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Geometry of compressible and incompressible quantum Hall states: Application to anisotropic
composite-fermion liquids
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Haldane’s geometrical description of fractional quantum Hall states is generalized to compressible states. It
is shown that anisotropy in the composite fermion Fermi surface is a direct reflection of this intrinsic geometry.
A simple model is introduced in which the geometric parameter can be obtained exactly from other parameters
including electron mass anisotropy. Our results compare favorably with recent measurements of anisotropy in
composite fermion Fermi surface [Kamburov, Liu, Shayegan, Pfeiffer, West, and Baldwin, Phys. Rev. Lett. 110,
206801 (2013)]. Broader implications of our results are discussed.
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Two-dimensional electron gas (2DEG) subject to a strong
perpendicular magnetic field has been a constant source of
surprises over the last 30 years, starting with the discovery
of the fractional quantum Hall (FQH) effect, and the elegant
Laughlin wave function capturing its most basic physics.
One of the important conceptual developments is Haldane’s
recent observation1 that in contrast to common belief that the
Laughlin wave function contains no variational parameter, it
actually contains a hidden (continuous) geometrical degree
of freedom characterizing the anisotropy in the correlation
hole surrounding each electron. He further points out this
anisotropy should be treated as a variational parameter in
the presence of either anisotropic electron band mass or
anisotropic interaction. This family of Laughlin states (which
includes the original Laughlin wave function as a special
member) has been constructed explicitly and generalized to
other FQH states,2 and the variational program has been carried
out in some specific cases.3–5 These states may be relevant to
the anisotropic FQH state observed at ν = 7/3.6 Attempts7,8

have also been made to promote this geometric parameter to
a dynamical degree of freedom, which captures the collective
excitations of Laughlin and other FQH liquids.

While very exciting, the current state of affairs is perhaps
somewhat unsatisfactory in the following aspects. (i) As
pointed out by Haldane,1 the geometric parameter g (to be
defined below) of a FQH state is determined by a compromise
between the independent anisotropies of the effective mass
tensor and interaction; thus far this has to be determined
numerically and approximately by optimizing g of a trial
state (say Laughlin) with respect to a specific anisotropic
Hamiltonian. It would be ideal to do this analytically and
if possible, exactly. (ii) More importantly, it is unclear how
to measure g experimentally. In this work we address both
of these points by showing the following. (a) We construct
a simple model Hamiltonian in which the electrons interact
with each other through a Gaussian potential. In this case g

can be determined exactly in closed form. With this result
an approximate but analytic expression for g is suggested for
generic nonsingular interactions. (b) This geometric degree of
freedom also exists for compressible states. In particular, we
show that for composite fermion (CF)9 Fermi-liquid states,
g characterizes the anisotropy of CF Fermi surface, which
has been measured recently.10–12 Our results are in good

qualitative agreement with existing measurements, and point
to straightforward quantitative tests of the theory in future
experiments.

Consider the Hamiltonian

H = T + V, (1)

with the kinetic energy
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Here j is electron index, m/a and ma are its effective mass
along the x and y directions, respectively, while m is their
geometric mean. For isotropic effective mass we have a = 1,
and a − 1 (assumed to be positive without loss of generality)
is a measure of the mass anisotropy.

� = p + e

c
A(r) (3)

is the mechanical momentum, ∇ × A(r) = −Bẑ, thus the
electrons move in a uniform perpendicular magnetic field. The
guiding center coordinates

R = r − (�2/h̄)ẑ × � (4)

commute with �. Here � = √
h̄c/(eB) is the magnetic length.

The interaction term

V =
∑

i<j

v(ri − rj ) =
∑

i<j

∑

q

vqe
iq·(ri−rj ), (5)

where vq is the Fourier transform of v(r).
In the large B limit, Landau level (LL) spacing overwhelms

V , and the electron motion is confined to a given LL. In this
case it is appropriate to project V onto a given LL that results
in a reduced Hamiltonian involving the R’s only:
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∑
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where
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is the form factor of the nth LL (Ln is the nth Laguerre
polynomial). We note this is the only place the effective
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mass anisotropy parameter a enters Ṽ , which is what we
need to solve. This is a highly nontrivial task due to the
noncommutativity of different components of R:

[Rx,Ry] = −i�2. (9)

For simplicity and later comparison with experiments of
Refs. 10–12, we will focus on a partially filled lowest LL
(LLL) where n = 0, so

F0(q,a) = e−(aq2
x +q2

y /a)�2/2. (10)

We will also work mostly with an isotropic interaction such
that v(r) = v(r) and vq = vq .

