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Classification of topological defects in Abelian topological states
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We propose the most general classification of pointlike and linelike extrinsic topological defects in (2 + 1)-
dimensional Abelian topological states. We first map generic extrinsic defects to boundary defects, and then
provide a classification of the latter. Based on this classification, the most generic point defects can be understood
as domain walls between topologically distinct boundary regions. We show that topologically distinct boundaries
can themselves be classified by certain maximal subgroups of mutually bosonic quasiparticles, called Lagrangian
subgroups. We study the topological properties of the point defects, including their quantum dimension, localized
zero modes, and projective braiding statistics.
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A fundamental discovery in condensed matter physics
has been the understanding of topologically ordered states
of matter.1,2 Topologically ordered states possess quasipar-
ticle excitations with fractional statistics, topology-dependent
ground-state degeneracies, and long-range entanglement, all of
which are robust even without symmetry. The most common
topological orders seen experimentally are the fractional
quantum Hall (FQH) states, while there is increasing evidence
that they may be observed in frustrated magnets.3

Recently, an entirely new window into the physics of
topologically ordered states, called twist defects or extrin-
sic defects, has been discovered and attracted increasing
interest.4–21 An extrinsic defect is a pointlike or linelike defect
either in a topological state or on the interface between two
topologically distinct states, which leads to novel topological
properties that are absent without the defect. For example,
while it is well known that topological states can host robust
gapless edge modes, it is only recently becoming apparent
that the structure of gapped edges is also host to a rich set
of universal physics. Topologically ordered states can have
topologically distinct types of gapped boundaries, which are
separated from each other by a quantum phase transition
on the edge. Domain walls between topologically distinct
boundaries are pointlike extrinsic defects that lead to a wide
class of localized “parafermion” zero modes. This vastly
generalizes the Majorana zero modes that are currently the
subject of intense research22 and represents a new direction
for realizing non-Abelian statistics and universal topological
quantum computation.

A simple example is a “genon”:4–6 Consider a branch-cut
line in a bilayer topological state, across which the two layers
are exchanged (Fig. 1). A genon is defined as an end point of the
branch cut. It was observed that the bilayer system with genons
is topologically equivalent to a single-layer system on a high-
genus surface, yielding a topological degeneracy that grows
exponentially with the number of genons, and a notion of (pro-
jective) braiding statistics that can be studied systematically.5

Even when the topological state in each layer is Abelian, the
genons have non-Abelian statistics. This has led to a recent
experimental proposal for realizing a wide class of topological
qubits in conventional bilayer FQH states,8 and an understand-
ing of how to realize universal topological quantum com-
putation using nonuniversal, non-Abelian states.5 Extrinsic

defects with the same type of non-Abelian statistics and
parafermion zero modes have also been proposed in other
physical systems, such as lattice defects in certain exactly
solvable ZN rotor models,9,10 and FQH states in proximity
with superconductivity (SC) and ferromagnetism (FM).11–13,23

Given the panoply of such exotic physics discovered
recently, there is a fundamental question about what is the
general, unifying conceptual framework to understand these
results. A deeper understanding, aside from being of intrinsic
interest, is expected to aid in the challenge of identifying
topological order in experimental or computational settings,
and to provide a guide to further development of practical
experimental proposals to probe these phenomena. In this
Rapid Communication, we report the development of such
a general understanding of extrinsic defects in Abelian topo-
logical states. For two-dimensional topological states, there
are two general forms of extrinsic defects: Line defects, which
separate two different or identical topological states, and point
defects, which may exist in a single topological state, such as
twist defects,5 or at junctions between different line defects
(Fig. 2). We demonstrate that all extrinsic defects can be
mapped to boundary defects, i.e., boundary lines of topological
states with point defects separating different boundary regions.
Based on the understanding of boundary defects, we develop
a classification of gapped line defects between Abelian topo-
logical states, extending previous results.16–21,24 We prove that
gapped line defects are classified by “Lagrangian subgroups,”
which consist of subgroups of topological quasiparticles that
have trivial self and mutual statistics, and that are condensed
on the boundary. This proves a recent conjecture18 about
the classification of “topological boundary conditions” in
Abelian Chern-Simons theory, and extends a recent result21

