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Strongly anisotropic Dirac quasiparticles in irradiated graphene
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We study quasiparticle dynamics in graphene exposed to a linearly polarized electromagnetic wave of very
large intensity. We demonstrate that low-energy transport in such system can be described by an effective
time-independent Hamiltonian, characterized by multiple Dirac points in the first Brillouin zone. Around each
Dirac point the spectrum is anisotropic: the velocity along the polarization of the radiation significantly exceeds
the velocity in the perpendicular direction. Moreover, in some of the points the transverse velocity oscillates as
a function of the radiation intensity. We find that the conductance of a graphene p-n junction in the regime of
strong irradiation depends on the polarization as G(θ ) ∝ | sin θ |3/2, where θ is the angle between the polarization
and the p-n interface, and oscillates as a function of the radiation intensity.
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Introduction. Exposing conducting materials to strong
monochromatic radiation may reveal many fundamental ef-
fects in their optical and transport properties. For instance,
external radiation has been predicted to open dynamical gaps
in the quasiparticle spectra in clean semiconductors,1 turning
conducting materials into insulators,2 strongly changing the
coefficient of light absorption,3 and leading to interfer-
ence transport phenomena in the presence of a coordinate-
dependent potential.4 Another fascinating example is the
radiation-induced Hall effect5 occurring in the case of a
circularly polarized electromagnetic wave.

Although it is now more than 40 years since radiation-
induced dynamical gaps were predicted,1 their manifestations
have never been detected in transport phenomena, yet spec-
troscopic observations of the dynamical gaps are very few.6,7

Since interactions and disorder in realistic materials obscure
coherent radiation-induced effects, it requires enormous radi-
ation intensities to observe modifications of the quasiparticle
spectra by radiation.

The strength of the resonant interaction between the charge
carriers and electromagnetic field can be characterized by the
parameter α(ω) = |e|Ev/ω2 ≡ �/ω, where E is the ampli-
tude of the field, v is the characteristic charge carrier velocity, ω
is the frequency of the field, and � is the value of the dynamical
gap in the absence of disorder and interactions, � = 1. For
the resonant interaction in a conventional semiconductor,
the maximum value of α for a given radiation intensity is
determined by the minimal possible frequency, i.e., by the
width of the band gap. In fact, until recently, attainable light
intensities would allow one to access only the weak-interaction
regime, α(ω) � 1, corresponding to a weak modification of
the charge carrier spectra, except maybe for a very small
vicinity of the dynamical gaps.

The situation might have changed recently with the advent
of new semiconductors without band gaps: graphene and the
surfaces of topological insulators in higher dimensions can
be treated as semiconductors with touching conduction and
valence bands, quasiparticle dynamics being described by
effective Dirac equations near the respective points (Dirac

points). The absence of the gap between the conduction
and the valence bands allows one to access the regime of
strong interaction [α(ω) � 1] between the charge carriers and
external electromagnetic field by applying radiation of very
low frequency ω rather than by using large radiation intensities.

How would such interaction affect the charge carrier
dynamics? Does it have any observable manifestations for re-
alistic strengths of disorder and electron-electron interactions?

In this Rapid Communication, we study quasiparticle
dynamics in graphene subject to a strong linearly polarized
electromagnetic field. We demonstrate that low-energy trans-
port in such system can be described using an effective time-
independent Hamiltonian, characterized by multiple Dirac
points in the first Brillouin zone. Since the quasiparticle
spectrum strongly depends on the electromagnetic field, which
is polarized along a certain direction, the spectrum around
each Dirac point turns out to be anisotropic: the quasiparticle
velocity along the field significantly exceeds the transverse
velocity. Moreover, in some of the points the transverse
velocity oscillates as a function of the radiation intensity. Such
modifications of the spectrum would manifest themselves in
quasiparticle transmission through graphene-based junctions.
For instance, we demonstrate that the conductance of a
graphene p-n junction depends on angle θ between the p-n
interface and the polarization of the field as

G ∝ | sin θ |3/2, (1)

for sufficiently large angles, θ � ω/�, where ω/� =
α−1 � 1.

