$\textbf{Meta-}$ insulator transition in antiferromagnetic $\textbf{Ba}_{1-x}\textbf{K}_x\textbf{Mn}_2\textbf{As}_2$ ($0 \leqslant x \leqslant 0.4$) single crystals **studied by 55Mn and 75As NMR**

S. Yeninas,¹ Abhishek Pandey,¹ V. Ogloblichev,² K. Mikhalev,² D. C. Johnston,¹ and Y. Furukawa¹

¹*Ames Laboratory, U.S. DOE, and Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011, USA* ²*Institute of Metal Physics, Ural Division of Russian Academy of Sciences, Ekaterinburg 620990, Russia*

(Received 21 October 2013; revised manuscript received 3 December 2013; published 23 December 2013)

The magnetic structure and metal-insulator transition in antiferromagnetic (AFM) $BaMn_2As_2$ and $Ba_{1-x}K_xM_{2}As_2$ single crystals have been investigated by ⁵⁵Mn and ⁷⁵As nuclear magnetic resonance (NMR) measurements. In the parent AFM insulator BaMn₂As₂ with a Néel temperature $T_N = 625$ K, we observed a ⁵⁵Mn zero-field NMR (ZFNMR) spectrum and confirmed the G-type AFM structure from the field dependence of the ⁵⁵Mn spectra and ⁷⁵As NMR spectra below T_N . In hole-doped crystals with $x > 0.01$, similar ⁵⁵Mn ZFNMR spectra were observed and the AFM state was revealed to be robust up to $x = 0.4$ with the ordered moment nearly independent of *x*. The nuclear spin-lattice relaxation rates $(1/T₁)$ for both nuclei in the doped samples follow the Korringa relation $T_1T = \text{const}$, indicating a metallic state. This confirms the coexistence of AFM ordered localized Mn spins and conduction carriers from a microscopic point of view. From the *x* dependence of $(T_1T)^{-1/2}$ for both nuclei, we conclude that this transition is caused by vanishing of the hole concentration as the transition is approached from the metallic side.

DOI: [10.1103/PhysRevB.88.241111](http://dx.doi.org/10.1103/PhysRevB.88.241111) PACS number(s): 74*.*70*.*Xa*,* 76*.*60*.*−k*,* 75*.*25*.*−j*,* 71*.*30*.*+h

In recent years the large family of BaM_2As_2 ($M =$ transition metal) compounds has been the subject of intensive research $1-3$ after the discovery of superconductivity in carrierdoped $BaFe₂As₂$.^{[4](#page-3-0)} Among them, $BaMn₂As₂$ has been highlighted recently, which exhibits an antiferromagnetic (AFM) insulating ground state^{[1,3,5,6](#page-3-0)} and a metal-insulator transition by carrier doping^{7,8} or by application of pressure.⁹ The magnetic properties of the parent compound $BaMn₂As₂$ with a ThCr₂Si₂-type structure are characterized as a G-type local moment AFM with a high Néel temperature $T_N = 625(1)$ K and local ordered moment $\langle \mu \rangle = 3.88(4) \mu_B/Mn$ at 10 K.^{[5](#page-3-0)} The moments arise from Mn^{2+} ions $(3d^5)$ with spin $S = 5/2$. The compound is a small-band-gap insulator with an energy gap $E_{\text{gap}} \sim 0.05 \text{ eV}$ and with a zero electronic linear heat capacity coefficient *γ* . [3,5,6](#page-3-0)

Hole doping by substitution of K for Ba results in metallic Ba_{1−*x*}K_{*x*}Mn₂As₂ with the same ThCr₂S_{i₂ crystal structure and} AFM ground state.^{[7,8](#page-4-0)} This behavior is observed for *x* as low as 1.6%.[7](#page-4-0) The magnitude of the ordered Mn moment has been demonstrated from neutron diffraction $(ND)^{10}$ $(ND)^{10}$ $(ND)^{10}$ measurements to be nearly independent of x , and T_N decreases slightly with *x* from $T_N = 625$ K at $x = 0$ to 480 K at $x = 0.4$. Recent studies of single crystals report a ferromagnetic (FM) moment which coexists with the AFM local Mn moment. $8,11$ The FM arises below 100 K for $x \ge 0.16$ with a low temperature (*T*) ordered moment that increases to $\approx 0.4 \mu_B/f.u.$ at $x = 0.4$, attributed to half-metallic itinerant FM of the doped holes with the ordered moments aligned in the ab -plane.^{[11](#page-4-0)} A simple scenario of canting of the Mn ordered moment as the origin of the FM was ruled out from 75As NMR and *H*-dependent ND measurements.¹¹

