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Probing dynamics of Majorana fermions in quantum impurity systems
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We investigate the admittance of a metallic quantum RC circuit with a spinful single-channel lead or equally
with two conducting spin-polarized channels, in which Majorana fermions play a crucial role in the charge
dynamics. We address how the two-channel Kondo physics and its emergent Majoranas arise. The existence of a
single unscreened Majorana mode results in non-Fermi-liquid features and we determine the universal crossover
function describing the Fermi-liquid to non-Fermi-liquid region. Remarkably, the same universal form emerges
both at weak transmission and large transmission. We find that the charge relaxation resistance strongly increases
in the non-Fermi-liquid realm. Our findings can be measured using current technology assuming a large cavity.
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The need for fast manipulation and readout of quantum
coherent circuits, notably in the perspective of quantum com-
putation, has been a strong motivation to investigate the dy-
namical response of nanoconductors.1 Excited at frequencies ω

in the quantum regime, h̄ω � kBT , the systems evolve due to
the intriguing interplay of correlation and quantum coherence
effects. The quantum RC circuit,2 a quantum dot attached to
a single lead and polarized by an external ac gate voltage, has
emerged as the archetypical system for studying the dynamics
of coherent circuits.3–11 Recent experiments12 on quantum
hybrid structures combining microwave resonators13 with
semiconductor or nanotube quantum dots offer an alternative
perspective to measure the admittance of quantum circuits.14

The existence of a quantized15 charge relaxation (ac) resistance
Rq = h/(2e2) in the quantum RC circuit has been shown16

(and measured2) to originate from the Fermi-liquid (FL) nature
of low-energy excitations where the elementary quasiparticles
are noninteracting fermions. A deep connection3 has also been
drawn between the quantized resistance Rq = h/e2 for large
dots, the Shiba relation, and the one-channel Kondo model in
RC circuits17 close to the charge degeneracy points.

In this Rapid Communication, we investigate the non-
Fermi-liquid (NFL) situation where the elementary quasi-
particles are Majorana fermions.18 This description natu-
rally applies to the quantum RC circuit with spinful (spin
unpolarized) electrons and a large cavity (dot)19–21 and is
associated to the two-channel Kondo model.22 It could be
extended to the case of the helical edges of quantum spin
Hall states23–25 since the model is invariant upon reversing the
direction of one of the spin species.26 As discussed below,
the corresponding low-energy effective theory involves eight
chiral Majorana fermions27 and a local Majorana fermion
(Klein factor) representing the residual spin of the impurity.
Although the local Majorana cannot be manipulated as a
separate object and used for quantum computation, its presence
is fundamental in the emergence of NFL physics.28

The search for the existence of Majorana fermions has en-
gendered a spurt of experimental efforts in condensed-matter
systems.29–35 In our case, the local Majorana is a remnant spin
degree of freedom and not a composite object resulting from
superconductivity as in topological wires.36 Nevertheless, our
system is described at low energy by a Majorana resonant level
model, or the Emery-Kivelson model,37 which also describes

the coupling of a local Majorana fermion to a normal lead in a
topological superconducting wire.

In the quantum RC circuit with two conducting (spin)
modes, the local Majorana fermion acquires a spectral width
�, due to its coupling to the leads, which sets a crossover
energy scale. Below �, the dynamics of the local Majorana
is quenched and FL physics dominates while NFL behavior38

emerges at energies above �. The crossover energy scale �

vanishes at the charge degeneracy points.39 Here, we provide
an analytical expression for charge fluctuations along this
universal crossover as a function of frequency: the charge
relaxation resistance starts at Rq = h/(2e2) for a “2-mode”
large cavity when ω = 0 and rapidly increases with frequency
towards the NFL region.

The system under study comprises a large (metallic) quan-
tum dot attached to a lead via a quantum point contact (QPC)
with a single spin-unpolarized channel.19,20,39,40 The quantum
RC circuit could be equally built at the helical edges of
quantum spin Hall insulators.11 Electron confinement implies
a charging energy EC = e2/(2Cg), where Cg is the capacitance
of the dot, and the interaction term HC = EC(N̂ − N0)2

in the Hamiltonian. N0 is the dimensionless gate voltage,
and the operator eN̂ gives the electron charge on the dot.
Below, we address the extreme cases of almost transparent
and weakly transmitting QPC.

