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Finite-temperature conductance of interacting quantum wires with Rashba spin-orbit coupling

Thomas L. Schmidt
Department of Physics, University of Basel, Klingelbergstrasse 82, CH-4056 Basel, Switzerland

(Received 26 June 2013; revised manuscript received 29 November 2013; published 23 December 2013)

We calculate the finite-temperature conductance of clean, weakly interacting one-dimensional quantum wires
subject to Rashba spin-orbit coupling and a magnetic field. For chemical potentials near the center of the
Zeeman gap (μ = 0), two-particle scattering causes the leading deviation from the quantized conductance at
finite temperatures. On the other hand, for |μ| > 0, three-particle scattering processes become more relevant.
These deviations are a consequence of the strongly nonlinear single-particle spectrum, and are thus not accessible
using Luttinger liquid theory. We discuss the observability of these predictions in current experiments on InSb
nanowires and in “spiral liquids,” where a spontaneous ordering of the nuclear spins at low temperatures produces
an effective Rashba coupling.
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I. INTRODUCTION

The electronic properties of one-dimensional interacting
quantum wires have fascinated theorists and experimentalists
for a long time. In recent years, a lot of effort has been
devoted in particular to the investigation of quantum wires
with strong Rashba spin-orbit coupling (SOC), mainly because
these “Rashba wires,” in the presence of a magnetic field
and induced superconductivity, have been predicted to host
Majorana bound states.1,2 Evidence for the latter has recently
been reported in experiments.3–5

Similar effects are also expected in a different class of
materials without Rashba SOC. It was predicted several years
ago that interactions between conduction electrons and nuclear
spins can lead to a spontaneous magnetic ordering of the latter.6

Their helical magnetic field acts back on the electrons and leads
to the formation of a so-called spiral liquid with features very
similar to those of a Rashba wire.7 Experimental evidence
of this effect has been reported very recently using transport
measurements on GaAs quantum wires.8 From a theoretical
point of view, spiral liquids and Rashba wires are related via a
simple unitary transformation, so the results of this paper are
also valid for spiral liquids.

A magnetic field lifts the spin degeneracy and causes a
Zeeman shift of the single-particle spectrum. For chemical
potentials inside the Zeeman gap, the transport properties of
Rashba wires have been investigated using Luttinger liquid
theory.6,7,9–11 Interactions can be taken care of with bosoniza-
tion, but the magnetic field and Rashba SOC produce terms
which cannot be diagonalized exactly. Nevertheless, progress
has been made using renormalization-group arguments, and
the zero-temperature conductance has been calculated at
arbitrary interaction strength.6,11 For a Rashba wire connected
to noninteracting leads, the conductance was predicted to
be quantized, G = e2/h, independently of the interaction
strength. This agrees with the Luttinger liquid predictions
about conventional wires.12–14

The cornerstone of Luttinger liquid theory is the lineariza-
tion of the single-particle spectrum near the Fermi points.15

While this is an excellent approximation for calculating many
thermodynamic properties at low energies, some effects such
as relaxation and equilibration are missed by linearizing the

spectrum.16–21 It was shown for conventional one-dimensional
(1D) wires that equilibration processes which change the num-
bers of left-moving and right-moving fermions are essential
for understanding the conductance at finite temperatures.22–27

Whereas Luttinger liquid theory for a spinful system predicts
a temperature-independent quantized conductance G = 2G0,
where G0 = e2/h is the conductance quantum, electron-
electron interactions in the presence of a quadratic spectrum
lead to a deviation δG ∝ −W 4Le−EF /T from the quantized
conductance, where W is the interaction strength, L is the
system length, T is the temperature, and EF is the Fermi
energy.22 For short wires, this correction is usually small
because EF � T .

In the following, we shall calculate the conductance of
a one-dimensional Rashba wire in a magnetic field using a
perturbative approach in the interaction strength. For chemical
potentials μ in the Zeeman gap we find that the nonlinearity of
the single-particle spectrum enables equilibration processes
which lead to a temperature-dependent correction to the
conductance. Due to the nonparabolic form of the single-
particle spectrum, the conductance correction for μ = 0 is
mostly due to two-particle scattering. At low temperatures it is
of order δG ∝ −W 2Le−Bz/T , where Bz is the Zeeman energy.
For 0 < |μ| < Bz, on the other hand, three-particle scattering
provides the leading contribution, δG ∝ −W 4Le−Bz/T e|μ|/T .
For Zeeman energies Bz � EF , the deviation from the
quantized conductance is therefore much larger than for
conventional wires without SOC and magnetic field.