In this Rapid Communication, we report ⁵⁵Mn and ⁷⁵As nuclear magnetic resonance (NMR) measurements to investigate the magnetic structure and metal-insulator transition in single crystals of $Ba_{1-x}K_xMn_2As_2$ ($0 \le x \le 0.4$) from a microscopic point of view. Measurements of the NMR spectrum and the nuclear spin-lattice relaxation rate $(1/T_1)$ provide important insight into the local spin state and conduction hole density of states at atomic sites, and into electron correlations in the system. The ⁷⁵As NMR spectrum and *T* dependence of $1/T_1$ in a powder sample of BaMn₂As₂ have been reported previously.⁶ We will not focus on the FM observed in heavily K-doped $BaMn₂As₂$ in this Rapid Communication. The detailed studies of FM in a $x = 0.4$ compound using magnetization, ND, and NMR have been reported recently.¹¹

Single crystals of Ba_{1−*x*}K_{*x*}Mn₂As₂ were synthesized by a solution growth technique either by using Sn or MnAs flux.^{[7,11](#page-4-0)} NMR measurements of ⁵⁵Mn ($I = \frac{5}{2}$; $\frac{y_N}{2\pi} = 10.5000 \text{ MHz/T}$) and ⁷⁵As ($I = \frac{3}{2}$; $\frac{y_N}{2\pi} = 7.2919 \text{ MHz/T}$) nuclei were conducted using a homemade phase-coherent spin-echo pulse spectrometer. The 75As NMR spectra were obtained by sweeping the magnetic field while ⁵⁵Mn NMR spectra in zero field and magnetic fields were measured in steps of frequency by either measuring the intensity of the Hahn spin echo or taking the Fourier transform of the echo signal. The pulse conditions were optimized for maximum echo intensity for each frequency point in the NMR spectra. The $1/T_1$ data were obtained using a conventional single saturation pulse method at the central transition. The $1/T_1$ at each *T* is determined by fitting the nuclear magnetization *M* versus time *t* using the multiexponential functions $1 - M(t)/M(\infty) =$ $0.029e^{-t/T_1} + 0.18e^{-6t/T_1} + 0.79e^{-15t/T_1}$ for ⁵⁵Mn and 1 − $M(t)/M(\infty) = 0.1e^{-t/T_1} + 0.9e^{-6t/T_1}$ for ⁷⁵As,¹² where $M(t)$ and $M(\infty)$ are the nuclear magnetization at time *t* after the saturation and the equilibrium nuclear magnetization at $t \rightarrow \infty$, respectively.

At the bottom of Fig. $1(a)$ the ⁵⁵Mn NMR spectrum in the AFM state for $BaMn₂As₂$ is shown, measured in zero magnetic field at a temperature $T = 4.2$ K. Five sharp lines were observed, which are characteristics of a nuclear spin $I = 5/2$ with Zeeman and quadrupole interactions. The sharpness of each line indicates a high quality of the single crystal. The peak positions for the observed spectrum are well fitted by

FIG. 1. (Color online) (a) ⁵⁵Mn NMR spectra at $T = 4.2$ K in the AFM state for $BaMn₂As₂$ in zero magnetic field (bottom), under magnetic field $H = 1$ T parallel to the *c* axis (middle) and perpendicular to the *c* axis (top). Arrows shown at the bottom are the calculated positions of the 55 Mn NMR lines in zero magnetic field. (b) Temperature dependence of the resonance frequency (f_c) for the central transition line under zero magnetic field. The solid line shows the T dependence of f_c calculated by molecular field theory (Ref. [6\)](#page-3-0) with $S = 5/2$ and $T_N = 625$ K. (c) External magnetic field *H* dependences of f_c under *H* parallel (open circles) and perpendicular (solid circles) to the *c* axis at $T = 4.2$ K.

a second order perturbation calculation with a large internal magnetic induction *B*int and a small quadrupole frequency *ν*Q. The vertical arrows shown in the figure are the calculated position for 55Mn zero-field NMR (ZFNMR) lines using the parameters $|B_{int}| = 23.05(1)$ T, $v_Q = 2.426(1)$ MHz, and $\theta = 0$. Here θ represents the angle between B_{int} and the principle axis of the electric field gradient (EFG) tensor at the Mn sites. Since B_{int} is parallel to the *c* axis, as will be shown below, the principle axis of the EFG is found to be along the *c* axis, which is similar to the case of the Co nucleus in Ba(Fe_{1−*x*}Co_{*x*})₂As₂ with the same crystal structure.^{[13](#page-4-0)}