We consider first an almost open dot with weak charge
quantization, i.e., charge quantization is strongly smeared out
by the large dot-lead coupling. The model can be reduced to
a one-dimensional form with coordinate x, the region x < 0
defining the lead and x > 0 the (infinite) dot. Electrons are
weakly backscattered, with amplitude r � 1, at the boundary
x = 0. In this regime, spin and charge excitations occur at well-
separated energy scales, r2EC � EC , and the system is conve-
niently described using bosonization41,42 in the spin and charge
sectors. Following a standard sequence39,43 of bosonization
and refermionization (see Supplemental Material44), we find
the exact action describing the system S = SF + Sc + SBS ,
with

Sc =
∑
ωm

|φc(ωm)|2
(

|ωm| + 2EC

π

)
, (1a)

SBS = ir0

∫ β

0
dτ η(τ ) â(τ ) cos (

√
2φc(τ ) + πN0), (1b)
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where r0 = 2vF r
√

2/πa0, η(τ ) ≡ η(x = 0,τ ), and
φc(τ ) ≡ φc(x = 0,τ ). The charge bosonic field at x = 0
is related to the charge on the dot φc = (π/

√
2)N̂ . The

bosonization procedure introduces a boson field φ(x)
which embodies spin excitations along the one-dimensional
fermionic line. Refermionization of φ

1

2
√

πa0
eiφ(x) = â ψ(x), (2)

defines a (Klein factor) Majorana fermion â = â†. In Eq. (1a),
SF is the free part for the chiral Majorana fermion η(x) =
[ψ(x) − ψ†(x)]/(i

√
2). Here the Majorana â has nothing to do

with superconductivity but rather describes the residual spin-
1/2 degree of freedom emerging after the Kondo screening
of the original spin-1/2 at the dot-lead interface.39,43 The
existence of this unscreened degree of freedom is responsible,
as discussed below, for the emergence of NFL features.

Integrating the massive charge field φc in Eq. (1a) yields, to
leading order in r � 1, an exactly solvable Majorana resonant
level model.39 The Majorana fermion â acquires the spectral
width � = (8ECγ/π2) r2 cos2(πN0) with � ∼ r2EC � EC

and ln γ = C � 0.5772 is the Euler constant. Below the energy
scale �, spin excitations are quenched. NFL features arise due
to the combined effect of spin excitation, described by â, with
the quenching of charge excitation, that is for energies between
� and Ec. Below �, a crossover to a Fermi-liquid regime is
established.39

We are interested in the charge susceptibility χC(t) =
iθ (t)〈[N̂(t),N̂]〉. The low-frequency expansion of the related
admittance,

G(ω) = −iωe2χC(ω) ≡ −iωC0(1 + iωC0Rq), (3)

defines the differential capacitance C0 and the charge relax-
ation resistance Rq . In order to compute χC , the charge field φc

should not be fully integrated and we need to extend the anal-
ysis of Refs. 39 and 45: this is discussed in the Supplemental
Material. Following a lengthy but straightforward perturbative
calculation, for r � 1, we obtain at zero temperature46 the
result χC = K0 + K1 + K2,

e2K0(ω)/Cg = α(ω), (4a)

e2K1(ω)/Cg = −8γ vF r2 sin2(πN0) α(ω)2 �aη(ω), (4b)

e2K2(ω)/Cg = −8γ vF r2 cos2(πN0) α(ω)2 ln(EC/�)

2π
(4c)

with α(ω) = (1 − iωπ/2EC)−1. Only K0 survives in the
absence of backscattering r = 0, in which case, one obtains,
by comparing with Eq. (3), C0 = Cg and Rq = h/(2e2), half
of the result of spinless electrons for a large dot h/e2.3

�aη(τ ) = 〈η(τ )â(τ )ηâ〉 is a polarization operator computed
from the quadratic part of the action with the result

�aη(ω) = −(1/2πvF )[ln(EC/�) + β(ω/�)],
(5)

β(x) = −(1 + 2i/x) ln(1 − ix).

NFL behavior in the charge susceptibility is signaled by
logarithmic singularities in the computation of �aη cutoff by
the charging energy EC . They arise in the contraction 〈ââ〉〈ηη〉
and essentially originate from the fact that the Majorana

ω/Γ

β(ω/Γ)

FIG. 1. (Color online) Real part of the function β as a function
of the ratio ω/�. The dotted line, − ln x, gives the NFL asymptotical
behavior caused by the local Majorana fermion.

operator â has zero dimension for energies between � and
EC .

