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Dynamical regimes of dissipative quantum systems
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We reveal several distinct regimes of the relaxation dynamics of a small quantum system coupled to an
environment within the plane of the dissipation strength and the reservoir temperature. This is achieved by
discriminating between coherent dynamics with damped oscillatory behavior on all time scales, partially coherent
behavior being nonmonotonic at intermediate times but monotonic at large ones, and purely monotonic incoherent
decay. Surprisingly, elevated temperature can render the system “more coherent” by inducing a transition from
the partially coherent to the coherent regime. This provides a refined view on the relaxation dynamics of open
quantum systems.
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When studying the relaxation dynamics of a small quantum
system coupled to a dissipative environment at low tempera-
tures T , one usually encounters coherent dynamics, which
is damped oscillatory at weak coupling and monotonic inco-
herent dynamics at stronger ones. The best studied example
comprising this generic physics is the Ohmic spin-boson model
(SBM).1,2 This model can be visualized by a spin- 1

2 degree of
freedom with tunneling between the up and down states as
well as coupling to a bosonic reservoir. Nonuniversal effects
that depend on the details of the reservoir band dominate
the behavior at short times t up to ω−1

c set by the inverse
band width. We are interested in the universal aspects and
exclusively consider the limit in which ωc is much larger
than any other energy scale of the problem (scaling limit).
It is well established that in the unbiased case (vanishing
Zeeman field) and for coupling 1

2 < α < 1 of the spin and the
reservoir, the expectation value P (t) = 〈σz(t)〉 monotonically
approaches zero, i.e., the dynamics is incoherent. At large t ,
it can be described by an exponentially decaying function,
possibly with subdominant corrections.3–7 In contrast, for
α � 1 and small T , P (t) is a damped oscillatory function
(coherent dynamics).1,2,6,8–10 Even at small α, raising T will
eventually drive the system into the incoherent regime.1,2,9–12

We show that the classification into coherent and incoherent
behavior—with the definition of “coherence” given above—
must be refined and provide a more detailed understanding
of the dynamics realized in the α-T plane by discriminating
between intermediate and long times.4,5 Our insights form an
improved basis for future studies on the relaxation dynamics
of dissipative quantum systems as investigated in condensed
matter physics, quantum optics, physical chemistry, and
quantum information science.1,2

Our results are summarized in Fig. 1 showing the extend
of the different regimes of distinct dynamical behavior in the
α-T plane. For 0 < 1

2 − α � 1 and sufficiently small T , we
find a regime in which P (t) is nonmonotonic (“oscillatory”)
on intermediate times, but monotonic on large ones. In the
following, we denote this the partially coherent regime. It
must be distinguished from the asymptotically coherent one
encountered at small α and T ,1,2,11,12 in which P (t) shows
damped oscillatory behavior on all time scales. We find a
transition line between the partially and the asymptotically

coherent regimes when raising T , which constitutes the central
result of our work. It implies that for 0 < 1

2 − α � 1, the
dynamics is more coherent at elevated temperatures than at low
ones, which is rather counterintuitive. At even larger T , P (t)
will eventually become purely monotonic and the dynamics is
incoherent. For 1

2 < α < 1, it is incoherent for all T .
At T = 0, the appearance of the partially coherent regime

in between the more standard asymptotically coherent and
incoherent ones can be shown analytically.3–5 For T > 0, our
numerical results for P (t) obtained by two complementary
renormalization group (RG) approaches—the real-time RG
(RTRG)13 and the functional RG (FRG)14—indicate the tran-
sition between the partially and the asymptotically coherent
regimes when increasing T . In Fig. 2, we show |P (t)| for
different T at fixed α close to 1

2 (see also the insets of Fig. 1). At
T = 0, one starts out in the partially coherent regime with P (t)
having a single zero (dip in a linear-logarithmic plot of |P (t)|).
Increasing T , more zeros appear signaling the transition to the
asymptotically coherent regime; next, the distance between
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FIG. 1. (Color online) Diagram showing the extend of the inco-
herent, asymptotically, and partially coherent sectors. The critical
temperatures Tc1 (lower branch) and Tc2 (upper branch) obtained
from the numerical solution of the RTRG equations (4) are shown
as circles; solid lines correspond to the approximations of Eqs. (7)
(lower) and (8) (upper). The insets exemplify the time evolution of
the spin expectation value P (t) in the different regimes for α = 0.45
and T/TK = 0.01 (partially coherent), 0.3 (asymptotically coherent),
0.59 (incoherent), with the Kondo scale TK.
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FIG. 2. (Color online) Time dependence of the spin expectation
value |P (t)| on a linear-logarithmic scale [(a) FRG, (b) RTRG].
Both approaches capture the transition from partially coherent to
asymptotically coherent to incoherent dynamics when raising T .

the zeros increases and eventually all of them disappear when
entering the incoherent one.

