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Nature of the phases in the frustrated XY model on the honeycomb lattice
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We study the phase diagram of the frustrated XY model on the honeycomb lattice by using accurate correlated
wave functions and variational Monte Carlo simulations. Our results suggest that a spin-liquid state is energetically
favorable in the region of intermediate frustration, intervening between two magnetically ordered phases. The
latter ones are represented by classically ordered states supplemented with a long-range Jastrow factor, which
includes relevant correlations and dramatically improves the description provided by the purely classical solution
of the model. The construction of the spin-liquid state is based on a decomposition of the underlying bosonic
particles in terms of spin-1/2 fermions (partons), with a Gutzwiller projection enforcing no single occupancy, as
well as a long-range Jastrow factor.
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A quantum spin liquid is an exotic state in which strong
quantum fluctuations (usually generated by frustration) pre-
clude ordering or freezing, even at zero temperature.1 De-
spite intensive theoretical and experimental research, finding
quantum spin liquids in materials and in realistic spin models
continues to be a challenge. A remarkable example where the
existence of such a state has been inferred is the spin-1/2
kagome-lattice Heisenberg antiferromagnet, which has been
extensively studied both theoretically and experimentally,1–3

even though the precise nature of the ground state of the
system is still under debate.3–6 Furthermore, recent studies7–10

have also analyzed exactly solvable Kagome lattice spin-liquid
models.

Another model that has recently received considerable
attention for its potential to realize spin-liquid states is the
spin-1/2 Heisenberg model on the honeycomb lattice, with
nearest-neighbor (NN) J1 and next-to-nearest neighbor (NNN)
J2 exchange interactions.11–20 This is in part motivated by its
close relation to the Hubbard model, for which the possibility
of having a spin-liquid ground state has been under close
scrutiny.21–23

A closely related spin model with a rich phase diagram
and the promise to support a gapless spin liquid phase is the
J1 − J2 spin-1/2 XY model on the honeycomb lattice,24,25

which is the main subject of this Rapid Communication. Its
Hamiltonian can be written as

H = J1
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where Sα
i is the αth component of the spin-1/2 operator at site

i. This model can be thought of as a Haldane-Bose-Hubbard
model,24,26–28 i.e., the Haldane model29 on the honeycomb
lattice with NN hopping J1 and complex NNN hopping
|J2|eıφ , where spinless fermions are replaced by hard-core
bosons and φ = 0. Hard-core boson creation and annihilation
operators can then be mapped onto spin operators (b†i → S+

i ,
bi → S−

i ) leading to Eq. (1). The total number of bosons (N )
is related to the total magnetization in the spin language, since
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FIG. 1. (Color online) (a) Extrapolated best energies in the ther-
modynamic limit, as well as the final phase diagram (colored regions
labeled AF, SL, and CL) based on the properties of the states
considered. The energy of the purely classical solution of the model
is shown for comparison. (b) Energies of antiferromagnetic and
spin-liquid states compared to the exact results on the 4 × 4 × 2
cluster.

ni = Sz
i + 1/2. Here, we focus on the half-filled case, where

N equals one-half the number of sites (V ).
This model was studied in Ref. 24 by means of exact

diagonalization on small clusters. There, evidence was found
supporting the existence of a spin liquid surrounded by two
magnetically ordered states, namely, an antiferromagnetic
(collinear) state at lower (higher) J2/J1. The spin-liquid phase
was suggested to be gapless and characterized by a distinctive
parameter dependent feature in the momentum distribution
n(k), similar to a Bose surface, thus suggesting the presence
of an exotic Bose metal.24,28,30–35
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Here, we study the phase diagram of the J1 − J2 spin-
1/2 XY model on the honeycomb lattice using variational
Monte Carlo (VMC). By utilizing an accurate, yet simple
and intuitive representation of magnetically ordered states,
we find that the system remains in the antiferromagnetic
(AF) phase for 0 � J2/J1 � 0.2, while a collinear (CL)
state stabilizes for 0.3 � J2/J1 � 1.1. The accuracy of our
representation, tested against exact diagonalization results on
small clusters, is unprecedented. In the intermediate region
0.2 � J2/J1 � 0.3, we find that the ordered phases have a
higher energy than a fractionalized partonic state, which is
consistent with a gapped spin liquid. The variational energy
of such a state is gauged against a wide range of carefully
optimized magnetically ordered spin states, as well as states
that allow the breaking of spatial symmetries. Extrapolations
of energy to the thermodynamic limit of the best trial states,
as well as the phase diagram of the model, are presented in
Fig. 1. The energy of the purely classical solution of the model
is shown to make apparent the importance of introducing
quantum fluctuations in our trial states.