The function β(ω/�) describes the crossover between the
FL and NFL responses for ω � � and ω � � respectively, its
real part is shown in Fig. 1. For ω � �, we use the expansion

β(x) � −2 + x2/6 + ix3/6 − 3x4/20 + · · · , x � 1 (6)

inserted in Eq. (4) and compare with Eq. (3) to extract C0 and
Rq . At vanishing frequency, the static susceptibility, and C0,
coincide precisely with Ref. 39. Remarkably and similarly to
the spinless case, we find no correction to the charge relaxation
resistance Rq = h/(2e2) for r 
= 0 due to the absence of a
linear term in Eq. (6). This result confirms FL behavior at low
energy. Indeed, using the Fermi-liquid approach elaborated in
Ref. 16, where lead electrons are coherently backscattered with
a phase shift proportional to the static charge susceptibility,41

one easily derives the Shiba relation and shows that Rq =
h/(2e2) for an arbitrary transmission of the QPC. Note that �

vanishes at N0 = 1/2 where the system is always a NFL.
We now turn to the opposite limit of weak transmission of

the QPC. The system is adequately described3,17 by the tunnel
Hamiltonian H = H0 + HC + HT where

HT = t
∑

k,k′,s=↑,↓
(d†

ksck′s + c
†
k′sdks) (7)

transfers electrons between the (large) dot and the lead with
operators ck and dk respectively; the index s refers, e.g.,
to the two spin polarizations. The free-electron part reads
H0 = ∑

a=c,d,s εka
†
ksaks for dot and lead electrons. HT either

decreases or increases the dot charge by one unit and thus
does not commute with HC . Far from charge degeneracy,
the perturbative approach of Ref. 3 can be reproduced with
an additional factor 2 that accounts for spin degeneracy.
One readily obtains Rq = h/(2e2), again in agreement with
the Fermi-liquid picture. Perturbation theory however breaks
down close to charge degeneracy N0 � 1/2 where NFL
physics starts to play a role. In this region, the charge states
other than 0 and 1 can be disregarded and a mapping to
the two-channel Kondo model formulated3,17 where the two
charge states are represented by a spin 1/2 with N̂ = 1

2 + Sz.
The vicinity to charge degeneracy h0 = EC(1 − 2N0) defines
a local magnetic field coupled to Sz. Our study of charge
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fluctuations is then translated to a study of the local spin
susceptibility in the two-channel Kondo model.

For h0 � TK , where TK is the Kondo temperature, two
regimes have been identified22 in the renormalization-group
(RG) analysis: NFL properties dominate for frequencies
(energies) � = h2

0/(2TK ) < ω < TK while a FL response is
obtained at smaller frequencies ω < �. The crossover is
investigated analytically using the SO(8) representation27 of
the two-channel Kondo model, which provides a simple
description of the NFL fixed point.47,48 The bulk fermions,
with two spin species and two channels, have a nonlocal
representation in terms of eight chiral Majorana fermions. With
no impurity, the free Hamiltonian reads

H K
0 = −ivF

2

8∑
j=1

∫ +∞

−∞
dx χj (x)∂xχj (x). (8)

The Majorana fermions χ1,2,3 generate the spin current, χ4,5,6

the flavor current, and χ7, χ8 the charge current.
In the presence of the Kondo impurity coupled only to

the spin current, the NFL infrared fixed point is simply
characterized by the twisted boundary conditions χj (0−) =
−χj (0+) for j = 1,2,3. Absorbing this π/2 phase shift
into a redefinition of the fields, χ1,2,3(x) → sgn(x)χ1,2,3(x),
one recovers the free Hamiltonian form Eq. (8) also at
the infrared fixed point. A finite local magnetic field h0

destabilizes this fixed point with the relevant perturbation47

Hb = i(h0/
√

TK/vF )χ1â of scaling dimension 1/2, where
χ1 = χ1(0). The local Majorana fermion â describes the
residual impurity spin. The Hamiltonian HIR = HK

0 + Hb

is equivalent to the two-dimensional Ising model with a
boundary magnetic field, a correspondence that has been used
to calculate the one-body Green’s function along the FL to
NFL crossover.48 For energies ω � �, the relevant boundary
term Hb restores the continuity of χ1(x) at x = 0. We thus
recover a Fermi liquid as the even number of twisted fields (χ2

and χ3) indicates.27

Quite generally, the impurity spin can be expanded over the
different operators allowed by conformal field theory (CFT).
At low energy, the leading term is

Sz = i

√
vF

TK

χ1â, (9)

in accordance with Hb. The spin susceptibility χs(τ ) =
−(vF /TK ) 〈χ1(τ )â(τ )χ1â〉 is obtained by noting the equiv-
alence between the Hamiltonian HIR and the quadratic action
SF + S0