FIG. 1. (Color online) (a) Schematic picture of bilayer system
with a pair of genons (Refs. 4,5). (b) Same as (a) with part of the
system removed, to see the branch-cut line clearly.
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FIG. 2. (Color online) (a) Domain wall between two different
gapped edges separating topological phases A1 and A2. By folding A2

over, this can be mapped to a domain wall on the boundary separating
A1 × Ā2 and the vacuum. (b) A junction where multiple gapped edges
meet is also a possible type of point defect. On an infinite plane, by
applying the folding trick multiple times, this can also be mapped to
a domain wall on the boundary separating a topological phase and
the vacuum.

that the existence of a Lagrangian subgroup is a necessary and
sufficient condition for the existence of a gapped edge. It also
explains how to understand on a deeper level the role of SC,
FM, or twisted boundary conditions in recent works.4,5,11–13

The nontrivial point defects on the boundary are then
classified by domain walls between topologically distinct line
defects. We obtain the quantum dimension of general point
defects, demonstrating that they are generally non-Abelian
and can be understood in terms of the fractional statistics of
bulk quasiparticle excitations. We show that the point defects
localize a set of topologically protected zero modes, which
can be understood as a localized, robust nonzero density of
states at zero energy for a certain subgroup of the topological
quasiparticles.

Abelian topological states and line defects. Abelian topo-
logical states in 2 + 1 dimensions are generically described
by Abelian Chern-Simons (CS) theories.1,25 With N com-
pact U (1) gauge fields aI , the most general Chern-Simons
term has the form of LCS = 1

4π

∑
I,J KIJ εμνλaI

μ∂νa
J
λ . The

coefficient matrix K is a nonsingular symmetric matrix,
which is integer valued as required by gauge invariance. The
K matrix, up to integer-valued congruent transformations,
classifies Abelian topologically ordered states. A topological
quasiparticle carries point charges lI ∈ Z of aI . The statistics
of a quasiparticle labeled by the integer vector l is given by
θl = πlT K−1l, and the mutual statistics of two quasiparticles l,
l′ is θll′ = 2πlT K−1l′. A quasiparticle with lI = KIJ vJ ,vJ ∈
Z is considered as a local “electron” in the theory, which
may be bosonic or fermionic depending on K . Therefore the
topologically nontrivial quasiparticles are labeled by integer
vectors l mod Kv, with the number of topologically distinct
quasiparticles given by |Det K|.

Different K matrices can specify equivalent topological
states if they have the same quasiparticle content. For example,

K ′ = WT KW , for W an integer matrix with |Det W | = 1,
describes the same topological order. Another example is

K ′ = K ⊕ P (1)

with P an integer matrix with |DetP | = 1. Adding P does not
introduce any new topological quasiparticles, so that K and
K ′ describe the same topological order.

A general line defect in a topological state is a one-
dimensional boundary between two topological states, A1 and
A2 [see Fig. 2(a)]. Some line defects, such as the edge of chiral
topological states, are robustly gapless.1,21,26 In this work we
will explore gapped line defects.

In order to understand the properties of general boundaries,
it is helpful to apply a folding process18,19 [see Fig. 2(a)].
By folding the upper half plane using a parity transformation
relative to the line defect, A2 is mapped to its parity conjugate
Ā2, so that the line defect becomes a boundary between the
topological state A1 × Ā2 and a topologically trivial gapped
state. Therefore, to study gapped line defects, it suffices
to consider all possible gapped boundaries between general
topological phases and the trivial state.