As trial wave functions for the magnetically ordered states,
we use classical spin-waves on the XY plane supplemented
with long-range Jastrow factors:

|�Q〉 = Jz

∏
i

(|↓〉i + eıQ.Ri+ıηRi |↑〉i), (2)

where i runs over the positions of the spins, Q is the wave vec-
tor of the classical spin wave, and ηRi

is the phase shift between
the two spins within the unit cell. Without loss of generality,
we assume ηRi

= 0 if Ri belongs to the sublattice A and an
arbitrarily chosen ηRi

= η if it belongs to the sublattice B. The
long-range Jastrow factor Jz = exp( 1

2

∑
i,j vij S

z
i S

z
j ), with vij

to be optimized, is also considered to include relevant (i.e.,
out-of-plane) quantum correlations. In the bosonic language,
the magnetically ordered states are nothing but condensates
where particles macroscopically populate finite-Q momentum
states.

The trial wave function for the intermediate spin-liquid state
is written as

|�SL〉 = JzPG|�c↑,c↓〉, (3)

where |�c↑,c↓〉 is the ground state of a free-fermion Hamilto-
nian
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(4)
in which �

†
i = (c†↑,i ,c

†
↓,i) acts at site i and is composed by two

fermions (partons) c
†
↑,i and c

†
↓,i . The latter ones are related

to the underlying physical hard-core bosons (or spin-1/2
operators) via b

†
i = c
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(5)
contain hopping parameters and on-site couplings (n = NN
and NNN). In order to have a state that lives in the correct

Hilbert space (with one spin per site), a Gutzwiller projector
PG must be introduced, imposing no single occupancy for
fermions. Furthermore, a long-range Jastrow factor Jz is also
considered. The Jastrow factors, as well as all parameters
in Eq. (4), are carefully optimized using VMC methods as
described in Refs. 36 and 37. After imposing particle-hole (PH)
symmetry in the variational ansatz (4), the most energetically
favorable mean-field state is found to have real NN hopping
t
↑
ij = −t

↓
ij = t = 1, as well as nonvanishing complex on-site

m
↑↓
i and real NNN “spin-orbit” hopping t sij = t s∗ij , while

tai,j = m
↓↓
i = m

↑↑
i = 0. Note that, at half filling, PH symmetry

b
†
j → bj in the bosonic language (i.e., c

†
↑,j → −ıc↓,j and

c
†
↓,j → ıc↑,j ) implies that both T

ij
n and Mi must be written

in terms of Pauli matrices, which reduces the total number of
independent parameters.

In Fig. 1, we present results for the energy vs J2/J1 on
a 4 × 4 × 2 cluster and compare them with those obtained
from exact diagonalization. For J2/J1 � 0.2 (J2/J1 � 0.35),
the best variational states are given by Eq. (2) with Q = �

(Q = M) and a phase shift η = π (η = 0). They correspond
to antiferromagnetic states with collinear order. These two
ordered states surround an intermediate region where a state
constructed from Eq. (4) possesses the best variational energy.
The discrepancy in the energy of our trial states with respect
to results from exact diagonalization is always less than 3%,
except for J2/J1 = 0.3 for which it is ∼4%.38

For larger cluster sizes, we have analyzed an extensive
set of possible states. For the classically ordered states, we
minimized the energy for a large number of spin waves
generated by nonequivalent Q vectors and for a dense grid of
values of η. For spin-wave states with generic pitch vectors Q,
it is important to allow for Jastrow factors that break rotational
symmetry. Regarding the projected fermionic ansatz, we have
considered translationally and rotationally invariant states and
also allowed for breaking spatial symmetries. We have done
that by considering enlarged unit cells that contain 4 and
18 sites, as well as states in which the couplings of the
mean-field Hamiltonian form plaquettelike structures, and
fermionic states supplemented with aJz such that the breaking
of rotational invariance is allowed. Within that set of fermionic
trial wave functions, the state with lowest energy, as the system
size is increased, is such that no spatial symmetries in both Jz