It is well known that disorder can lead to a strong
deviation from the quantized conductance in 1D systems at low
temperatures.15 The impact of disorder on the conductance of
Rashba wires has already been investigated, in particular with
regard to the effect on the observability of Majorana bound
states.28,29 In this paper, in contrast, we focus on wires shorter
than the mean free path, where the effect of disorder can be
neglected. While mean free paths in InSb Rashba wires are
still of the order of 300 nm,3 much longer mean free paths of
the order of 20 μm can be achieved in GaAs quantum wires,
which can host spiral liquids.8

The structure of this paper is a follows. In Sec. II, we
shall introduce the necessary kinetic equation and boundary
conditions, and use it for the calculation of the conductance of a
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noninteracting Rashba wire at finite temperature. In Sec. III, we
will use perturbation theory in the electron-electron interaction
to find corrections to the conductance. In Sec. VI, we shall
demonstrate how the results on Rashba wires carry over to
a system with nuclear spin order, and in Sec. VII, we shall
summarize our results.

II. KINETIC EQUATION

The Hamiltonian of the noninteracting Rashba wire is given
by (we set � = kB = 1 in the following)

H0 =
∑

k

�
†
k

(
k2

2m
− μ − Bz αRk

αRk k2

2m
− μ + Bz

)
�k, (1)

where �k = (
ψ↑,k,ψ↓,k

)T
is a spinor containing spin-up and

spin-down fermions. The strength of the Rashba SOC in
the x direction is given by αR � 0; the magnetic field in
the z direction leads to the Zeeman energy Bz � 0. For
αR = Bz = 0, the spectra of spin-up and spin-down particles
are quadratic and degenerate. A nonzero Rashba coupling αR

shifts the parabolas for both spin species relative to each other.
The perpendicular magnetic field opens a Zeeman gap of width
2Bz at k = 0. The effects we are investigating are strongest for
|μ| < Bz, so we will consider chemical potentials inside the
Zeeman gap in the following. Such chemical potentials have
already been reached in experiments.3

The Hamiltonian H0 can easily be diagonalized,

H0 =
∑

k

∑
α=±

[εα(k) − μ]ψ†
α,kψα,k, (2)

with eigenenergies and eigenstates given by, respectively,

ε±(k) = k2

2m
±

√
B2

z + α2
Rk2,

(3)(
ψ+,k

ψ−,k

)
=

(
sin ξ (k)

2 cos ξ (k)
2

cos ξ (k)
2 − sin ξ (k)

2

)(
ψ↑,k

ψ↓,k

)
,

where ξ (k) = arctan(αRk/Bz) ∈ [−π/2,π/2]. The relation
between the energy eigenstates ψα,k (α = ±) and the spin
eigenstates ψσ,k (σ = ↑,↓) corresponds to a rotation of the spin
quantization axis with momentum. The shape of the spectrum
ε−(k) depends crucially on the dimensionless Rashba energy

ε̂R = mα2
R

Bz

. (4)

For ε̂R > 1, ε−(k) is no longer convex. The spectrum as well as
the spin orientation for the case ε̂R � 1 are depicted in Fig. 1.

The zero-bias conductance of a noninteracting Rashba wire
can easily be calculated using the Kubo formula. The current
operator follows from the continuity equation ∂tρ(x,t) +
∂xI (x,t) = 0, where ρ(x) = ∑

σ ψ†
σ (x)ψσ (x) denotes the total

density,

I = − 1

2mi

∑
σ

(∂xψ
†
σψσ − ψ†

σ ∂xψσ ) + αR

∑
σ

ψ†
σψ−σ . (5)

The Kubo formula G = ie2

ω
R(x = 0,ω) makes it pos-

sible to determine the conductance by calculating the

FIG. 1. (Color online) Single-particle spectra ε±(k) for weak
magnetic fields (ε̂R � 1). The color coding and the arrows show
the rotation of the spin quantization axis as a function of momentum.
The chemical potential is in the Zeeman gap, |μ| < Bz.

retarded current-current correlation function30 R(x,t) =
−iθ (t)〈[I (x,t),I (0,0)]〉. At zero temperature,

