
RAPID COMMUNICATIONS

PHYSICAL REVIEW B 88, 241107(R) (2013)

Bilayer graphene with parallel magnetic field and twisting: Phases and phase transitions
in a highly tunable Dirac system
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The effective theory for bilayer graphene (BLG), subject to parallel/in-plane magnetic fields, is derived. With
a sizable magnetic field the trigonal warping becomes irrelevant, and one ends up with two Dirac points in the
vicinity of each valley in the low-energy limit, similar to the twisted BLG. Combining twisting and parallel
field thus gives rise to a Dirac system with tunable Fermi velocity and cutoff. If the interactions are sufficiently
strong, several fully gapped states can be realized in these systems, in addition to the ones in a pristine setup.
Transformations of the order parameters under various symmetry operations are analyzed. The quantum critical
behavior of various phase transitions driven by the twisting and the magnetic field is reported. The effects of an
additional perpendicular field and possible ways to realize the new massive phases are highlighted.
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Carbon-based layered materials opened a new frontier in
condensed matter physics, where the underlying honeycomb
lattice stands responsible for Dirac or Dirac-like fermionic
excitations.1 Two well-studied members of this new class of
materials are single-layer and bilayer graphene. Despite the
fascinating potential of exhibiting various ordered phases2,3

and related quantum critical phenomena,4,5 the Dirac points
of monolayer graphene are remarkably stable due to a
large quasiparticle Fermi velocity (vF ∼ 106 m/s); thus far,
ordered phases have only been realized in the presence of
(perpendicular) magnetic fields.6 In this regard, BLG appears
to be propitious, and has already exhibited phenomena strongly
suggestive of spontaneous symmetry breaking,7–11 possibly
realizing a subset of all the possible ordered states available for
the fermion to condense into.12 But the role of the mesoscopic
environment, such as gate configuration, substrate, etc., on the
nature of the ordered states still lacks a clear understanding.13

As a result, realization of several interesting ordered states and
tuning this system across (quantum) phase transitions are still
among future prospects. We here propose that BLG, when
immersed in parallel magnetic fields and twisted,14 yields
a unique opportunity to explore some of these interesting
possibilities.

Pristine BLG is well described by a two-band model,
with quadratic touching of the valence and the conduction
bands. Subject to in-plane magnetic fields, each parabolic band
touching (PBT) in BLG splits into two Dirac cones.15 A similar
scenario also arises when BLG is twisted, if the twisting is
commensurate.16,17 However, such twofold splitting competes
with the trigonal warping (TW),18 which, on the other hand,
breaks each PBT into four Dirac cones.19–21 We here show
that when a sufficiently strong in-plane field is applied, one
ends up with only two Dirac cones; this happens within
accessible magnetic field strength when the field is applied
along certain optimal directions (see Fig. 1). More importantly,
the field/twisting controls the Fermi velocity of the resultant
Dirac points, and thus the (effective) interaction strength;
this allows us to tune the system across various transitions
between the weak-coupling phase (where interactions are

irrelevant2) to various ordered phases. Moreover, these setups
admit additional fully gapped phases that do not have any
analogy in either single-layer graphene or pristine BLG. When
a perpendicular magnetic field is present,22,23 even a richer set
of new ordered phases may be realized.

Recently there has been a surge of theoretical16,17,23–27

and experimental22,28–31 activities in twisted BLG (mostly
focusing on single-particle physics thus far), while BLG with
in-plane field has attracted little attention thus far.15 One of the
motivations of the present work is to point out their similarity,
and more importantly the fact that they are complementary
to each other: Twisting gives rise to a larger effects and does
not couple to electron spin, but is discrete. In-plane field has
a weaker effect and couples to electron spin as well, but can
be tuned continuously, a virtue important for exploring critical
phenomena. We show that by combining these two we have a
highly tunable Dirac system ideal for exploring various phases
and phase transitions.

