of the SnTe (110) surface,
from our ab initio calculations. The inset shows the surface Brillouin
zone. A pair of Dirac cones is present on the line X̄-�̄-X̄, but absent
along other high-symmetry lines.

momentum (±m/vx,0), resulting in a Van Hove singularity
in the density of states, shown in Fig. 3. The effective mass
tensor at the saddle point is given by by mxx = δ/v2

x and
myy = −m2/(δ · v2

y). For |E| > δ, the Fermi surface changes
into two pockets of different carrier types, both centered at X̄.

As shown in Fig. 3, our k · p band structure (4) fits well with
the previous ab initio calculation of the SnTe (001) surface in
a wide energy range.7 Further improvement can be made by
incorporating additional intervalley terms that are linear in k
into our k · p Hamiltonian (4). This leads to a sophisticated
k · p theory with seven independent parameters, which is
closely related to a recent study by Fang et al.37 Since these ad-
ditional terms do not affect any essential aspect of the (001) sur-
face band structure, they are not considered in the main text.38

(110) surface. We end by briefly discussing another type-II
surface, (110). In this case, L1 and L2 are projected to X̄, and
L3 and L4 are projected to R̄. Bulk-boundary correspondence
based on the electronic topology of TCIs predicts the existence
of a pair of counterpropagating states with opposite mirror
eigenvalues on �̄X̄.7 This is confirmed by our ab initio
calculation33 for SnTe (110) shown in Fig. 4: A pair of
Dirac cones is found on the line X̄-�̄-X̄, but not along other
high-symmetry lines. Since X̄ on the (110) surface has the
same symmetry as X̄1 on the (001) surface including two
mirror planes plus a twofold axis, our k · p theory (2) and
(3) applies equally well to the (110) surface band structure
near X̄.

Note added: Recently, we learned of a related work on the
(001) surface states of TCI.39
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