 B_{int} is proportional to $A_{\text{hf}}(\mu)$, where A_{hf} is the hyperfine coupling constant and $\langle \mu \rangle$ is the ordered Mn magnetic moment. The hyperfine field at the Mn sites mainly originates from core polarization from 3*d* electrons and is oriented in a direction opposite to that of the Mn moment. For $|B_{int}| = 23.05$ T and the reported AFM ordered moment $\langle \mu \rangle = 3.88(4) \mu_B/Mn$ from ND,^{[5](#page-3-0)} *A*_{hf} is estimated to be −5.94 T/ μ _B, where the sign is reasonably assumed to be negative due to the core-polarization mechanism. This A_{hf} value for Mn^{2+} ions is lower than the previously reported values ranging from $A_{hf} = -9.1$ T/ μ_B in Mn-doped ZnS to $A_{hf} = -13 \text{ T}/\mu_B$ in Mn-doped KMgF₃.^{[14](#page-4-0)} The difference may be explained by an additional transferred hyperfine contribution from the four nearest-neighbor Mn ions, suggesting a large hybridization of Mn 3*d* and As 4*p* orbitals.

The *T* dependence of the resonance frequency (f_c) for the ⁵⁵Mn spectrum central transition line ($I_z = \frac{1}{2} \leftrightarrow -\frac{1}{2}$) shows only a slight decrease in frequency from $\bar{f}_c = 242.0 \text{ MHz}$ at 4 K to 197.8 MHz at 420 K, as shown in Fig. $1(b)$. This

S. YENINAS *et al.* PHYSICAL REVIEW B **88**, 241111(R) (2013)

indicates that $\langle \mu \rangle$ decreases by ~18% from 4 to 420 K. The *T* dependence of f_c is similar to the *T* dependence of $\langle \mu \rangle$ calculated with molecular field theory⁶ for $S = 5/2$ and $T_N =$ 625 K, as shown by the solid line.

In order to determine the direction of B_{int} with respect to the crystal axes, we measured 55 Mn NMR in a single crystal under an external magnetic field *H*. When *H* is applied along the *c* axis, each line splits into two lines, as shown in the middle panel of Fig. $1(a)$. The *H* dependence of f_c is shown in Fig. $1(c)$ and the slopes of the field dependence of f_c for both lines are $\pm 10.5 \text{ MHz/T}$, which is exactly the same as $\frac{\gamma_N}{2\pi}$ of the 55Mn nucleus. Since the effective field at the Mn site is given by the vector sum of B_{int} and H , i.e., $|B_{\text{eff}}|=|B_{\text{int}} + H|$, the resonance frequency is expressed as $f = \frac{\gamma_N}{2\pi} |\vec{B}_{\text{eff}}|$. Thus the *H* dependence of the spectra clearly indicates that the Mn magnetic moments for each of the two sublattices in the AFM state are parallel or antiparallel to the *c* axis.

In the case of *H* applied perpendicular to the *c* axis, no splitting of the ⁵⁵Mn NMR lines is observed [see the top panel in Fig. $1(a)$]. In this orientation the applied field is orthogonal to the ordered Mn moments and thus to B_{int} , so one expects $f = \frac{y_N}{2\pi} \sqrt{B_{\text{int}}^2 + H^2}$. For our applied field range, $B_{\text{int}} \gg H$, any shift in the resonance frequency would be small, which is observed as shown by solid circles in Fig. $1(c)$. These results are consistent with the G-type AFM spin structure reported from ND measurements with the ordered moments aligned along the *c* axis. The observed broadening of each line is likely caused by a small misalignment between the *H* and the *ab* plane, which introduces a small component of the external magnetic field along the *c* axis. From the observed broadness, the misalignment is estimated to be \sim 3°.
⁵⁵Mn ZFNMR spectra for K-doped crystals show an

increase of the linewidths and a shift to lower frequency upon increasing *x*, as shown in Fig. $2(a)$. The broadening of the lines