Classification of gapped boundaries. The key feature of a
gapped boundary of a topological phase is that some subgroup
of the topological quasiparticles are condensed on the bound-
ary, and can be created/annihilated on the boundary by local
operators.21 Physically this describes superselection sectors
for how topological quasiparticles can be reflected/transmitted
at line defects.16,19 We first consider the genon4,5 as an
example.

Consider a simple bilayer topological state, the (mm0)
Halperin state,27 with the K matrix K = mI2×2, which
describes two independent 1/m-Laughlin FQH states. Here
I2×2 is the 2-dimensional identity matrix. Folding the state
along a line [see Fig. 3(a)] we obtain a 4-layer system with the
K matrix K = ( mI2×2 0

0 −mI2×2
). The boundary of such a state

can be gapped by introducing either interlayer or intralayer
backscattering. The genon is defined as the domain wall
between these two types of boundaries.

These two boundary conditions can be distinguished by
the behavior of quasiparticles at the boundary. Across the
boundary gapped by intralayer backscattering, quasiparticles
move between layers 1,1̄ and 2,2̄, so that quasiparticles
of the type l = (q1,q2,−q1,−q2)T can be annihilated or
created at the boundary. Such quasiparticles have bosonic
self-statistics and mutual statistics, and thus can be consid-
ered to be “condensed” on the boundary. Similarly, across
the boundary defined by interlayer backscattering, a dif-
ferent set of quasiparticles with l = (q1,q2,−q2,−q1)T are
condensed.

We see that different gapped boundaries condense different
subgroups of quasiparticles. In general, it has been proven
that every gapped boundary must condense a subgroup of
quasiparticles M , called a “Lagrangian subgroup,” which has
the following properties:21

(1) eiθmm′ = 1 for all m, m′ ∈ M;
(2) for all l /∈ M , eiθlm �= 1 for at least one m ∈ M .
For bosonic states (when all diagonals of K are even), we

also have eiθm = 1 for all m ∈ M . This set of quasiparticles
forms an Abelian group with group multiplication defined by
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particle fusion. The first condition defines the bosonic mutual
statistics and bosonic or fermionic self-statistics, allowing m ∈
M to be condensed on the boundary. The second condition
guarantees that the boundary is completely gapped, since all
other quasiparticles l /∈ M have nontrivial mutual statistics
with particles in M , and thus are confined when quasiparticles
in M are condensed.

In the following we will strengthen this result by proving
that every Lagrangian subgroup M corresponds to a gapped
boundary where M is condensed.

To explicitly write down the boundary condition cor-
responding to a Lagrangian subgroup, we introduce the
edge theory of the CS theory LCS defined above, which
is given by the chiral Luttinger liquid theory1,25 Ledge =

1
4π

KIJ ∂xφI ∂tφJ − VIJ ∂xφI ∂xφJ . VIJ is a real symmetric
positive definite matrix, and φI are real compact scalar fields:
φI ∼ φI + 2π . If K has an equal number of positive and
negative eigenvalues, then there are an equal number of left-
and right-moving modes, which is a necessary but not sufficient
condition for the edge to be gapped.

The electron annihilation operators 	I and quasiparticle
annihilation operators χl on the boundary are given by 	I =
eiKIJ φJ , χl = eilI φI , where l is an integer vector describing
the quasiparticles. Naively, the condensation of a quasiparticle
m ∈ M can be described by adding a term g

2 (χm + χ
†
m) =

g cos(mIφI ) to Ledge. However, such a term has two problems.
First, it is not a local term, written in terms of local “electron”
operators 	I . Second, the condition mT K−1m = 0 must be
satisfied in order for the phase mIφI to obtain a classical
value. With this condition, it is possible to perform a change
of basis φ → Wφ so that the theory is mapped to a standard
nonchiral Luttinger liquid, with cos(mIφI ) mapped to a
conventional backscattering term. The first problem can be
solved by multiplying an integer coefficient ci , such that
ciK

−1mi ≡ �i ∈ Z, and thus cos(cimiIφ
I ) = cos(�T

i Kφ) is
a local electron tunneling operator.