A more detailed understanding can be obtained from
studying the Laplace transform �1(E) = ∫ ∞

0 dt eiEtP (t) of
the spin expectation value in the lower half of the complex E

plane. This also allows to precisely determine the transition
temperatures. Our RTRG approach is set up in Liouville-
Laplace space4,5,7,15 and �1(E) can be accessed directly
through the numerical integration of the RG flow equations.
The relaxation dynamics is determined by the nonanalyticities
of the propagator �1(E) at zn ∈ C. Each yields a separate con-
tribution to P (t) of the form ∼exp (iznt), where the frequency
and decay rate are determined by Re zn and Im zn, respectively.
For branch cuts, the exponential decay is accompanied by
weakly t-dependent corrections.3–7 The nonanalyticity closest
to the real axis dominates the dynamics at large t . Figure 3
highlights the singularities and branch cuts (dark features) of
�1(E) for α = 0.45 and different T . For 0 < 1

2 − α � 1 and
T = 0, �1(E) has a pair of poles with nonvanishing real parts
of equal absolute value [damped oscillations of P (t)] as well as
a branch cut on the imaginary axis [monotonic decay of P (t)].
The distance of the start of the branch cut to the real axis is
smaller than the distance between the latter and the poles. Thus,
for large t , the branch cut term prevails giving rise to partially
coherent relaxation dynamics.4,5 For T > 0, the branch cut
disintegrates into singularities,11,12 as can be seen in Fig. 3(a).
Raising T these move down while the imaginary part of the
finite frequency poles barely changes, see Fig. 3(b). When
the top zero frequency singularity passes the level of the pole
pair Tc1(α) is reached and the system undergoes a transition
into the asymptotically coherent regime, see Fig. 3(c). Further
increasing T the oscillation frequency decreases as the pair
of poles starts to move inwards, while the singularities on the
imaginary axis continue to move down and leave the frame
shown in Fig. 3(d). The frequency vanishes when the pole pair
hits the imaginary axis at Tc2(α), indicating the transition from

FIG. 3. Nonanalytical features of the propagator �1(E) at cou-
pling α = 0.45. Density plots of |∂Im ERe �1 + ∂Re EIm �1| as a
function of the complex variable E are shown. Dashed horizontal
lines indicate the zero temperature decay rates for the poles TK and
branching point TK/2. Vertical ones indicate the frequency ±� of the
poles at T = 0 (� ≈ πgTK

3–5,16).

asymptotically coherent to incoherent dynamics, see Fig. 3(e).
At further increasing T , two singularities move in opposite
directions along the imaginary axis such that the one moving up
approaches the decay rate of α = 1

2 for T → ∞, see Fig. 3(f).
The Tc1/2 obtained by such an analysis varying T and α are
shown as circles in Fig. 1. The additional finite frequency
features (black circles with gray tails) visible in Figs. 3(b) and
3(c) are artifacts of our leading order (in 1

2 − α) approximation
(see below).

Model and setup. The unbiased SBM is given by the
Hamiltonian

H = −	

2
σx +

∑
k

ωkb
†
kbk −

∑
k

λk

2
σz(b

†
k + bk), (1)

with the Pauli matrices σν , ν = x,z, bosonic ladder operators
b

(†)
k , tunneling amplitude 	, reservoir dispersion ωk , and

coupling λk . The spin-boson coupling is characterized by a
spectral density J (ω) = ∑

k λ2
kδ(ω − ωk). Its ω dependence

is set by the details of the microscopic model underlying
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the SBM.1 We focus on the Ohmic case with J (ω) =
2αω
(ωc − ω), α � 0; ωc and 	 only enter in the combination
TK = 	(	/ωc)α/(1−α) defining the emergent Kondo scale.1,2

We prepare the system as the product of the spin-up state (in
z-direction) and the canonical density matrix (T > 0) for the
reservoir. At time t = 0, the coupling between the spin and the
bosons is switched on and the relaxation sets in. For α < 1, and
infinitely large times a steady state with limt→∞ P (t) = 0 is
reached. Here, we do not consider the quantum phase transition
to the localized regime with limt→∞ P (t) 
= 0 at α = 1.1,2 We
considered other initial density matrices and verified that the
classification of the dynamics is not affected by the particular
choice of the t = 0 state.

Investigating the most interesting regime | 1
2 − α| � 1 we

do not study the SBM but rather employ the mapping to
the interacting resonant level model (IRLM).1,2,5 Within the
IRLM, α = 1

2 corresponds to the noninteracting limit. Our RG
methods provide controlled access to the relaxation dynamics
around this exactly solvable point. For the FRG, this was
earlier shown for T � 0.17,18 In fact, the RG flow equations
for the one-particle irreducible vertex functions of Ref. 18
can directly be used to numerically compute P (t). For T = 0
RTRG equations were derived in Refs. 4 and 5.