FIG. 2. (Color online) (a) 55Mn zero-field NMR spectra in Ba_{1−*x*}K_{*x*}Mn₂As₂ at $T = 5$ K. Inset: *x* dependence of f_c at $T = 5$ K. (b) Field-swept ⁷⁵As NMR spectra in $Ba_{1-x}K_xMn_2As_2$. For $x = 0$, the spectrum was measured at $f = 54.7$ MHz at $T = 75$ K. For $x \ge 0.04$, the spectra were measured at $f = 50.8$ MHz with *H* parallel to the *c* axis. The horizontal axis is shifted by the corresponding Lamor field H_0 .

is attributed to an increased internal field distribution due to Mn moment distribution and an increased v_O distribution due to local lattice distortion as a result of K doping. While five lines are observed for $x = 0.04$, the linewidths for $x \ge 0.10$ become too large to observe distinct quadrupole-split lines. For $x \ge 0.17$, an enhancement of the exciting radio-frequency field H_1 , characteristic of bulk ferromagnetic substances, 15 is observed at $T = 5$ K and is estimated to be ∼60. This indicates the coexistence of FM ordering with the G-type AFM structure in Ba_{1−*x*}K_{*x*}Mn₂As₂ for *x* \geq 0.17, consistent with recent studies. $8,11$

Secondary broad NMR signals around 200 MHz for intermediate concentrations $x = 0.17$ and 0.21 were observed as shown in Fig. $2(a)$, whose origin is not clear at present. A possible origin is 75As NMR from a FM MnAs impurity phase.[16](#page-4-0) If this signal indeed arises from MnAs, then one would expect a ⁵⁵Mn signal at 231 MHz $< f <$ 239 MHz from the impurity phase $16,17$ which would overlap with the intrinsic signal. Therefore, since the signal intensity from the impurity seems to be relatively large for $x = 0.17$, we use our ⁵⁵Mn NMR data for $x = 0.17$ only for reference.

The inset of Fig. $2(a)$ plots the center frequency f_c of the 55 Mn spectra as a function of *x*, where we determined *f*^c as the areal median of the experimental spectrum for $x \geq 0.1$. With increasing *x*, the spectrum slightly shifts to lower frequencies, indicating a decrease in the local hyperfine field. If one assumes the same hyperfine coupling constant *A*hf for the K-doped system as for the undoped compound, this indicates a decrease of only ∼8% in the average Mn ordered moment from $x = 0$ to $x = 0.4$. This would be consistent with results from ND, which report almost no change in the Mn moment from $\langle \mu \rangle = 3.88(4) \mu_B/Mn$ for $x = 0$ to $3.85(15)\mu_{\rm B}/\text{Mn}$ for $x = 0.4$.^{[10](#page-4-0)}

In order to investigate the Mn AFM structure in K-doped single crystals, we measured 55Mn NMR spectra under magnetic fields applied parallel to the *c* axis and to the *ab* plane as in the case of the undoped $BaMn₂As₂$. The observed field dependence of the 55Mn NMR spectra for the K-doped crystals was similar to $BaMn₂As₂$, which indicates the occurrence of the same AFM Mn spin structure in K-doped crystals. These results are consistent with the G-type AFM ordering in Ba_{1−*x*}K_{*x*}Mn₂As₂ from $x = 0$ to $x = 0.4$, as previously reported.^{[10](#page-4-0)}

Figure $2(b)$ shows field-swept ⁷⁵As NMR spectra for $Ba_{1-x}K_xMn_2As_2$ with $0.04 \le x \le 0.40$. Here, for comparison, we also show the previously reported 75 As NMR spectrum for $x = 0$, which shows a clear quadrupole splitting for $I =$ $3/2$ ^{[11](#page-4-0)} The quadrupole frequency $v_O = 2.01$ MHz of the ⁷⁵As nucleus is nearly *T* independent in our observed temperature range of $T = 4.2{\text -}300$ K. The central transition peak lies just below the unshifted Larmor field H_0 , which is denoted by the vertical dashed line, suggesting that the average internal field at the As sites is approximately zero. The zero internal field at the As sites in the AFM state is consistent with the G-type AFM ordering in $BaMn₂As₂$, as has been pointed out by 75 As NMR spectrum measurements on single crystal¹¹ and polycrystalline⁶ samples.