G(T = 0)

G0
=

⎧⎪⎨
⎪⎩

2 for μ > Bz,

1 for − Bz < μ < Bz,

2 for − εmin < μ < −Bz,

0 for μ < −εmin,

(6)

where

εmin

Bz

=
{

ε̂R

2 + 1
2ε̂R

for ε̂R > 1,

1 for ε̂R � 1.
(7)

In the regime −Bz < μ < Bz, the spectrum becomes partially
gapped, and the resulting conductance is reduced by a
conductance quantum compared to the conductance above the
gap.6

A similar calculation can be done for nonzero temperatures,
but to set the stage for the discussion of interacting systems,
we rederive the result using the kinetic (Boltzmann) equation.
This equation is semiclassical and can be used if the mean
free path is long compared to the Fermi wavelength, and the
temperature exceeds the inverse lifetime of the particles.31

These conditions are fulfilled for clean, weakly interacting
quantum wires.

In the presence of Rashba SOC and magnetic field, the
single-particle states ψα,k diagonalize H0. Therefore, we
introduce the functions fα(k,x), which denote the distribution
of particles in the “channel” α = +,− with momentum k

at position x. The effect of interactions is contained in the
collision integral

Iα(k,[f+(x),f−(x)]), (8)

which determines the number of particles scattered into the
state ψα,k per unit time, given certain distribution functions
f±(k′,x). We consider the limit of what was called “very
short wires” in Ref. 24. In this limit, the distribution functions
are position dependent because electrons do not have enough
space to fully equilibrate after entering the wire from the
reservoirs. We will show below that this is indeed the
appropriate limit for recent experiments on Rashba wires.3–5,8
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The distribution functions satisfy a coupled kinetic equation
for the two channels (α = +,−),

vα(k)∂xfα(k,x) = Iα(k,[f+(x),f−(x)]), (9)

where vα(k) = ∂εα(k)/∂k is the group velocity of a particle
with momentum k in channel α. The presence of metallic
contacts leads to boundary conditions for the distribution
functions at the ends of the wire. We consider (reflectionless)
adiabatic contacts,32,33 so right movers (left movers) at
position x = −L/2 (x = L/2) are in thermal equilibrium with
the left (right) reservoir. For ε̂R > 1, the spectrum ε−(k) has
two distinct minima (see Fig. 3) and one needs to distinguish
between |k| > kmin and 0 < |k| < kmin for particles in the
lower channel, where

kmin =
{

Bz

αR

√
ε̂2
R − 1 for ε̂R > 1,

0 for ε̂R � 1
(10)

is the momentum where ε−(k) reaches its minimum. The
boundary conditions read

f+(k,−L/2) = nF [ε+(k) − μ+] for k > 0,

f−(k,−L/2) = nF [ε−(k) − μ+] for k > kmin,

f−(k,−L/2) = nF [ε−(k) − μ+] for − kmin < k < 0,
(11)

f+(k,+L/2) = nF [ε+(k) − μ−] for k < 0,

f−(k,+L/2) = nF [ε−(k) − μ−] for k < −kmin,

f−(k,+L/2) = nF [ε−(k) − μ−] for 0 < k < kmin,

where μ+ (μ−) denotes the chemical potential of the left (right)
reservoir, and nF (ω) = (eω/T + 1)−1 is the Fermi function.
We use μ± = μ ± eV/2, where V is the applied bias voltage.
Once the distribution functions are known, the linear-response
current (eV � T ,Bz) is obtained by

〈I (x)〉 = e

L

∑
k

∑
α=±

vα(k)fα(k,x). (12)

Without interactions, the collision integral I vanishes.
According to Eq. (9), the unperturbed distribution functions
f (0)

α (k) then become position independent, and therefore
coincide with their respective boundary values (11) along
the entire wire. Physically, this happens because for clean,
noninteracting wires, the electrons retain the energy of the
reservoir they originated from. Using the functions f (0)

α (k) in
Eq. (12), the conductance G = 〈I 〉/V at V = 0 becomes

G(T )

G0
= 2nF (−εmin − μ) + ∑

η=± η nF (ηBz − μ). (13)

Taking T → 0 at fixed Bz and εmin leads back to Eq. (6).
Let us discuss briefly the case μ = 0 for ε̂R > 1. Starting
from G = G0 at T = 0, a finite temperature first increases
the conductance beyond G0. The conductance then reaches
a maximum for T ≈ Bz because an additional transport
channel becomes available. At even higher temperatures T ≈
εmin, the finite bandwidth becomes important and reduces
the conductance again. A plot of the conductance of the
noninteracting system is shown in Fig. 2.