Let us emphasize that the previous studies8–10 of dynamical
gaps generated by linearly polarized radiation addressed the
regime of weak irradiation, � � ω, opposite to the limit con-
sidered in this Rapid Communication. At weak radiation the
Floquet spectrum is almost unaltered by the electromagnetic
field away from the dynamical gaps. In contrast, we show that
in the strong radiation limit there are multiple Dirac points in
the first Brillouin zone, and the spectrum is highly anisotropic
around each of them.
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The Hamiltonian of long-wave quasiparticles in graphene
in a single valley subject to external electromagnetic radiation
reads

Ĥ = vσ̂
[
p̂ − e

c
A(t)

]
+ U (r), (2)

where p̂ is the quasiparticle momentum operator, σ̂ is the
pseudospin operator, the vector of Pauli matrices in the
subspace of the two sublattices in graphene, and U (r) is the
electrostatic potential. The electromagnetic field is accounted
for by its vector potential A(t).

Floquet spectrum. In what immediately follows we derive
effective quasiparticle spectra in a uniform potential U = 0.
We choose the coordinates in such a way that xz is the graphene
plane, and the electromagnetic field is directed along the z axis.
The gauge potential can be chosen as Ax = Ay = 0 and Az =
−cEω−1 sin(ωt). The momentum p is then a good quantum
number due to the translational invariance of the Hamiltonian,
which can be rewritten as

Ĥ = σ̂z [vpz − � sin(ωt)] + vσ̂xpx, (3)

where � = |e|Ev/ω.
The condition of large radiation intensity implies � � ω.

Since the electromagnetic field affects most significantly
the quasiparticles with energies ε � �, below we consider
sufficiently small momenta, |vp| � �.

Except for a close vicinity of the moments t when
� sin(ωt) = vpz, the second term in the Hamiltonian (3) is
small, and the evolution of the quasiparticle wave function
is adiabatic. The respective diabatic states are close to the
eigenstates of the operator σ̂z: |↑〉, an electron moving along
the z axis, and |↓〉, an electron moving antiparallel to the
z axis. The Hamiltonian (3) is characterized by an avoided-
level crossing at � sin(ωt) = vpz. At the respective moments
of time, Landau-Zener tunneling occurs with probability

P = exp
[−πv2p2

x(�ω)−1
]
. (4)

Thus, the evolution of a quasiparticle wave function on
one period T = 2π/ω of the oscillating electromagnetic
field consists of two intervals of adiabatic evolution, (1)
at � sin(ωt) > vpz and (2) at � sin(ωt) < vpz, interrupted
by Landau-Zener transitions when � sin(ωt) ≈ vpz, Fig. 1.
For a given momentum p, such regime of evolution in
the pseudospin space describes the so-called Landau–Zener
interferometry,11–13 observed previously in superconducting
qubits.12,14–17

FIG. 1. (Color online) Stages of evolution of the quasiparticle
wave function. Landau-Zener tunneling between states |↑〉 and |↓〉
occurs at times a, b, and c. Between these moments the evolution is
adiabatic.

For a given momentum p, the transformation of the wave
functions as a result of the adiabatic evolution is described by
the transfer matrices

R̂1,2(p) =
(

e−iθ1,2 0

0 eiθ1,2

)
(5)

for intervals (1) and (2), respectively, in the basis |↑〉 and
|↓〉 in the pseudospin space. In Eq. (5) we have introduced
the dynamical phases accumulated on the respective time
intervals:

θ1,2(p) = ±
∫ (π∓β)ω−1

±βω−1

{
[� sin(ωt) − vpz]

2 + p2
xv

2} 1
2 dt,

(6a)

β = arcsin(pzv/�). (6b)

The exact values of the dynamical phases are calculated in the
Supplemental Material.18

The transfer matrices which describe Landau-Zener transi-
tions in the end of intervals (1) and (2) read respectively

L̂1,2(p) =
( √

P ∓√
1 − Pe−iφS

±√
1 − PeiφS

√
P

)
, (7)

where φS = π/4 − p2
xv

2(2�ω)−1 ln[p2
xv

2(2e�ω)−1] +
arg �[ip2

xv
2(2�ω)−1] is the so-called Stokes phase.19

The evolution of the quasiparticle wave function on the
period T = 2π/ω of the oscillating field is determined by the
operator

Ŵ(p) = R̂1(p)L̂1(p)R̂2(p)L̂2(p). (8)

According to the Floquet theorem,20 the general solution
of a Schrödinger equation i∂t = Ĥ(t) with a T -periodic
Hamiltonian can be represented in the form (t) = e−iεt�(t),
where �(t) is a T -periodic function, and ε is the so-called
Floquet energy defined up to an integer of 2π/T = ω.