With K doping, the observed spectra shown in Fig. [2\(b\)](#page-1-0) become broad and the sharp quadrupole peaks are smeared out. The broadening increases with increasing *x* and the

FIG. 3. (Color online) (a) Temperature dependence of 55Mn 1*/T*¹ at $H = 0$ in $Ba_{1-x}K_xMn_2As_2$ ($0 \le x \le 0.40$). The dotted line shows $1/T_1 \propto T^{3.5}$ power-law behavior for $x = 0$ and solid lines represent the Korringa relation $(T_1T) = \text{const}$ for $x \ge 0.04$. Inset: *H* dependence of ⁵⁵Mn $1/T_1$ for $x = 0.4$ at $T = 4.2$ K with *H* parallel to the *c* axis. (b) Temperature dependence of 75 As $1/T_1$ at $H = 7.5$ T. Solid and open symbols are for $H||c$ axis and $H||ab$ plane, respectively. The dotted line shows $1/T_1 \propto T^3$ power-law behavior for $x = 0$ and the solid lines represent the Korringa relation $T_1T = \text{const.}$

signal intensity is reduced, requiring measurements be taken at low temperatures. Despite the broad spectra, the average internal field is approximately zero, as observed in the undoped system. The lack of any observed internal field at the ⁷⁵As site supports a local-moment G-type AFM ordering for K-doped compounds.^{[10](#page-4-0)}

We now discuss the dynamical properties of the electronic and magnetic states, based on $1/T_1$ data measured for ⁵⁵Mn and ⁷⁵As nuclei. Figures $3(a)$ and $3(b)$ show the *T* dependences of $1/T_1$ for ⁵⁵Mn in *H* = 0 and for ⁷⁵As in *H* = 7.5 T, respectively. In the latter figure, $1/T_1$ of ⁷⁵As measured with a *H*||*c* axis and *H*||*ab* plane are shown by solid and open symbols, respectively.

In the case of the Ba Mn_2As_2 , $1/T_1$ of both ⁵⁵Mn and ⁷⁵As shows a strong *T* dependence for $T > 40$ K, where $1/T_1$ shows $T^{3.5\pm0.3}$ and $T^{3.0\pm0.2}$ power-law behaviors (shown by the dotted lines in the figure) for 55 Mn and 75 As, respectively. This power-law *T* dependence for both $1/T_1$ measurements can be explained by a two-magnon Raman process as the main relaxation mechanism for an AFM insulating state when $T \gg \Delta$, where Δ is the anisotropy gap energy in the spin wave spectrum.¹⁸ The T^3 dependence of the ⁷⁵As $1/T_1$ in the AFM state in polycrystalline $BaMn₂As₂$ samples was previously reported.^{[6](#page-3-0)} The deviation from the power-law behavior for the 55 Mn $1/T_1$ below 40 K is likely due to relaxation associated with impurities.

In the hole-doped samples, $1/T_1$ of both ⁵⁵Mn and ⁷⁵As show a Korringa relation $(T_1T)^{-1}$ = const at low *T*, demonstrating direct evidence of conduction electrons at the Mn and As sites. This confirms that hole doping, even at our lowest observed concentration $x = 0.04$, results in a metallic ground state for the Ba_{1−*x*}K_{*x*}Mn₂As₂ system. The ⁵⁵Mn $1/T_1T$ is

FIG. 4. (Color online) (a) *x* dependence of $(T_1T)^{-1/2}$ for both 55 Mn and 75 As nuclei. (b) *x* dependence of ratio of $(T_1T)^{-1/2}$ for ⁵⁵Mn and ⁷⁵As nuclei.

nearly independent of *H* within our experimental uncertainty, as shown in the inset of Fig. $3(a)$.

The *T*-independent $1/T_1T$ can be expressed in terms of the density of states $D(E_F)$ at the Fermi level as^{[19](#page-4-0)} $(T_1T)^{-1}$ = $4\pi \gamma_N^2 \hbar k_B A_{\text{hf}}^2 \mathcal{D}^2(E_F)$, where k_B is Boltzmann's constant. As shown in Fig. 4(a), $(T_1T)^{-1/2}$ for both ⁵⁵Mn and ⁷⁵As nuclei increase with *x*, indicating an increase in the local $\mathcal{D}(E_F)$ at each atomic site upon increasing *x*. When plotted as a ratio of $(T_1T)^{-1/2}$ for ⁵⁵Mn and ⁷⁵As in Fig. 4(b), it is noticed that the ratio is almost constant over our range of *x* within our experimental uncertainty. This means that the ratio of $\mathcal{D}(E_F)$ at the Mn sites to $\mathcal{D}(E_F)$ at the As sites is independent of *x*, suggesting a rigidity of band structure upon K substitution. According to the band calculations with the rigid band model,^{[7](#page-4-0)} the total $\mathcal{D}(E_F)$ consists of 66(60)% Mn 3*d* and $28(30)\%$ As 4*p* bands for $x = 0.016(0.05)$ and the ratio of $\mathcal{D}(E_F)$ for the Mn and As bands is almost independent of *x*. Thus our $1/T_1$ data seem to be consistent with the band calculations.