In terms of the low-energy degrees of freedom of AB-
stacked BLG, we define a 4-component spinor ��(�k) =
[v1( �K + �k), v2( �K + �k), v1(− �K + �k), v2(− �K + �k)]. For now,
we suppress the fermion’s spin degrees of freedom and v1(v2)
is the fermionic annihilation operator on the B sublattice in
layer 1 (2).32 In this basis the noninteracting Hamiltonian, in
the vicinity of two valleys at ± �K , reads as33

H 0
BL = γ2

k2
x − k2

y

2m
− γ1

2kxky

2m
+ v2iγ0(γ1kx + γ2ky), (1)

where m = t⊥/(2v2
F ), and vF = 3t/(2a). t and a are re-

spectively intralayer hopping amplitude and lattice spacing.
The interlayer nearest-neighbor hopping is t⊥ ≈ t/10, and
v2 ∼ vF /30 describes the TW.34 Five mutually anticommuting
γ matrices are γ0 = σ0 ⊗ σ3, γ1 = σ3 ⊗ σ2, γ2 = σ0 ⊗ σ1,
γ3 = σ1 ⊗ σ2, and γ5 = σ2 ⊗ σ2, where �σ are the standard
two-dimensional Pauli matrices and σ0 is the unity matrix.
In the absence of the TW (v2 = 0), H 0

BL describes PBTs at
± �K .35 The TW splits each of the PBTs into four Dirac cones,
out of which one is isotropic, while the remaining three are
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FIG. 1. (Color online) Left: Splitting of the Dirac points (red and blue arrows) due to in-plane field (B) (here K ′ = −K). kx,ky are measured
in unit � = a = 1. Right: A schematic variation of BC with θ (see left), with vF = 106 m/s, t⊥/t = 10, vF /v2 = 30, d = 3.5 Å (Refs. 34,37).

anisotropic, connected by 120◦ rotations about the isotropic
one.20,21

Subject to an in-plane magnetic field �B = B(cos θ, sin θ,0),
the above Hamiltonian conforms to36

H [B] = H 0
BL + γ2

(
k2
Bx − k2

By

2m

)
− γ1

(
2kBxkBy

2m

)
, (2)

where �kB = (d/2)(ẑ × �B), and d ∼ 3.5 Å is the interlayer
separation.37 Here θ is measured with respect to the momen-
tum axis kx , shown in Fig. 1 (left). If v2 = 0, H [B] describes
isotropic massless Dirac fermionic excitations in the vicinity of
four points ± �K ± (kBxk̂x + kByk̂y). The effect of the in-plane
magnetic field (or twisting) is, therefore, qualitatively similar
to the nematic order, which split the two PBTs into four Dirac
cones by spontaneously breaking lattice rotation symmetry.38

The in-plane field and twisting, which explicitly breaks lattice
rotation symmetry, can thus be viewed as a field coupled to the
nematic order parameter (and therefore forces a nonzero value
on it). When v2 is finite, one of the anisotropic Dirac cones and
the isotropic one get pushed towards each other by the in-plane
field, while the remaining two move apart from each other. If
the in-plane magnetic field is applied along the line connecting
the isotropic and one of the anisotropic Dirac points, i.e.,
θ = (π,5π,9π )/6, the TW becomes irrelevant for B > BC

∼ 25 T, with the currently estimated strength of various band
parameters,34,37 shown in Fig. 1 (right). For the rest of the
discussion, we set v2 = 0.

To construct the low-energy theory, we first neglect electron
spin for simplicity, and define an 8-component spinor ��

B (�k) =
(�+,�−)(�k), with ��

± (�k) = [v1( �K ± �kB + �k), v2( �K ± �kB +
�k), v1(− �K ± �kB + �k), v2(− �K ± �kB + �k)], which account for
the layer, valley, and ±�kB (hereafter referred as flavor) degrees
of freedom. In this basis H [B] takes the relativistic invariant
form HD = −vBi�0(�1 kx + �2 ky), where i�0�1 = 332,
i�0�2 = 301, and �0 = 003.39 An identical Hamiltonian also
describes the low-energy theory in twisted BLG, when the
twisting is commensurate, with vB → vT . The effective Fermi
velocities near the new Dirac points

vB = v2
F Bd

t⊥
∼ 1.2 × 103B(T)

m

s
, vT = | �K| sin φ

v2
F

t̃⊥
, (3)

can be tuned by the in-plane magnetic field and twisting,
respectively. Here t̃⊥ ≈ 0.4t⊥,16,28 and φ measures deviation
from the AB stacking. Respectively, in these two systems the
dispersion is linear over the energy vB	B ≈ 10−5B2(T) K, and
vT 	T ≈ 1.76 × 104 sin2 φ K, where 	B ≈ 5.6 × 10−29B(T)
kg m/s and 	T ≈ � sin φ/a are the associated cutoffs for
momentum. Therefore, the effect of twisting is much stronger
than in-plane field. However, when the in-plane field and
twisting are present together, one can tune Dirac dispersion
continuously and we focus on this setup, with Fermi ve-
locity vF and cutoff 	 coming from the combined effects
of twisting (we consider only commensurate ones) and
in-plane field and continuously tunable, unless specifically
noted otherwise. The imaginary-time Lagrangian is L0 =
�

†
B(τ,�k) (∂τ + HD) �B(τ,�k). The Dirac Hamiltonian HD com-

mutes with the generator of translation ITr = 330.39 It also
commutes with IL = 001, and IK = 010, when accompanied
by the momentum axis inversion kx → −kx . Respectively,
these two operators exchange two layers and valleys. More-
over, HD is invariant under the exchange of the flavors,
generated by If = 100, after taking �k → −�k. Additionally,
HD is also invariant under emergent chiral Uc(4) symmetry,
generated by {x12,x22,x33, x03,y11,y21,y30,y00}, where
x = 1,2 and y = 0,3.