FIG. 2. (Color online) Linear conductance of a noninteracting
Rashba wire for chemical potential μ = 0 as a function of temperature
T and magnetic field Bz.

III. INTERACTING WIRES

Next, we take into account the electron-electron interac-
tions. We assume that the electrons interact via a density-
density interaction of the form

Hint =
∫

dxdyW (x − y)ρ(x)ρ(y). (14)

Because the wire is short and interactions are weak, we can
expand to lowest order in the correction to the distribution
function δfα(k,x) = fα(k,x) − f (0)

α (k). The boundary condi-
tions (11) are already satisfied by the unperturbed solutions
f (0)

α (k), so δfα(k,x) vanishes at the boundaries. This allows
us to express the correction to the average current due to the
interactions in terms of the collision integral,

δI = e

2

∑
k

∑
α=±

ζα(k)Iα(k,[f (0)
+ ,f

(0)
− ]), (15)

where ζα(k) denotes the chirality of particles with mo-
mentum k in channel α, i.e., ζ+(k) = sgn(k) and ζ−(k) =
sgn(k) sgn(|k| − kmin). The expression for δI has a simple
physical interpretation: a particle scattered into a state with
momentum k > 0 (k < 0) in the upper channel is a right mover
(left mover) and thus contributes a positive (negative) current.
Similarly, scattering a particle into a state with momentum k

in the lower channel gives a positive current if k > kmin or
−kmin < k < 0, and a negative current otherwise.

For a scattering process with n incoming particles (de-
noted by subscripts i1, . . . ,in) and n outgoing particles
(f 1, . . . ,f n), the collision integral reads22,34

I (n)
α (k,[f (0)

+ ,f
(0)
− ]) = −

∑
αiαf kikf

P
(n)
i→f δ(εf − εi)

× [
f

(0)
i1 · · · f (0)

in

(
1 − f

(0)
f n

) · · · (1 − f
(0)
f 1

)
− (

1 − f
(0)
i1

) · · · (1 − f
(0)
in

)
f

(0)
f 1 · · · f (0)

f n

]
.

(16)
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The channel indices of the incoming (outgoing) particles are
denoted by αi(1...n) (αf (1...n)) and their momenta are ki(1...n)

(kf (1...n)). The external channel and momentum are α ≡ αi1,
k ≡ ki1, and the summation is over the remaining variables
ki = ki2...n, kf = kf 1...n, and analogously for αi and αf . The
Dirac-δ function takes care of energy conservation, with initial-
state and final-state energies given by

εi =
n∑

j=1

εαij
(kij ), εf =

n∑
j=1

εαfj
(kfj ). (17)

Moreover, f
(0)
j ≡ f (0)

αj
(kj ) denotes the unperturbed distribu-

tion functions determined from Eq. (11). Finally, the transition
probability between the initial and the final state follows from
Fermi’s “golden rule,”

P
(n)
i→f = 2π |〈f |T̂ |i〉|2, (18)

where T̂ = Hint + Hint(εi − H0)−1T̂ denotes the T matrix, and
|i〉 and |f 〉 are the initial and final state, respectively,

|i〉 = ψ
†
αi1,ki1

· · · ψ†
αin,kin

|0〉,
(19)

|f 〉 = ψ
†
αf 1,kf 1

· · ·ψ†
αf n,kf n

|0〉,
where |0〉 is the vacuum state. As the Hamiltonian H0 + Hint

conserves momentum, the matrix element in Eq. (18) is
nonzero only for initial and final states with the same total
momentum. The bias voltage V is contained in the Fermi
functions in f

(0)
j . For the calculation of the linear conductance,

we expand the current correction due to n particle scattering
to the first order in V , and obtain

δI (n) = −βe2V

2

∑
αiαf

∑
ki1>0

∑
ki2...nkf

sgn(ki1+αi1kmin)P (n)
i→f δ(εf −εi)

×F (n)(αi,αf ,ki,kf )
n∑

j=1

[
ζαij

(kij ) − ζαfj
(kfj )

]
, (20)

and the remaining equilibrium Fermi distributions are con-
tained in

F (n)(αi,αf ,ki,kf )

=
n∏

j=1

nF

[
εαij

(kij ) − μ
]{

1 − nF

[
εαfj

(kfj ) − μ
]}

. (21)

It follows from the sum in the second line of Eq. (20) that
δI (n) �= 0 only if the numbers of right movers and left movers,
NR and NL, change during a scattering process. This restricts
the scattering processes which need to be considered. Even
though nontrivial scattering processes involving only, say,
right movers are kinematically possible and relevant for the
relaxation properties of the system,18,25 they do not change
the average current. Therefore, for weak interactions, it is
sufficient to only consider processes with change NR and NL.