From Eqs. (5), (7), and (8) we find for the Floquet spectra
εp of Hamiltonian (3)

cos(εpT ) = P cos(θ1 + θ2) + (1 − P ) cos(θ2 − θ1). (9)

The spectra εp are plotted in Fig. 2. As we show below, the role
of the Floquet spectra for transport properties of an irradiated
sample are rather similar to those of the usual quasiparticle
spectra in a conductor not subject to any time-dependent
perturbations.

Anisotropic Dirac spectrum. The obtained Floquet spec-
trum has multiple Dirac points, Fig. 3 (at εp = 0), separated
from one another by the characteristic momentum scale ω/v

along the z axis and
√

ω�/v along the x axis. For low
frequencies ω, considered in this Rapid Communication, the
number of Dirac points in the first Brillouin zone is large.
There are two types of such points: at px = 0 and at px �= 0.

In the former case P = 1, and the locations of the
Dirac points are determined by the condition θ1 + θ2 ≡
−2πvpz/ω = 2πn; n = 0,1,2, . . . . From Eqs. (9) and (6a)
we find the anisotropic Dirac spectrum close to the nth Dirac
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FIG. 2. (Color online) Floquet spectra of quasiparticles in
strongly irradiated graphene.

point at small momenta |p| � �/v:

εp,n = ± [
(vpz − nω)2 + v2

xp
2
x

] 1
2 , (10a)

vx ≈ ωv(π�)−1 |sin(2�/ω)| . (10b)

Thus, quasiparticles have a strongly anisotropic spectrum
near the Dirac points under consideration; the velocity vx

perpendicular to the field is significantly exceeded by the
longitudinal velocity v and oscillates as a function of the
radiation intensity S = cω2(8πe2v2)−1�2.

For px �= 0, the locations of the Dirac points are de-
termined by the conditions θ1 ± θ2 = 0 modulo 2π . From
Eqs. (6a), (6b), and (9) we find the anisotropic Dirac spectrum
near a Dirac point located at momenta |pz| � �/v and
0 < |px | � �/v:

ε2
p = (vzzδpz + vzxδpx)2 + (vxzδpz + vxxδpx)2, (11a)

vzz = Pv, (11b)

vzx = −2(1 − P )pxv
2(π�)−1 ln(�/|vpx |), (11c)

vxx = −2[P (1 − P )]
1
2 pxv

2(π�)−1 ln(�/|vpx |), (11d)

vxz = −[P (1 − P )]
1
2 v, (11e)

FIG. 3. (Color online) The locations of the Dirac points in the
Floquet spectrum.

where δpx and δpz are the deviations of the momenta px and
pz from their values at the Dirac point. The spectrum (11a) is
also anisotropic; the velocities vzz and vxz, which characterize
motion along the z axis, significantly exceed the velocities vxx

and vzx , characterizing the transverse motion. Unlike the case
of px = 0, the velocities do not oscillate as a function of the
radiation intensity.

Effective Hamiltonian. Let us demonstrate that quasiparti-
cle dynamics close to the Dirac points can be described by
an effective time-independent Dirac Hamiltonian. Indeed, on
one period T , the evolution operator of a quasiparticle wave
function can be represented as

ŴT (p) = e−iT Ĥeff (p), (12)

where the eigenvalues of the effective time-independent
Hamiltonian Ĥeff(p) are given (up to an integer number of
ω) by the Floquet spectrum εp.