If the repulsive interactions among the fermions are suffi-
ciently strong, various ordered phases can be realized in this
system. We assume there exist metallic gates nearby that render
the Coulomb interaction to be short-ranged due to screening.
In the long-wavelength limit the interacting Lagrangian for
spinless fermions contains 27 quartic terms of the form g̃

(�†
BM�B)2, out of which 18 are independent.36 Next we wish

to capture the leading instabilities in this system in the large-N
scheme, in which all the couplings are independent. After
integrating out the fast Fourier modes with the Matsubara
frequencies −∞ < ω < ∞ and 	/b < |�k| < 	, where
b > 1, we obtain the flow equation of dimensionless
couplings g = 4g̃	/(vF π ):

βg = dg

d log b
= −g − CM g2 + O

(
1

N

)
. (4)
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The coefficient CM = (1) 0, if M (anti)commutes with HD ,
whereas CM = 1/2 if M commutes with either i�0�1 or
i�0�2. Therefore, the leading instabilities in this system take
place towards the formation of the fully gapped or massive40

phases at T = 0, which minimizes the energy of the filled
Dirac-Fermi sea.2 The linear term in the β functions indicates
that interactions need to be sizable to place the system in
any ordered phase. Depending on whether g > or < 1 at
the scale 	, which is determined by the marginally relevant
flow of pristine BLG at momentum scale beyond 	,38,41 the
Dirac fermions find themselves in ordered or semimetallic
phase. Since 	 is a tunable parameter here, BLG subject
to twisting and in-plane fields yields unique opportunities
to observe various relativistic quantum critical phenomena,
described by the Gross-Neveu-Yukawa (GNY) theory, about
which in a moment. We note that our estimation from the
large-N analysis is expected to hold even for the realistic
situation when N (number of 8-component Dirac fermions)
= 1, since the actual expansion parameter in our theory
is 1/8N .42

The spinless flavored Dirac fermions can condense into
a plethora of fully gapped phases. Altogether, there are
16 different ways to spontaneously develop mass gaps for
the spinless Dirac fermions.40 They can be arranged into
4 categories, and each of them contain 4 masses. They
are �A = {303,200,100,003}, �B = {333,230,130,033}, �C =
{312,211,111,012}, �D = {322,221,121,022}.39 The transfor-
mations of these masses under various discrete symmetries
are shown in Table I. �A, �B do not mix two valleys, but
are respectively even and odd under �K ↔ − �K , whereas �C
and �D represent symmetric and antisymmetric mixing of
two valleys, respectively. All four masses of the pristine
BLG35 are flavor insensitive: The layer-polarized (LP) state,
corresponding to an imbalance of carriers densities between
two layers, is represented by A4; B4 represents the quantum
anomalous Hall insulators, which in lattice is realized as
intralayer circulating currents, orienting in the same direction
in two layers. Two translational and time-reversal symmetry
breaking Kekulé currents are represented by C4 and D4. Eight
out of the above sixteen masses, Xj s, where X = A,B,C,D;
j = 2,3, mix the flavors, and correspond to periodic orders
with periodicity 2	. The remaining four masses X1s where
X = A,B,C,D, although they do not mix the flavors, are odd
under its exchange.

We now restore the spin degrees of freedom. Each of the
masses can now be realized in both spin-singlet and spin-triplet

TABLE I. Transformation of various masses under the discrete
symmetries, which leave the free Hamiltonian invariant. +, −
respectively stand for even and odd. Here, IT = (110) K is the
time-reversal operator, where K is the complex conjugation.