Finally we discuss a plausible mechanism of the metalinsulator transition for the present system. Electrical conductivity is expressed as $\sigma = n_0 e^2 \tau / m^*$, where n_0 is the carrier density, m^* is effective carrier mass, and τ is relaxation time, therefore a transition from metal to insulator can be characterized by $n_0 \to 0$, $m^* \to \infty$, or $\tau \to 0$. In a typical case of strong correlated electron systems, for example, La_{1−*x*}Sr_{*x*}TiO₃ with a perovskite structure, the Mott insulator-metal transition is characterized by a divergent behavior of *m*[∗] due to strong electron correlation effects,[20](#page-4-0) where the *T* -independent $(T_1T)^{-1}$ of ^{47/49}Ti and ¹³⁹La show a significant enhancement as the transition is approached from the metallic side. 21 21 21 On the other hand, in the Ba_{1−*x*}K_{*x*}Mn₂As₂ system, the mechanism of the metal-insulator transition is evidently different. The decrease of $(T_1T)^{-1}$ for both ⁵⁵Mn and ⁷⁵As nuclei with decreasing *x* indicates that the local density of states at both

S. YENINAS *et al.* PHYSICAL REVIEW B **88**, 241111(R) (2013)

sites decreases with decreasing *x*. Thus we conclude that the transition from metal to insulator in the present system is characterized by the decrease of n_0 . The details of the carrier doping effects in $Ba_{1-x}K_xMn_2As_2$ are still an open question. $BaMn₂As₂$ is considered to be an AFM insulator where five electrons with parallel spins on Mn 3*d* orbitals are localized due to strong intra-atomic electron correlations. Thus one may expect to observe electron correlation effects in the metallic state near the boundary at the metal-insulator phase transition. However, we have not observed any clear sign of the effects of strong electron correlations near the phase boundary from the present $1/T_1T$ data. In contrast, the importance of the electron correlation effects has been pointed out in resistivity and specific heat measurements.⁷ Since $1/T_1$ measurements prove the dynamical properties of conduction electrons at the NMR frequency ($\omega \sim 10$ –500 MHz), which is contrast to the static measurements ($\omega \sim 0$) such as the resistivity and the specific heat measurements, the discrepancy may suggest that the effects of the electron correlations in $Ba_{1-x}K_xMn_2As_2$ depend on frequency of dynamical properties of the electrons and are enhanced at $\omega \sim 0$. We also observed a *H*₁ enhancement effect which supports recent studies for coexistence of AFM ordered Mn 3*d* moments and FM for $x \ge 0.16$ where the mechanism of the FM is not still clear. Further studies from both experimental and theoretical sides are required to understand the details of carrier doping effects in $Ba_{1-x}K_xMn_2As_2$ in which the FM ordering appears in samples with $x \ge 0.16^{8,11}$ $x \ge 0.16^{8,11}$ $x \ge 0.16^{8,11}$

In summary, we report 55 Mn and 75 As NMR results for insulating BaMn₂As₂ and hole-doped metallic Ba_{1−*x*}K_{*x*}Mn₂As₂ $(x = 0.04 - 0.4)$ single crystals. ⁵⁵Mn and ⁷⁵As NMR spectrum measurements confirm similar G-type local-moment AFM structures for both insulating and metallic states. ⁵⁵Mn spectra suggest that the local Mn ordered magnetic moments are robust and are almost independent of hole doping, consistent with the ND results. The *T* dependence of $1/T_1$ for ⁵⁵Mn and ⁷⁵As NMR confirms an insulating ground state for $BaMn_2As_2$ and metallic ground states in hole-doped Ba_{1−*x*}K_{*x*}Mn₂As₂ from a microscopic point of view, evidence of a metal-insulator transition in AFM $Ba_{1-x}K_xMn_2As_2$. The metal-insulator transition is revealed to be characterized by vanishing of the carrier (hole) concentration as the transition is approached from the metallic side.

This research was supported by the US Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering. Ames Laboratory is operated for the US Department of Energy by Iowa State University under Contract No. DE-AC02-07CH11358.