BS , derived in the large transparency case. We identify
η = χ1 and 2� = h2

0/TK and find

χs0(ω) = 1

2πTK

[
ln

(
TK

�

)
+ β(ω/�)

]
, (10)

describing the FL-NFL crossover. At large frequency ω � �,
the spin susceptibility exhibits NFL features

χs0(ω) = 1

2πTK

[
ln

(
TK

ω

)
+ iπ

2

]
, (11)

in agreement with the prediction of conformal field theory22

and Abelian bosonization.37 The absence of a linear term in
Eq. (6) requires, for the calculation of Rq , to include the leading

Πe

2π√
TK

2π√
TK

χs0

χ2

χ3

(b)

(a)

χs0

0

0.003

0.006

0.009

0.1 1 10
ω/Γ

Rq

(h/e2)
1
A

FIG. 2. (Color online) (a) Vertex correction to the spin suscep-
tibility χs to second order in δH . (b) Universal charge relaxation
resistance valid at all transmissions showing the increase towards
the NFL regime. It is plotted here for B = 6,7,10 (solid, dotted,
and dashed lines). At weak transmission, the maxima of Rq are
respectively 4.03, 7.02, and 55.1 in units of h/e2. We note that
the quantized result Rq = h/2e2, recovered at zero frequency, is not
visible in this plot computed in the scaling limit A � 1.

irrelevant perturbation to HIR ,

δH = 2πv
3/2
F√

TK

χ1χ2χ3â. (12)

The only linear in frequency correction to the spin suscep-
tibility comes from the vertex correction, shown Fig. 2(a),
δχs(ω) = χs0(ω)�e(ω)χs0(ω) where �e(ω) is the electron-
hole pair susceptibility. At zero temperature, �e(ω) = iπω,
interpreted as the dissipation produced by electron-hole
excitations. Expanding the spin susceptibility χs = χs0 + δχs

to linear order in ω, we arrive at the Shiba relation

Imχs(ω) = h̄πω χs(0)2, (13)

equivalent to the charge relaxation resistance Rq = h/(2e2).
This result confirms the validity of the Fermi-liquid picture16

also at low transmission.
Finally, both for weak and almost perfect transparency, we

examine the regime of intermediate frequencies ω ∼ �, where
the expansion Eq. (3) is no longer relevant. Nevertheless,
keeping ω � TK,EC and splitting the charge susceptibility
into real and imaginary parts,

e2χC(ω) = C0(ω) + iω C0(ω)2 Rq(ω), (14)

one can define frequency-dependent capacitance and charge
relaxation resistance. This definition is relevant for exper-
iments where the real and imaginary parts are measured
separately.2 At weak transmission and ω � TK , we extract
the universal form

Rq(ω)

h/e2
= A�

(ω

�

)
= A

�

ω

Imβ(ω/�)

[B + Reβ(ω/�)]2 , (15)
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with A = TK/�. The dimensionless function �(x) is plotted
in Fig. 2(b) for different values of B = ln(TK/�).

Remarkably, the same scaling form involving the function
� is obtained in the opposite limit of weak backscatter-
ing. In the scaling limit where N0 → 1/2 and ω � EC ,
one has α(ω) � 1, sin(πN0) � 1, K2 � 0, and K0 � K1

in Eqs. (4). As a result, one recovers Eq. (15) for the
charge relaxation resistance Rq with B = ln(EC/�) and
A = EC/(4γ r2 �). The universality of the FL-NFL crossover
has been anticipated by Matveev39 who argued that the
two-channel Kondo model influences the phase diagram
beyond weak transparency.49 To summarize briefly, we have
shown that the presence of Majoranas in a quantum RC

circuit results in a subtle charge dynamics which can, in
principle, be revealed using current technology.46 The FL

to NFL crossover produces a visible increase of the charge
relaxation resistance which can be probed through admittance
measurements. We anticipate the possibility that NFL behavior
emerges also for a superconducting wire supporting Majorana
fermions at his edges.29,30,32–36 Majorana fermions can also
be manipulated using a microwave cavity.50 Other interesting
directions concern the role of an asymmetry between chan-
nels which can be engineered through Zeeman effects for
example.51
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from DOE under Grant No. DE-FG02-08ER46541.

1R. J. Schoelkopf, P. Wahlgren, A. A. Kozhevnikov, P. Delsing, and
D. E. Prober, Science 280, 1238 (1998).
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