The key ingredient that allows for further progress below is
the choice of a Gaussian potential

v(r) = v(0)e−r2/(2s2), (11)

vq = v0e
−q2s2/2, (12)

where s is the range of the potential in real space. With this
choice the LLL-projected Hamiltonian Ṽ of Eq. (6) becomes

Ṽg =
∑

i<j

∑

q

v0e
−q̃2 s̃2/2eiq·(Ri−Rj ), (13)

where s̃ = [(a�2 + s2)(�2/a + s2)]1/4 is a new length scale,
while

q̃2 = gq2
x + q2

y/g, (14)

in which the crucial geometric parameter

g =
√

(a�2 + s2)/(�2/a + s2). (15)

We note g → a for s � � while g → 1 for s � �, and in
general we have

1 < g < a. (16)

Equation (15) is the central result of this work.
To gain insight into the solution of the LLL-projected

Hamiltonian (13), we note that Ṽg can be obtained from
its isotropic version (g = 1) by performing a unitary
transformation that is a member of the area-preserving
diffeomorphism:13,14

Ṽg = O†[λ(g)]Ṽg=1O[λ(g)], (17)

where

O(λ) = e(iλ/2�2)
∑

j R
j
xR

j
y , (18)

and

λ(g) = − 1
2 ln g. (19)

This is a consequence of the properties that

O†(λ)Ri
xO(λ) = eλRi

x ; (20)

O†(λ)Ri
yO(λ) = e−λRi

y. (21)

We can thus obtain the solution of Ṽg by performing a proper
unitary transformation on the solution of Ṽ1, which is an
isotropic LLL-projected Hamiltonian. In the following we
discuss some special cases.

First consider Laughlin filling factors ν = 1
2p+1 . In this

case because our Gaussian interaction is purely repulsive
and a monotonically decreasing function of r , based on the
extreme robustness of the Laughlin state for such interactions
established by decades of numerical studies we expect the
ground state of the system to be a FQH state very accurately
approximated by the original isotropic Laughlin state |�L〉 ≈
|�g=1〉, as long as s is not much larger than �. As a consequence
of (17) we have the ground state of the anisotropic case to be

|�g〉 = O†[λ(g)]|�g=1〉 ≈ ∣∣�L
g

〉
, (22)

where
∣∣�L

g

〉 = O†[λ(g)]|�L〉 (23)

is an anisotropic Laughlin state.1,2

Now consider even denominator filling factors ν = 1
2p

,
where the electrons are expected to form a composite fermion
Fermi- liquid-like state.15 In this case the ground state is well
approximated in the isotropic case by the following wave
function:16

∣∣�FL
g=1

〉 = det(Mjl)|�BL〉, (24)

where |�BL〉 is the isotropic bosonic Laughlin state at ν = 1
2p

,
det(Mjl) is the determinant of a matrix whose entries are

Mjl = eikj ·Rl , (25)

and the set {kj } forms a circular or isotropic Fermi sea.
Similar to Eq. (22), for the anisotropic case g 	= 1 the

ground state is well approximated by an anisotropic CF Fermi
sea state:
∣∣�FL

g

〉 = O†[λ(g)]
∣∣�FL

g=1

〉
(26)

= {O†[λ(g)] det(Mjl)O[λ(g)]}O†[λ(g)]|�BL〉 (27)

= det(M ′
j l)

∣∣�BL
g

〉
, (28)

where |�BL
g 〉 is an anisotropic bosonic Laughlin state, and

M ′
j l = O†[λ(g)]MjlO[λ(g)] = eik′

j ·Rl (29)

with

k′
j = kx

j x̂
√

g
+ √

gk
y

j ŷ. (30)