and Hc↑,c↓ are broken.38

Within the magnetic states described by the ansatz of
Eq. (2), we find that quantum fluctuations (accounted for
by Jz) stabilize the antiferromagnetic (AF) phase for larger
values of J2/J1 with respect to the classical solution. Indeed,
the Q = � (η = π ) state remains lower than other spin-wave
states up to J2/J1 ≈ 0.25 (to be compared to J2/J1 = 1/6
for the classical solution). Similar results were obtained for
the J1 − J2 spin-1/2 Heisenberg model on the honeycomb
lattice.18 Furthermore, for 0.25 � J2/J1 � 1.1, the best mag-
netic state has collinear (CL) order, with Q = M and η = 0.
This outcome is in contrast with the classical limit, where
states with incommensurate order are found. Most importantly,
among all states of the form (2) in the clusters considered, no
single quantum spin wave has lower energy in the intermediate
J2/J1 region than that of the state based on Eq. (4).
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FIG. 2. (Color online) Finite-size scaling of the AF energies (a),
the CL states (b), and projected fermionic states (c). In the legends,
the numbers indicate values of J2/J1.

The trends discussed above are confirmed by simulations
on clusters with sizes up to 18 × 18 × 2, and in extrapolations
of the energies to the thermodynamic limit, as presented in
Fig. 1. We expect finite size corrections to the energy e0 in
the AF phase to be of the form e0(V ) = e0(∞) − c0/V 3/2,39

[see Fig. 2(a)] where the slope c0 is proportional to the
velocity of the AF spin wave. The latter (not shown) decreases
approximately linearly with increasing frustration (for small
frustration), as in the AF phase of the frustrated Heisenberg
model on the same geometry.40 The aforementioned scaling
relation describes the data in the CL phase as displayed in
Fig. 2(b). Finally, for the projected fermionic state, we assume
the simple form e0(V ) = e0(∞) − d0/V to extract e0(∞) as
reported in Fig. 2(c).

In what follows, we study the properties of the projected
fermionic state that bears the lowest energy at intermediate
frustration. After minimizing the energy on several clusters,
the resulting ansatz |�c↑,c↓〉 was found to have a gap to
single-particle fermionic excitations � as shown in Fig. 3(a)
for a 18 × 18 × 2 cluster. The corresponding unprojected
band structure for J2/J1 = 0.25 (four bands) is shown in
Fig. 3(b).
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FIG. 3. (Color online) (a) Single-particle gap of the optimized
fermionic Hamiltonian in Eq. (4) as a function of J2/J1 for the 18 ×
18 × 2 cluster. (b) The unprojected band structure for J2/J1 = 0.25.
For comparison, black solid lines show the band structure for real NN
hopping only.

(a)

0  0.5 1  1.5 2  2.5 3  3.5
kx

-2
-1
0
1
2
3
4

k y

0
1
2
3
4
5
6

n(
k)

(b)

0  0.5 1  1.5 2  2.5 3  3.5
kx

-2
-1
0
1
2
3
4

k y

 0.4
 0.5
 0.6
 0.7
 0.8
 0.9
1
 1.1
 1.2

N
(k)

0

 0.01

 0.02

 0.03

0  0.002  0.004  0.006
1/V

(c)

J2/J1=0.25

n0/V
N0/V
fits 

0

 0.02

 0.04

(d)
J2/J1=0.2

0
 0.01
 0.02

0  0.002  0.004  0.006
1/V

(e)J2/J1=0.3

FIG. 4. (Color online) Momentum distribution n(k) (a) and Static
structure factor N (k) (b) for J2/J1 = 0.25 on the 18 × 18 × 2 cluster.
Finite size scaling of the condensate fraction n0/V and N0/V for
J2/J1 = 0.25 (c), J2/J1 = 0.2 (d), and J2/J1 = 0.3 (e). The solid
lines correspond to fits of the data to a second-order polynomial. The
corresponding extrapolation of the condensate fraction is shown with
filled red squares.