The second can be solved if we can find a set of generators
{mi} of M satisfying mT

i Kmj = 0,∀i,j . Then, the term
g

∑
i cos(cimiIφI ) can be added to the Lagrangian and will

condense the particles in M: 〈eimT φ〉 �= 0 if m ∈ M . It is
known that if one can find N such null vectors mi for a
2N × 2N K matrix, the edge can be completely gapped.26

However, it is not always possible to find such a null vector
basis {mi} which fully generates M . For example, consider
K = ( 0 4

4 0 ), which describes Z4 topological order. This system

has a Lagrangian subgroup generated by mT
1 = (2,0), mT

2 =
(0,2). It is not possible to find a single null vector which
generates this Lagrangian subgroup. Consequently, it is not
clear what cosine term on the boundary leads to condensation
of this Lagrangian subgroup.

This problem can be resolved by introducing a topologically
equivalent K matrix with higher dimension, as is shown in
Eq. (1). In the edge theory, adding additional trivial blocks
P such as P = τx or τz, where τi are 2 × 2 Pauli matrices,
corresponds to adding purely one-dimensional edge channels
to the boundary, such as Heisenberg spin 1/2 chains. Thus we
find the following:

Lemma: For each Lagrangian subgroup M of the topo-
logical state described by K , there exists a K ′ which is

topologically equivalent to K and has rank(K ′) = 2N ′, such
that the same Lagrangian subgroup M of K ′ can be generated
by N ′ null vectors m′

i ,i = 1,2,...,N ′.
The proof of this conclusion will be presented in the

Supplemental Material.35 As a simple example that illustrates
the main idea of the proof, consider the previous example,
with K = ( 0 4

4 0 ), and mT
1 = (2,0), mT

2 = (0,2). We define

K ′ = ( K 0
0 τx

), and m′T
1 = (2,0,0,1), m′T

2 = (0,2, − 1,0). Here,

K ′ is topologically equivalent to K , and m′T
i K ′−1m′

j = 0.
Physically, this result implies that one can always condense
the particles in a Lagrangian subgroup on the edge, as long as
using additional trivial edge states is allowed.

We conclude that every Lagrangian subgroup M cor-
responds to a gapped boundary where M is condensed,
providing a classification, in the absence of any symmetries,
of topologically distinct gapped boundaries.

Classification and characterization of point defects. In
general, a point defect is a junction where multiple different
line defects meet. Under the folding process, which may
be applied multiple times, the point defects can always be
mapped to domain walls between two gapped edges (Fig. 2).
Therefore it is sufficient to study the point defect at the
domain wall between two gapped boundaries. Based on the
above classification of gapped boundaries, the domain walls
are classified by a pair of Lagrangian subgroups (M,M ′),
corresponding to the gapped boundaries surrounding the
domain wall.

Consider a point defect labeled by (M,M ′). In the genon
example reviewed above, the simplest topological property of
the point defect is its nontrivial quantum dimension. This can
be understood from the fact that the bilayer system (on the
sphere) with 2n genons has genus n − 1, which leads to a
topological ground-state degeneracy that grows exponentially
in n. For Abelian states, the topological degeneracy can be
obtained from the algebra of the Wilson loop operators, which
measure the topological charge through non-contractible
loops. For example, a sphere with 4 genons is equivalent to a
torus, which has two non-contractible loops a,b [see Fig. 3(a)].
When each layer is a 1/m Laughlin state, the Wilson loop
operator W (c) is defined by creating a pair of charge 1/m,
−1/m particles, taking one of them around the loop c, and then
annihilating them. W (a) and W (b) satisfy the commutation
relation W (a)W (b) = W (b)W (a)ei2π/m, and each leave the
system in its ground-state subspace, requiring the ground-state
degeneracy to be an integer multiple of m.5