To describe quasiparticle transport in a smooth coordinate-
dependent potential U (r) it is sufficient to consider the
wave packet evolution in discrete time with interval T . If
the gradient F of the potential is sufficiently small, so that
the characteristic momentum ω/v of the spectrum exceeds the
momentum change Fω−1 during the time T , the evolution
is equivalent to that for a time-independent problem with
Hamiltonian Ĥeff(p) + U (r). A detailed justification of the
effective-Hamiltonian method is presented in the Supplemen-
tal Material.18

In principle, such approach can be used to analyze transport
of quasiparticles with an arbitrary effective Hamiltonian Ĥeff

of the kinetic energy, provided the potential is sufficiently
smooth. In this Rapid Communication, we consider quasipar-
ticle dynamics close to the Dirac points, so that the eigenvalues
of Ĥeff(p) can be chosen small, |εp| � ω, corresponding to
a small change of quasiparticle wave functions during one
period, ŴT (p) ≈ 1 − iT Ĥeff(p). Near the Dirac points with
px = 0 we find from Eqs. (5)–(8)

Ĥeff(p) = vδpzσ̂z + vxδpxσ̂x, (13)

where δpx and δpz are the momentum deviations from the
Dirac points along the axes x and z, respectively, and the
renormalized transverse velocity vx is defined by Eq. (10b).

Near the other Dirac points, at px �= 0,

Ĥeff(p) = (vzzδpz + vzxδpx)σ̂z + (vxxδpx + vxzδpz)σ̂x,

(14)
where the velocities vzz, vzx , vxz, and vxx are defined by
Eqs. (11b)–(11e).

Transmission through potential barriers. In a smooth
coordinate-dependent potential U (r) the quasiparticle motion
is quasiclassical, except for a small vicinity of the classical
turning points, where ε = U (r). To find the transmission
coefficient near such turning point one can approximate the
potential by a linear function U (r) ≈ ε + Fr, where F is the
gradient of the potential.

The component p⊥ of the momentum, perpendicular to F,
is conserved. Representing the Hamiltonian near a Dirac point
as Ĥeff = (v‖σ )δp‖ + (v⊥σ )δp⊥ and using the coordinate
operator r = i∂δp, we arrive at the Schrödinger equation for
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FIG. 4. (Color online) Irradiated graphene junction.

the quasiparticle motion near the turning point in the form[
(v‖σ )δp‖ + (v⊥σ )δp⊥ + iF ∂δp‖

]
 = 0. (15)

Equation (15) describes Landau-Zener tunneling in momen-
tum space, similarly to that for the usual isotropic Dirac
spectrum in graphene.21–23

After some algebra (see Supplemental Material18 for
details), we find the transmission coefficient of a quasiparticle
with an anisotropic Dirac Hamiltonian (14) through a potential
barrier with slope F :

T (δp⊥) = exp

[
− πδp2

⊥
∣∣vxxvzz − vxzvzx |2

F
∣∣v2

xx cos2 θ + (
v2

xz + v2
zz

)
sin2 θ

∣∣3/2

]
,

(16)

where θ is the angle between the light polarization and the
transverse direction, Fig. 4. The transverse momentum δp⊥ is
counted from the Dirac point.

The transmission coefficient, Eq. (16), describes quasi-
particle penetration through the potential barrier near the
Dirac points at px = 0, as well as those at px �= 0, because
the effective Hamiltonian in both cases has the form of
Eq. (14), which we used to derive Eq. (16). The case of
px = 0 corresponds to vzz = v, vxx = vx , and vxz = vxz = 0;
see Eq. (10b).

Quasiparticles penetrate through a potential barrier with-
out reflection in the case of a normal incidence (Klein
paradox); T (δp⊥ = 0) = 1, similarly to isotropic-spectrum
Dirac fermions.21 The transmission coefficient decreases
with increasing δp⊥. For angles |θ | � (|pxv|/�) ln(�/|pxv|),
ln T ∝ −δp2

⊥| sin θ |−3.
The quasiparticle velocity is strongly suppressed in the

direction perpendicular to the electric field, so if its polarization
is perpendicular to the potential barrier, θ → 0, quasiparticles
move towards the barrier with very low speeds, and the
transmission is suppressed.

Conductance. Let us consider the conductance of a strongly
irradiated ballistic p-n junction, Fig. 4. We assume that the
entire system, including the leads, is exposed to the radiation,
θ being the angle between the the p-n interface and the electric
field (the z axis).