�M IL IK ITr If IT

�A (−,+,+,−) (+,+,+,+) (+,−,−,+) (−,−,+,+) (−,+,+,+)
�B (−,+,+,−) (−,−,−,−) (+,−,−,+) (−,−,+,+) (+,−,−,−)
�C (−,+,+,−) (+,+,+,+) (−,+,+,−) (−,−,+,+) (+,+,+,−)
�D (−,+,+,−) (−,−,−,−) (−,+,+,−) (−,−,+,+) (+,+,+,−)

channels, yielding all together 2 × 16 = 32 possible insulating
orders that can fully gap out all the Dirac points. The spin-
triplet insulators, besides the discrete symmetries, also break
the spin SU(2) rotational symmetry spontaneously (if there is
no Zeeman splitting say in twisted BLG with no in-plane field),
and the ordered phases are accompanied by 2 massless Gold-
stone modes. Let us construct a 16-component spinor �s =
(�↑,�↓)�, where ↑,↓ are the electron’s spin projections. This
representation is invariant under the electron’s spin rotations,
which are generated by �S = �s ⊗ (000).39 Both �↑ and �↓ take
the form �B(�k). The Dirac Hamiltonian for spinful fermions is
H = s0 ⊗ HD , where s0 is a two-dimensional identity matrix
operating on the spin index, and [H,�S] = 0. The Zeeman
coupling, when present, reads as HZ = �Z (s3 ⊗ I8), where
�Z = gB(�x) ∼ B (T) K, with g ≈ 2 for electrons in BLG.
We note �Z � vB	B for any accessible magnetic field, but
�Z � vT 	T even for moderate twisting, say φ ∼ 30–40.

While small compared to twisting, Zeeman coupling gives
rise to particle- and hole-like Fermi surfaces for opposite
spin projections near each Dirac point, and consequently a
BCS instability in the particle-hole spin-triplet channel that
takes place even at weak interactions.43 However the critical
temperature of such ordering can be extremely small.44

Perhaps more importantly, the Zeeman coupling restricts
the spin degrees of freedom of any triplet order parameter (OP),
M = �� · �s ⊗ X, where {X,HD} = 0, within the easy plane,
perpendicular to the applied magnetic field. The effective
single-particle Hamiltonian then reads as HSP = H + M +
HZ , and its energy eigenvalues are ±Eσ , where for σ = ±

Eσ = {[√
v2

F k2 + �2
3 + σ �Z

]2 + �2
1 + �2

2

}1/2
. (5)

Therefore, the spectrum is maximally gapped with �3 = 0,
or when the triplet OP is restricted within the easy plane.
Consequently, one of the Goldstone modes becomes massive,
and its mass is ∼�Z . Hence, the Zeeman coupling reduces
the symmetry of any triplet ordering to O(2), restoring
the possibility of Kosterlitz-Thouless transitions at finite
temperatures.45 Recent experiments10,11 suggest that a layer
antiferromagnet (LAF) state can be found in BLG. The LAF
OP is 〈�†

s (�s ⊗ A4) �s〉. Therefore, subject to an in-plane
magnetic field, spin of the LAF order gets projected onto the
easy plane, known as the canted antiferromagnet, which has
also been considered in the quantum Hall regime of insulating
BLG46 and single-layer graphene.47 In twisted BLG, beyond
the superlattice AB stacking goes through an AA one and
evolves into BA stacking.17 Therefore, the layer magnetization
changes its sign beyond the superlattice; however, the LAF
order remains unchanged. A similar situation also arises when
the system develops a LP state.

The quantum phase transition towards the formation of
the LAF state, driven solely by the twisting, is described
by an O(3) GNY theory. A similar theory can also describe
the quantum criticality near the antiferromagnet ordering in
monolayer graphene, where the number of 4-component Dirac
fermions is two, which in our system is four.4 The Fermi
velocity across the transition remains noncritical since z = 1
in our problem.2 The effective action reads as S = ∫

ddxL,
where L = Lf + Lb + Lbf , with Lf = �̄ss0 ⊗ �μ∂μ�s , with

241107-3
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�̄s = �
†
s s0 ⊗ �0 and

Lb = |∂μ
��|2 + m2

t | ��|2 + λt

2
| ��|4,

(6)
Lbf = gt

�� · �̄s�s ⊗ I8�s.