RTRG for finite temperatures. We next discuss how to
extend the RTRG approach to T > 0 and describe the steps to
derive analytical expressions for Tc1/2(α). Readers interested
in results only can skip this part. In the RTRG approach, one
aims at the reduced density matrix of the spin.13,15 Integrating
out the reservoirs’ degrees of freedom at T > 0 leads to a
summation over Matsubara frequencies ωm = πT (2m + 1).
The RG equations for the relaxation rates �1/2 derived in
Refs. 4 and 5 for T = 0 thus change to

d�1/2(E)

dE
= ig�1(E) 2πT

∞∑
m=0

[�2/1(E + iωm)]2, (2)

�n(E) = i[E + i�n(E)/n]−1, n = 1,2, (3)

where g = 1 − 2α is the small parameter and the initial
conditions read �1/2(iωc) = 	2/ωc. To perform the Matsubara
sum to order g, we neglect the E dependence of �1/2 in �2/1,
which yields

d�1/2(E)

dE
= ig

�1(E)

2πT
ψ ′

[
1

2
+ 1

2πT �2/1(E)

]
, (4)

where ψ ′(z) is the trigamma function. This set of equations
was solved numerically to obtain Fig. 3 and, after an additional
(numerical) Laplace back transform, Fig. 2(b).

The right-hand side of the differential equation (4) contains
a series of second order poles, which after integration turn
into essential singularities of the propagator �1 at zn. They
result from the disintegration of the branch cut of �1(E)
found at T = 03–5 and are located on the imaginary axis11,12

[see Fig. 3(a)]; their mutual distance is 2πT [1 + O(g)].
Close to those singularities we find �1 ∝ e−g/(E−zn). The
finite frequency branch cuts (black circles with gray tails)
of Figs. 3(b) and 3(c) are artifacts of the lowest order
truncation. In the full diagrammatic series underlying the
RTRG approach,13 no integrals over the reservoirs excitation

frequencies appear for T > 0, but only summations over ωm.
Therefore branch cuts are excluded. The contributions of the
artificial nonanalyticities to P (t), however, are of order g2.
In addition, they are always located below the leading order
singularities and do not affect P (t) at long times.

We next present the steps to derive analytical approxima-
tions for Tc1/2(α) (curved lines in Fig. 1). Solving Eq. (4) for �1

to leading order in g one can neglect the weak E dependence
of �2 and finds

�1(E) = T̃Ke
−gψ

[
1
2 + −iE+�2(E)/2

2πT

]
, (5)

where T̃K = TK(2πT/TK)−g results from the high-energy
integration limit and ψ denotes the digamma function. The
positions of the nonanalyticities of �1(E) can now be
determined approximately using Eq. (5). The finite frequency
poles z± = ±� − i�∗

1 are the solutions of iz± = �1(z±),
where we can additionally set �2(E) ≈ �1(E). At T = 0, this
was reasoned to be a good approximation.4,5 It yields the self-
consistency equation �∗

2 = �2(z0) with z0 = −iπT − i�∗
2/2.

Approximating �2(E) by �∗
2 in Eq. (5) and using Eq. (4),

we obtain �∗
2 = 2πTg

∫ ∞
0 u(x)ψ ′[x + u(x) − �∗

2/4πT ]dx,
where u(x) = (TK/2πT )1−ge−gψ(x).

The first transition occurs at �∗
1 = �∗

2/2 + πTc1. For
decreasing α, Tc1(α) decreases and we replace the digamma
function in Eq. (5) by its low-temperature (2πT � TK) ex-
pansion ψ(x) ≈ log x (|x| � 1). Equation (5) then simplifies
to �1(E) = TK[(−iE + πT + �2(E)/2)/TK]−g , which is the
T = 0 result4,5 with a πT shift on the right-hand side. With
this the rates �∗

1/2 are to leading order given by the T = 0
expressions4,5

�
∗(0)
1

TK
= Im e

(iπ+ln 2) g

1+g ,
�

∗(0)
2

TK
= 2

[
πg

2 sin(πg)

] 1
1+g

. (6)

The second transition takes place if �∗
1 = �1(−i�∗

1 ) has a
single real valued solution �∗

1 (collapse of finite frequency
poles). For decreasing α, Tc2(α) increases, and we apply
ψ(x) ≈ −γ − 1/x (|x| � 1) for 2πT � TK in Eq. (5); γ

denotes the Euler constant. The critical temperatures Tc1/2(α)
resulting from these approximations are given in the next
section.