Since the total momentum is conserved, scattering pro-
cesses among particles near the Fermi points conserve NR

and NL and thus cannot change the current. Therefore, states
away from the Fermi points must be involved in the scattering.
Due to the Fermi functions in Eq. (21), this means that for
chemical potentials |μ| < Bz, the correction to the current will

be exponentially suppressed as a function of temperature. In
the following, we will use perturbation theory in the interaction
strength to determine the current correction to the leading and
next-to-leading order. In a given order of perturbation theory,
we will consider those processes for which the exponential
suppression is weakest.

For fermions with quadratic spectrum, energy and momen-
tum conservation would entail that pair collisions can only lead
to a permutation of the momenta of the particles. The spectra
ε±(k), on the other hand, strongly deviate from a parabolic
form and thus allow particles to scatter in nontrivial ways.
In particular, this means that there is a qualitative difference
between the scattering probabilities for weak magnetic fields,
in which case ε−(k) has a local maximum at k = 0, and for
strong magnetic fields, in which case ε±(k) start to resemble
Zeeman shifted parabolas. Therefore, we will discuss these
two limits separately in the following.

IV. WEAK MAGNETIC FIELDS

Interactions have a particularly strong effect on the con-
ductance for weak magnetic fields, i.e., ε̂R = mα2

R/Bz � 1,
because the lower channel ε−(k) develops a local maximum at
k = 0.

The position of the Fermi energy μ is crucial for de-
termining the kinematically allowed scattering processes.
For μ ≈ 0, two-particle scattering is possible and yields a
conductance correction δG ∝ −W 2Le−Bz/T e−|μ|/T already to
the second order in the interaction amplitude. These processes
are strongest at μ = 0, and become suppressed for |μ| >

0. In contrast, three-particle scattering yields a correction
δG ∝ −W 4Le−Bz/T e|μ|/T . Because of this weaker exponential
suppression, three-particle processes therefore become the
most relevant scattering mechanism for |μ| → Bz. In the
following, we will describe the conductance corrections due to
two-particle and three-particle scattering processes for weak
magnetic fields, ε̂R � 1.

A. Two-particle scattering

To the leading order in the interaction strength, we use
T̂ = Hint in the scattering probability (18). This corresponds
to considering a single scattering event, so the initial and final
states |i〉 and |f 〉 each contain two particles. Let us consider
the consequences of energy and momentum conservation
for this type of scattering. The most relevant processes
at low temperatures involves initial or final states with particles
near the Fermi points k ≈ ±kF . Nontrivial scattering processes
are possible, e.g., if one of the initial particles is near the
right Fermi point and the other one near the left Fermi point,
such that the total initial momentum is close to zero. In that
case, these two particles can scatter into two particles with
momenta close to k = 0, one in the upper channel and one in
the lower channel. The latter two can have the same chirality,
so scattering can change NR and NL. An example of such a
process is depicted in Fig. 3.

Obviously, the bottleneck for this process is the existence
of an empty state near k = 0, i.e., below the Fermi energy.
The probability of finding such a state at k = 0 for μ = 0
is proportional to e−Bz/T . As a consequence, the conductance
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FIG. 3. (Color online) Two-particle scattering process for μ ≈ 0.
This process contributes to the conductance correction because it
changes the numbers of right and left movers.

correction at low temperatures is given by (for μ = 0, ε̂R � 1,
and T < Bz)

δG(μ = 0)

G0
≈ −n0

(
W (kF )

αR

)2 (
LBz

αR

) √
T

Bz

e−Bz/T , (22)

where n0 ≈ 3 is a numerical prefactor which arises from an
integral over a product of Fermi functions; see Eq. (16).