�� is a three-component scalar field, and gt is the Yukawa
coupling. The coupling constants λt , gt are dimensionless in
d = 3 + 1, and m2 is the T = 0 tuning parameter. Upon pro-
moting the theory to the upper-critical dimension (d = 4), we
can perform a controlled ε(=d − 4) expansion. In the absence
of the Yukawa coupling the transition is described by the
Wilson-Fisher fixed point (λt ,g

2
t ) = (6/11,0) ε.36 However,

this fixed point is unstable against the Yukawa coupling,4,5

and the critical behavior of the GNY theory is described
by a new fixed point (λt ,g

2
t ) = (0.61942,0.11) ε. Near the

O(3) LAF transition the correlation length exponent is ν =
1
2 + 0.531268ε. The same theory can describe the critical
behavior near any triplet ordering in twisted BLG. Due to
the nontrivial Yukawa coupling at the critical point, both the
bosonic and the fermionic fields acquire nontrivial anomalous
dimensions, respectively read as ηb = 8

9ε, ηf = ε
6 .36 The

bicritical fixed point in the GNY theory lies in the unphysical
regime λt < 0. As one approaches the critical point from the
semimetallic side, the residue of the quasiparticle pole vanishes
as m

zνηf

t .
We now consider driving the Dirac semimetal across the

LAF transition by tuning a parallel magnetic field, in the
presence of twisting. In that situation the universal behavior
in the vicinity of the LAF transition will be governed by an
O(2) GNY theory, due to the Zeeman coupling. However,
such quantum critical behavior can only be probed at a
temperature T > �Z . The effective theory is similar to the
one in Eq. (6), with �� as a two-component bosonic field, and
�s → �s⊥ = (s1,s2). A similar O(2) GNY theory also describes
the quantum superconducting transition of the Dirac fermions
in graphene and on the surface of topological insulators,5 and
in-plane field-driven transition to any other triplet ordering in
twisted BLG. Various critical exponents near this transition
are different from the previous ones and read as ν = 1

2 + 3
10ε,

ηb = 4
5ε, and ηf = ε

10 .5

As a consequence of the restoration of relativistic invariance
at the GNY critical point, i.e., z = 1, the bosonic veloc-
ity approaches the fermionic velocity (vF ) (nonuniversal),
and consequently the ratio of the specific heats inside the
semimetallic and insulating side within the critical region also
approaches universal value

CSM

CIns
= Nf

NG

(1 − 2−d ) (7)

where Nf = 16 is the number of gapless fermionic modes
and NG is the number of massless Goldstone modes in

the broken-symmetry phase, which is therefore respec-
tively 2 and 1 in the twisting and the Zeeman-driven
LAF phase.

In the same framework, we can also address the quantum
critical behavior of a Z2 symmetry breaking transition towards
the LP ordering in twisted BLG with36

Lb = |∂μ�|2 + m2
s |�|2 + λs

2
|�|4, Lb−f = gs��̄s�s. (8)

The transition to a Z2 symmetry breaking ordering is governed
by the critical point (λs,g

2
s ) = (0.5914,0.091)ε. The critical

exponents near this critical point are ν = 1
2 + 0.25574ε, ηb =

8
11ε, and ηf = ε

22 .36 At T = 0, however, there is a first-order
phase transition from the LP to the O(2) LAF state, which also
carries a finite ferromagnetic moment, if one applies a weak
in-plane field.

Finally we propose a possible way to realize some of the
new masses, which lack any analogy in the pristine BLG. In
the vicinity of the neutrality point, we believe that the leading
instabilities will likely be similar to those in regular BLG,
when it is slightly twisted and placed in weak parallel fields.
On the other hand, upon tilting the magnetic field out of the
BLG plane, one can develop a set of Landau levels (LLs)
at energies ±vF

√
2nB⊥, where n = 0,1, . . . , and B⊥ is the

field’s perpendicular component. Relativistic LLs can also
be developed by placing the twisted BLG in perpendicular
magnetic fields. The twofold orbital degeneracy of the zeroth
LL in pristine BLG19 translates into the flavor degeneracy
when BLG is twisted16 or when twisting and tilted fields are
present simultaneously, which however cannot be lifted by any
of the masses in pristine BLG, e.g., A4, C1, D1,12 since they
are flavor independent. If we consider spinless fermions for
simplicity, and also neglect flavor and valley mixing, the flavor
degeneracy of the zeroth LL can be lifted by A1 or B1 masses.
Therefore, by placing the chemical potential close to the first
excited state within the zeroth LL, additional incompressible
Hall states at fillings f = ±1 can be developed by these new
masses that we propose here.48 The single-particle gap of the
f = 0,±1 Hall states should scale linearly with the field, if
the interaction is sufficiently weak. Scaling then reverts to a
sublinear one for moderate interaction strength, and a perfect√

B scaling emerges at zero-field criticality.49 Interestingly,
different scaling regimes can be accessed in this system by
tuning the twisting and/or in-plane field, which in turn controls
the effective interaction strength. A detailed analysis of the
quantum Hall physics for spinful fermions is quite rich, but
left for future investigation.
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