For α → 1
2 − 0+, where �∗

1/2 = TK , Tc1/2 can be calculated
without approximating the digamma function in Eq. (5). With
�∗

1 = �∗
2/2 + πTc1, we find Tc1( 1

2 ) = TK/(2π ). For Tc2( 1
2 ),

we aim at a single real valued solution of �1(−i�∗
1 ) = �∗

1 ,
which implies d�1(−i�∗

1 )/d�∗
1 = 1. Using Eq. (5) with

�1(E) ≈ �2(E) leads to d�1(−i�∗
1 )/d�∗

1 = g�∗
1ψ

′[(πT −
�∗

1/2)/(2πT )] = 4πT . For g → 0, this equation can only
be fulfilled for vanishing argument of the trigamma function,
which gives Tc2( 1

2 ) = TK/(2π ).
Results. The physics obtained from the numerical solution

of our RTRG and FRG17,18 flow equations—which both are
controlled for | 1

2 − α| � 1—was already discussed in the
introduction; we here add further details. The crucial element
of our reasoning is the analytical structure of the Laplace
transform �1(E) of the spin expectation value P (t) in the lower
half of the complex E plane. To single out the nonanalyticities
in Fig. 3, we use the Cauchy-Riemann relations and show
|∂ Im ERe �1(E) + ∂Re EIm �1(E)| as a function of E. If we
would be able to solve the RTRG equations analytically—or in
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the impractical limit of an infinitely dense grid in the numerical
solution—this expression would diverge at the singularities
and branch cuts and would be zero elsewhere. For a numerical
solution on a finite grid, it becomes a very efficient tool for
highlighting the areas in the vicinity of nonanalyticities. As
described above from plots of this type, Tc1/2 can be extracted.

At α = 1
2 , we find a “triple point” with Tc1( 1

2 ) = Tc2( 1
2 ) =

TK/(2π ) (for analytical results, see the last section). The
noninteracting blip approximation (NIBA)1,2 only captures
the transition line Tc2(α) to the incoherent regime. Within this
method one obtains limα→ 1

2 −0+ Tc2 = TK/π .11,12 In NIBA the
singularities of �1(E) located on the imaginary axis are treated
incorrectly. This implies that �∗

2/2 is absent in the equation
defining Tc2( 1

2 ), which can be linked to the missing factor 1
2 .

U. Weiss informed us that using improved NIBA3 at finite T

gives Tc2( 1
2 ) in agreement with our result.19

The approximate analytical solution of the RTRG equations
provides us with expressions for Tc1/2 also away from α = 1

2 .
We find

Tc1(α) = 1

π

[
�

∗(0)
1 − �

∗(0)
2 /2

]
, (7)

with �
∗(0)
1/2 of Eq. (6) and g = 1 − 2α (lower curved line

in Fig. 1). This yields a very good approximation to the
numerically obtained Tc1 (circles in Fig. 1) for 0.3 < α < 1

2 .
At the lower bound, Tc1 vanishes. We can thus estimate the
critical coupling separating the partially and asymptotically
coherent regimes at T = 0 by αc ≈ 0.3. Strictly speaking,
such α’s are beyond the regime | 1

2 − α| � 1 in which our
approximate RTRG and FRG equations (derived for the IRLM)
are controlled. However, the numerical solution of the T = 0
RTRG equations for the SBM at weak coupling α � 1,7

which is complementary to the present approach, confirms
the asymptotically to partially coherent transition and gives
αc ≈ 0.36. This indicates that our results can be trusted even
down to α ≈ 0.3 and that the exact αc is located close to this
value. The second transition temperature (upper curved line in
Fig. 1) can be approximated as

Tc2(α) = TK

2π
e

g(1+γ )+
√

2g+g2

1+g (1+g+
√

2g+g2)
1

1+g , (8)

where γ is the Euler constant. For α close to 1
2 (g � 1), this

simplifies to

Tc2(α) ≈ TK

2π

(
1 + 4

√
1

2
− α

)
. (9)

Summary. We investigated the relaxation dynamics of the
Ohmic spin-boson model—the prototype model of dissipative
quantum mechanics—as a function of temperature and dis-
sipation strength. We identified a regime in which the spin
expectation value is nonmonotonic at short to intermediate
times but monotonic at large ones, the partially coherent
regime. For spin-boson couplings 0.3 � α < 1

2 , the dynamics
for 0 � T < Tc1(α) is only partially coherent while for
Tc1(α) � T < Tc2(α), it is asymptotically coherent, that is
(damped) oscillations appear on all time scales. In contrast
to the general expectation that larger T will foster dissipation
and thus suppress coherence, we find that elevated temperature
enhances coherence. Only for T > Tc2(α) the system enters the
incoherent regime described earlier.11,12

We thank M. Pletyukhov, H. Schoeller, and U. Weiss for
discussions and the DFG for support (FOR 723).
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