¹D. C. Johnston, [Adv. Phys.](http://dx.doi.org/10.1080/00018732.2010.513480) **[59](http://dx.doi.org/10.1080/00018732.2010.513480)**, [803](http://dx.doi.org/10.1080/00018732.2010.513480) [\(2010\)](http://dx.doi.org/10.1080/00018732.2010.513480).

²A. Hellmann, A. Lohken, A. Wurth, and A. Mewis, Z. Naturforsch. **62b**, 155 (2007).

³Y. Singh, A. Ellern, and D. C. Johnston, [Phys. Rev. B](http://dx.doi.org/10.1103/PhysRevB.79.094519) **[79](http://dx.doi.org/10.1103/PhysRevB.79.094519)**, [094519](http://dx.doi.org/10.1103/PhysRevB.79.094519) [\(2009\)](http://dx.doi.org/10.1103/PhysRevB.79.094519).

⁴M. Rotter, M. Tegel, and D. Johrendt, [Phys. Rev. Lett.](http://dx.doi.org/10.1103/PhysRevLett.101.107006) **[101](http://dx.doi.org/10.1103/PhysRevLett.101.107006)**, [107006](http://dx.doi.org/10.1103/PhysRevLett.101.107006) [\(2008\)](http://dx.doi.org/10.1103/PhysRevLett.101.107006).

⁵Y. Singh, M. A. Green, Q. Huang, A. Kreyssig, R. J. McQueeney, D. C. Johnston, and A. I. Goldman, [Phys. Rev. B](http://dx.doi.org/10.1103/PhysRevB.80.100403) **[80](http://dx.doi.org/10.1103/PhysRevB.80.100403)**, [100403\(](http://dx.doi.org/10.1103/PhysRevB.80.100403)R) [\(2009\)](http://dx.doi.org/10.1103/PhysRevB.80.100403).

⁶D. C. Johnston, R. J. McQueeney, B. Lake, A. Honecker, M. E. Zhitomirsky, R. Nath, Y. Furukawa, V. P. Antropov, and Y. Singh, [Phys. Rev. B](http://dx.doi.org/10.1103/PhysRevB.84.094445) **[84](http://dx.doi.org/10.1103/PhysRevB.84.094445)**, [094445](http://dx.doi.org/10.1103/PhysRevB.84.094445) [\(2011\)](http://dx.doi.org/10.1103/PhysRevB.84.094445).