These Wilson loop operators can be generalized to the
generic point defects. By folding the bilayer system with
genons along a line containing the genons, the Wilson loops
become Wilson lines of the particles (1/m,0, − 1/m,0) or
(1/m,0,0, − 1/m), which terminate at the boundary since the
corresponding particles are condensed at the boundary. For
general defects, between two gapped boundaries A,B with
Lagrangian subgroups M and M ′, respectively, the Wilson
lines can be defined [Fig. 3(b)] by creating a boson m ∈ M at
the A boundary using a local operator, moving it along a path
a connecting two A regions, and finally annihilating it using
a local operator. We denote such an operator as Wm(a) and
similarly Wm′ (b) for moving particle m′ ∈ M ′ between two B

regions. The commutation relation between Wm(a) and Wm′(b)
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FIG. 3. (Color online) (a) Non-contractible loops in the bilayer
system with 4 genons. Loop a is in the upper (blue) layer and loop b

runs from upper layer to the lower (orange) layer across the branch
cuts. After folding, the genons become domain walls between dif-
ferent gapped edges, and the non-contractible loops become Wilson
lines that terminate on the boundaries. (b) The general Wilson lines in
a system with boundary defects and point defects. Line a (b) defines
the unitary operator Wm(a) [Wm′ (b)] which corresponds to adiabatic
motion of bosonic quasiparticle m (m′) along the paths a (b).

is determined by the mutual statistics of particles m and m′,
which is nontrivial when M and M ′ are different Lagrangian
subgroups:

Wm(a)Wm′(b) = Wm′(b)Wm(a)e2πimT K−1m′
. (2)

Since these operators leave the system in the ground-state
subspace, the ground states must form a representation of this
algebra.

The degeneracy D required by one pair of non-contractible
intersecting lines a,b is the dimension of the minimal repre-
sentation of the algebra (2), which can be obtained by acting
one set of operators, such as {Wm(a)}, on the eigenstates of the
other set {Wm′(b)}. On a boundary with 2n defects between n

pairs of alternating A and B regions, there will be n − 1 pairs
of noncommuting line operators satisfying the same algebra
as above, leading to a degeneracy Dn−1. Therefore each point
defect has a quantum dimension of d = √

D.

If fermions exist microscopically, there may be an addi-
tional

√
2 factor in the quantum dimension, originating from

the Majorana zero modes of purely one-dimensional physics,28

which is independent of the above analysis.
Localized zero modes. A key feature of the point defects is

that they localize a nonzero density of states at zero energy
for a certain subgroup of quasiparticles. Such zero modes
have been studied for specific types of defects,5,11,12 and here
we show that they exist in general point defects. Consider
a point defect at x = 0 between two boundary regions A

at x < 0 and B at x > 0, which are labeled by Lagrangian
subgroups M and M ′. For quasiparticles m ∈ M,m′ ∈ M ′, the
boson creation operators χm(−ε) = eimI φI (−ε) and χm′ (ε) =
eim′

I φI (ε) for ε > 0 create condensed quasiparticles in A and B

regions, respectively. Therefore χm(−ε)χm′(ε) preserves the
ground-state manifold. Taking the limit ε → 0 we obtain a
local operator at the point defect γl ≡ limε→0+ χm(−ε)χm′(ε)
with l = m + m′. By construction, bilinear combinations of γl

on different defects preserve the ground-state manifold, which
means γl is a zero-mode operator. The zero-mode creation
process can be understood as the emission of a quasiparticle
l which has fractional statistics, as is illustrated in Fig. 3(c).
The zero modes γl are generalizations of the parafermion zero
modes29–31 studied in Refs. 5,8,11–13.

These zero modes can be braided by tuning their interac-
tions, as discussed for specific examples in Refs. 5,11–13,32,
33. This leads to a notion of projective non-Abelian statistics
for these defects; a general analysis for generic defects will be
presented in a later work.34

Recently, we learned that some of the results on the
classification of line defects have been independently found
by Levin and included in Appendix A 3 of Ref. 21.
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