We see the anisotropic CF Fermi-liquid state |�FL
g 〉 differs

from its isotropic version in two aspects. (i) The Laughlin
factor needs to be replaced by its anisotropic version. Since this
factor describes flux attachment15 and introduces a correlation
hole around each CF, this implies a distortion of this correlation
hole, similar to what happens in the anisotropic Laughlin
states.2 (ii) More importantly, the Slater determinant of the
(LLL-projected) plane wave factors is now formed by a set of
plane waves with wave vectors {k′

j }, which form an anisotropic
Fermi sea of elliptic shape, with the ratio between long and
short axes

kCF
fy

/
kCF
f x = g. (31)
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This is smaller than the corresponding anisotropy at zero
magnetic field:

kfy/kf x = a (32)

due to (16).
A few comments are now in order. (i) The analyses

above can be generalized straightforwardly for anisotropic
interactions of the Gaussian type:

vq = v0e
−qαqβs2

αβ/2, (33)

where s2
αβ is a symmetric 2 × 2 tensor, and repeated indices

are summed over in the above. In this case because the
anisotropy in the effective mass and interaction have inde-
pendent orientations, they both need to be characterized by
a real anisotropic parameter as well as an orientation angle,
which can be combined into a single complex parameter. The
same is true for the geometric parameter g of the resultant
state. (ii) For a generic form of electron-electron interaction,
an exact relation between the geometric parameter g and
effective mass anisotropy a is not available. However for
generic nonsingular interactions, it is possible to extract a
length scale s by inspecting the short-distance behavior of
v(r):

v(r) = v(0)[1 − r2/(2s2) + o(r2)]. (34)

A natural approximation for g is Eq. (15) with s defined
above. We note for the 1/r Coulomb interaction such a length
scale does not exist and Eq. (15) cannot be used; numerical
study is thus needed to extract the geometric parameter
g. For ν = 1/3 it was found3,17 that g2 ≈ 1 + 0.4(a2 − 1)
thus the inequality (16) is satisfied. We note in reality the
Coulomb interaction is regularized at short distance by a finite
width of the quantum well and thus a length scale s does
exist.

We now compare our results with recent measurements10–12

of CF Fermi-surface anisotropy that results from electron
effective mass anisotropy, which, as we have shown, directly
probe the geometry of the corresponding CF liquid state. It was

found that anisotropy in electron dispersion and corresponding
Fermi surface (in the absence of a perpendicular magnetic
field) indeed induce an anisotropy in the CF Fermi surface,
but the anisotropy is always smaller for the latter.10,11 This is
clearly inconsistent with an earlier theory18 but in agreement
with our inequality (16). More quantitatively, it is found that
the CF anisotropy is often much weaker than the electrons;
for example, in one case11 it was found a ≈ 3 while g ≈ 1.2.
According to Eq. (15) this implies s ≈ 2.4�, which is not
unreasonable if we identify s as the well width of 175 Å,
coupled with � = 67 Å at B = B⊥ = 14 T. Of course, the
equation (15) can be tested systematically by measuring the
dependence of g on both the electron effective mass anisotropy
a and (perpendicular component of) magnetic field (through
the magnetic length �). A note of caution, in Refs. 11 and 12 a

is induced by an in-plane magnetic field, whose effects can be
somewhat complicated, and the effective mass approximation
may break down when the in-plane magnetic field gets too
strong. Measuring the dependence of g on perpendicular
magnetic field requires samples with tunable density so as
to stay at a a fixed filling factor (say 1/2).

In summary, we broaden the scope of the geometric
description of the FQH effect significantly, by including
compressible electron liquids in the FQH regime in this
description. More importantly, our work reveals how to probe
this geometry experimentally, at least in the presence of a
composite fermion Fermi surface. In a more general context,
we note strongly correlated states with anisotropic (or nematic)
Fermi surfaces are of strong current interest in other correlated
electron systems (in particular, high-Tc cuprates).19 We have
introduced and thoroughly investigated a simple model which
clearly reveals how such anisotropic Fermi surface results
from the interplay between single particle band structure
and electron-electron interaction, which should be of broad
interest.
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