- 7A. Pandey, R. S. Dhaka, J. Lamsal, Y. Lee, V. K. Anand, A. Kreyssig, T. W. Heitmann, R. J. McQueeney, A. I. Goldman, B. N. Harmon, A. Kaminski, and D. C. Johnston, [Phys. Rev. Lett.](http://dx.doi.org/10.1103/PhysRevLett.108.087005) **[108](http://dx.doi.org/10.1103/PhysRevLett.108.087005)**, [087005](http://dx.doi.org/10.1103/PhysRevLett.108.087005) [\(2012\)](http://dx.doi.org/10.1103/PhysRevLett.108.087005).
- 8J.-K. Bao, H. Jiang, Y.-L. Sun, W.-H. Jiao, C.-Y. Shen, H.-J. Guo, Y. Chen, C.-M. Feng, H.-Q. Yuan, Z.-A. Xu, G.-H. Cao, R. Sasaki,
- T. Tanaka, K. Matsubayashi, and Y. Uwatoko, [Phys. Rev. B](http://dx.doi.org/10.1103/PhysRevB.85.144523) **[85](http://dx.doi.org/10.1103/PhysRevB.85.144523)**, [144523](http://dx.doi.org/10.1103/PhysRevB.85.144523) [\(2012\)](http://dx.doi.org/10.1103/PhysRevB.85.144523).
- 9A. T. Satya, A. Mani, A. Arulraj, N. V. Chandra Shekar, K. Vinod, C. S. Sundar, and A. Bharathi, [Phys. Rev. B](http://dx.doi.org/10.1103/PhysRevB.84.180515) **[84](http://dx.doi.org/10.1103/PhysRevB.84.180515)**, [180515](http://dx.doi.org/10.1103/PhysRevB.84.180515) [\(2011\)](http://dx.doi.org/10.1103/PhysRevB.84.180515).
- 10J. Lamsal, G. S. Tucker, T. W. Heitmann, A. Kreyssig, A. Jesche, A. Pandey, W. Tian, R. J. McQueeney, D. C. Johnston, and A. I. Goldman, [Phys. Rev. B](http://dx.doi.org/10.1103/PhysRevB.87.144418) **[87](http://dx.doi.org/10.1103/PhysRevB.87.144418)**, [144418](http://dx.doi.org/10.1103/PhysRevB.87.144418) [\(2013\)](http://dx.doi.org/10.1103/PhysRevB.87.144418).
- ¹¹A. Pandey, B. G. Ueland, S. Yeninas, A. Kreyssig, A. Sapkota, Y. Zhao, J. S. Helton, J. W. Lynn, R. J. McQueeney, Y. Furukawa, A. I. Goldman, and D. C. Johnston, [Phys. Rev. Lett.](http://dx.doi.org/10.1103/PhysRevLett.111.047001) **[111](http://dx.doi.org/10.1103/PhysRevLett.111.047001)**, [047001](http://dx.doi.org/10.1103/PhysRevLett.111.047001) [\(2013\)](http://dx.doi.org/10.1103/PhysRevLett.111.047001).
- 12A. Narath, [Phys. Rev.](http://dx.doi.org/10.1103/PhysRev.162.320) **[162](http://dx.doi.org/10.1103/PhysRev.162.320)**, [320](http://dx.doi.org/10.1103/PhysRev.162.320) [\(1967\)](http://dx.doi.org/10.1103/PhysRev.162.320).
- 13F. L. Ning, K. Ahilan, T. Imai, A. S. Sefat, R. Jin, M. A. McGuire, B. C. Sales, and D. Mandrus, [Phys. Rev. B](http://dx.doi.org/10.1103/PhysRevB.79.140506) **[79](http://dx.doi.org/10.1103/PhysRevB.79.140506)**, [140506\(](http://dx.doi.org/10.1103/PhysRevB.79.140506)R) [\(2009\)](http://dx.doi.org/10.1103/PhysRevB.79.140506).
- 14A. J. Freeman and R. E. Watson, in *Magnetism*, edited by G. T. Rado and H. Shul (Academic, New York, 1965), Vol. II A, pp. 167–305.
- 15A. M. Portis and R. H. Lindquist, in Ref. 14, pp. 357–383.
- 16S. Pinjare and K. R. Rao, [J. Magn. Magn. Mater.](http://dx.doi.org/10.1016/0304-8853(82)90005-1) **[30](http://dx.doi.org/10.1016/0304-8853(82)90005-1)**, [27](http://dx.doi.org/10.1016/0304-8853(82)90005-1) [\(1982\)](http://dx.doi.org/10.1016/0304-8853(82)90005-1).
- 17T. Hihara, Y. Koi, and A. Tsujima, [J. Phys. Soc. Jpn.](http://dx.doi.org/10.1143/JPSJ.17.1320) **[17](http://dx.doi.org/10.1143/JPSJ.17.1320)**, [1320](http://dx.doi.org/10.1143/JPSJ.17.1320) [\(1962\)](http://dx.doi.org/10.1143/JPSJ.17.1320).
- 18D. Beeman and P. Pincus, [Phys. Rev.](http://dx.doi.org/10.1103/PhysRev.166.359) **[166](http://dx.doi.org/10.1103/PhysRev.166.359)**, [359](http://dx.doi.org/10.1103/PhysRev.166.359) [\(1968\)](http://dx.doi.org/10.1103/PhysRev.166.359).
- 19A. Narath, in *Hyperfine Interactions*, edited by A. J. Freeman and R. B. Frankel (Academic, New York, 1967), pp. 287–361.
- 20K. Kumagai, T. Suzuki, Y. Taguchi, Y. Okada, Y. Fujishima, and Y. Tokura, [Phys. Rev. B](http://dx.doi.org/10.1103/PhysRevB.48.7636) **[48](http://dx.doi.org/10.1103/PhysRevB.48.7636)**, [7636](http://dx.doi.org/10.1103/PhysRevB.48.7636) [\(1993\)](http://dx.doi.org/10.1103/PhysRevB.48.7636).
- 21Y. Furukawa, I. Okamura, K. Kumagai, T. Goto, T. Fukase, Y. Taguchi, and Y. Tokura, [Phys. Rev. B](http://dx.doi.org/10.1103/PhysRevB.59.10550) **[59](http://dx.doi.org/10.1103/PhysRevB.59.10550)**, [10550](http://dx.doi.org/10.1103/PhysRevB.59.10550) [\(1999\)](http://dx.doi.org/10.1103/PhysRevB.59.10550).