Whether the system possesses magnetic order is assessed
calculating the momentum distribution function nα,β (k), where
α and β denote the two sites inside the unit cell [i.e., nα,β (k)
is a 2 × 2 matrix]. In Fig. 4(a), we report the trace n(k) =
tr[nα,β(k)] of this matrix for J2/J1 = 0.25. We find a clear peak
at the � point, which might suggest that the resulting state is
still antiferromagnetically ordered. However, upon a finite-size
scaling analysis of the condensate fraction n0/V , where n0 is
the largest eigenvalue of the one-body density matrix (〈b†i bj 〉
in the bosonic language or 〈S+

i S−
j 〉 in the spin language), we

find that the state is not ordered in the thermodynamic limit.
Figure 4(c) shows the evolution of n0/V for J2/J1 = 0.25, as
the system size is increased. The solid black line corresponds
to a fit to a second-order polynomial, which makes apparent
that n0/V vanishes as V → ∞ (within the error bar of the
fit). Figures 4(d) and 4(e) also make apparent that the same
happens in the boundaries of the region where the partonic
state has the lowest energy.

We have also evaluated the structure factor Nα,β(k) (in
which the constant k = 0 term has been subtracted), to look for
diagonal ordering in our projected fermionic ansatz. Results
for the trace of N (k) = tr[Nα,β(k)] for J2/J1 = 0.25 are
displayed in Fig. 4(b). Also in this case, we find a clear peak
at the � point. In order to understand whether this corresponds
to diagonal order, we performed a finite-size scaling analysis
of the ratio N0/V , where N0 is the largest eigenvalue of the
diagonal two-body correlation function (〈ninj 〉 − 〈ni〉〈nj 〉 in
the bosonic language, 〈Sz

i S
z
j 〉 − 〈Sz

i 〉〈Sz
j 〉 in the spin language).

Results for N0/V , are shown in Figs. 4(c)–4(e) for J2/J1 =
0.20, 0.25 and J2/J1 = 0.3, respectively. They extrapolate to
zero in the thermodynamic limit, which means that there is
no charge order associated with the peak of N (k). Hence we
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conclude that the ground state for 0.20 � J2/J1 � 0.3 is likely
to be a spin liquid.

A comparison of the results of this study with those
of Ref. 24, reveals a very good agreement between the
phase diagrams reported. However, there are important dif-
ferences. The resulting momentum distribution in Fig. 4(a)
does not exhibit a Bose surface, but instead a clear peak
at �. Since such trial states are known to be capable of
reproducing Bose surfaces, one possibility is that the Bose
surface seen in the exact calculations will fade away as
the system size increases. However, since the absence of
a Bose surface in our ansatz holds also for small system
sizes, another possibility is that we have not found the
trial state that is able to capture such a feature, and which
may ultimately exhibit a lower energy than the one reported
here.

At this stage, the nature of the phase that we refer to as
a “spin liquid” remains largely a mystery. The original exact
diagonalization study24 found a state that was consistent with
a gapless spin liquid. This scenario is still in the running,
however, the cluster sizes available to such studies are too
small to make an unambiguous conclusion. On the other hand,
our results for state (4) are consistent with a gapped spin liquid,
clearly in contrast to the projected spinon Fermi surface state
suggested in Ref. 24. In spite of the difficulties, in this work, we
have been able to safely rule out straightforward magnetically
ordered phases and spirals as competing ground states in the
interesting region where the fractionalized spin-liquid state
was found to win.

We note that it might be possible to reconcile the differences
observed by recalling the arguments in Ref. 41. There, it
was suggested that, just like a Landau Fermi liquid can be
viewed as a parent state subject to various instabilities (e.g.,

superconductivity, Stoner ferromagnetism, or density waves),
the U(1) projected Fermi liquid may serve as a parent state
to a variety of Mott insulating states and gapped spin liquids.
Such scenarios have been discussed in the literature: a density
wave instability42 and a superconducting instability,41 which
may be consistent with the state we discuss here by virtue of
its close relation with projected BCS states previously studied
in Refs. 12,13 and 20. In both cases, the nature of the possible
instabilities hinges on the Friedel-like oscillations (or Kohn
anomaly), which is produced by the fermionized bosons in the
parent state. The existence of such oscillations can potentially
be probed in numerical simulations of models with defects and
would shed light on the true nature of the underlying state.

In summary, we have performed a variational study of the
frustrated XY model on the honeycomb lattice. We have been
able to map out all ordered phases and describe them with
variational states with an unprecedented precision on lattices
that for practical purposes represent thermodynamic limit (to
which we believe there is no analog in the existing literature).
We have also found that in the region 0.2 � J1/J2 � 0.3,
the ordered phases lose in energy to an exotic fractionalized
partonic wave-function that is consistent with a gapped
spin liquid. However, more work is needed to conclusively
determine the true physical nature of the ground state of the
system in this region.
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