In the framework of the effective-Hamiltonian description,
the statistics of electrons sufficiently far on the left and on the
right from the interface can be characterized by distribution
functions fL[ε(p)] and fR[ε(p)], which coincide with each
other in the absence of an external bias voltage applied to
the junction. The exact form of each distribution function
depends on the details of the relaxation and the interaction

of quasiparticles with radiation far from the interface or in
the electrodes. As we show below, the conductance does not
depend on the form of the distribution functions; we require
only that fR,L vanish at sufficiently high energies and saturate
to unity at sufficiently low energies.

In fact, fL[ε(p)] and fR[ε(p)] are given by the Fermi
distribution function fF [ε(p)] if electrons far from the interface
are being equilibrated by a bath of excitations, e.g., phonons,
with a temperature sufficiently smaller than the frequency
ω, which corresponds to realistic temperatures and to the
required frequencies, as we estimate below. Indeed, in that
case the phonon degrees of freedom are slow compared to
the electromagnetic field and can be included in the effective
Hamiltonian, which would correspond then to a nondriven
electronic system equilibrated by a phonon bath.

The current through the junction reads8

I = 2eW

∫
dp

(2π )2

∂ε

∂p‖
T (p⊥) {fL[ε(p)] − fR[ε(p)]} , (17)

where W is the width of the graphene strip and ∂ε/∂p‖ is the
longitudinal velocity far from the interface.

The transverse momentum p⊥ is conserved during the
motion and determines the transmission coefficient through
the junction, Eq. (16). Quasiparticles penetrate through the
potential barrier only if their transverse momenta are suffi-
ciently close to those at the Dirac points. In a smooth potential
barrier only the quasiparticles from narrow intervals ∝F 1/2

of the transverse momenta penetrate efficiently through the
barrier, allowing for an independent integration with respect
to the transverse momentum p⊥ in Eq. (17) around each Dirac
point ∫

T (δp⊥)dδp⊥ ∝ | sin θ | 3
2 , (18)

which describes the dependence G(θ ) of the conductance on
the angle at θ � ω/�; see Eq. (1).

Conductance oscillations. In general, each Dirac point
for p � �/v contributes to the conductance of the junction.
Provided the momentum p at a Dirac point is sufficiently
smaller than the characteristic quasiparticle momenta away
from the interface, the contribution of this point to the
conductance can be found straightforwardly from Eq. (17),
considering that in the presence of a small voltage V , applied
to the junction, fL(ε) = fR(ε − eV ):

G oneDirac
point

= We2

2π2

F
1
2 P

3
4 v

3
2 | sin θ | 3

2

|vxxvzz − vxzvzx | . (19)

While for the Dirac points at px �= 0 the conductance is a
smooth function of the radiation intensity, the conductance due
to the points at px = 0 oscillates as a function of the radiation
intensity S:

G0 = 2
1
2 |e|3WF

1
2 S

1
2 |v sin θ | 3

2

π
1
2 ω2c

1
2

∣∣∣∣∣ sin

[
4(2π )

1
2 |e|vS

1
2

ω2c
1
2

]∣∣∣∣∣
−1

.

(20)

As a result, the entire conductance of the junction oscillates
with the radiation intensity.
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Estimates. Let us summarize the conditions necessary for
the observation of the discussed effects. To ensure quantum
coherence on one period of the electromagnetic field and the
smoothness of the potential, the period has to be smaller than
the (elastic or inelastic) scattering time τ and the characteristic
time of the traversal of the potential barrier in the graphene
junction.

For a ballistic 300 nm junction, we obtain ω � 20 THz. The
regime of strong radiation intensity, � � ω, requires

S � c

8π

(
�ω2

|e|v
)2

≈ 40
kW

cm2
. (21)

The required radiation intensity grows rapidly with the
frequency and decreases with the junction length L, ∝ω4,L−4.

The period of conductance oscillations is of the order of
the minimal required radiation intensity. These oscillations,
being a consequence of single-particle interference on the

period of the electromagnetic field, do not involve interference
of different quasiparticle trajectories, unlike, e.g., the effects
studied in Refs. 4 and 24, and are insensitive to quenched
disorder under the above-specified conditions.
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