To understand the nontrivial temperature dependence of
Eq. (22) physically, we consider a simplified model where we
linearize the spectrum near the two Fermi points ±kF , and
approximate it as parabolic near k = 0,

ε−(k) = vF (±k − kF ) (for k ≈ ±kF ),
(23)

ε±(k) = k2

2m±
± Bz (for k ≈ 0),

where vF = ∂kε−(k)|k=kF
is the Fermi velocity. Moreover, in

the limit ε̂R � 1, we can use m+ ≈ −m− ≡ m∗, where m∗ =
m/ε̂R > 0 is an effective band mass which is much smaller
than the mass m of the physical fermions. Let us denote the
momenta of the initial state particles in the lower channel
near the Fermi points by ki1 = kF + pi1 and ki2 = −kF +
pi2. The final-state particle f 1 (f 2) is in the lower (upper)
channel and has momentum pf 1 (pf 2), where |p(i,f )(1,2)| �
kF . For given initial-state momenta, energy and momentum
conservation allow a unique final-state momentum,

pf 1 = p − m∗vF q

2p
, (24)

where p = (pi1 + pi2)/2 and q = pi1 − pi2 denote center-
of-mass and relative momentum, respectively, of the initial-
state particles. To generate a current correction, both final-
state particles must have the same chirality. The corresponding
condition pf 1pf 2 < 0 translates to

p2 <

∣∣∣∣m∗vF q

2

∣∣∣∣. (25)

The bottleneck for this process is the generation of the final-
state particle f 1 deep in the Fermi sea. Due to the Fermi
function, this probability is suppressed as exp{−[p2

f 1/(2m∗) +
Bz]/T } at low temperatures. This makes it favorable to create

the particle at pf 1 = 0. According to Eq. (24), this corresponds
to the upper limit allowed by Eq. (25).

The temperature dependence of Eq. (22) can now be
understood as follows: the total scattering probability of a
given incoming particle involves three integrations over the
momenta of the three other particles. Two of these integrals
are canceled by energy and momentum conservation, leaving
one integration over a momentum range of width ∝ T/vF .
The energetically most favorable process involves creating a
particle at pf 1 ≈ 0 with energy εf 1 � −Bz. Due to the Van
Hove singularity in the density of states at energy −Bz, the
probability for finding an available state at energy εf 1 is given
by eεf 1/T /

√|εf 1 + Bz|. The integration over a small range of
energies 0 < εf 1 + Bz < T thus yields the

√
T e−Bz/T in the

prefactor of Eq. (22).
For μ �= 0 the two-particle scattering processes illustrated

in Fig. 3 are suppressed: for μ < 0, the energy of the initial
state is insufficient to create a final-state particle in the lower
channel at pf 1 = 0 and a final-state particle in the upper band.
On the other hand, for μ > 0, the energy would be sufficient,
but the final-state particle in the lower channel at pf 1 = 0 now
lies deeper in the Fermi sea. In either case, this leads to an
additional exponential suppression δG ∝ −e−Bz/T e−|μ|/T . In
this limit |μ| � Bz, it turns out that three-particle scattering
may contribute a stronger correction to the conductance.

B. Three-particle scattering

Three-particle scattering becomes the leading contribution
for |μ| � Bz. A possible process is shown in Fig. 4. It starts
with an initial state containing two particles at opposite Fermi
points, and one particle at k ≈ 0. The final state still contains
two particles at opposite Fermi points, but the particle near
k ≈ 0 has changed direction. Thus, this process contributes to
the current correction.

The collision integral for three-particle scattering is anal-
ogous to Eq. (16), but it requires taking into account the
T -matrix expansion up to the second order in Hint. Using
Wick’s theorem for the transition probabilities P

(3)
i→f yields a

large number of terms which encompass all possible direct
and exchange diagrams. After identifying and calculating all
contributing diagrams, the collision integral (16) yields the

FIG. 4. (Color online) Three-particle scattering process for
|μ| < Bz. This process contributes to the conductance correction
because it changes the numbers of right and left movers.
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current correction via Eqs. (9) and (12). Due to the large
number of second-order diagrams involved, the analytic result
becomes very lengthy and depends on the details of the
interaction potential W (k). In order to simplify the calculation,
we consider two particular interaction potentials.

First, let us consider the case of a pointlike interaction po-
tential, W (k) = W . Since Rashba spin-orbit coupling destroys
the integrability of the system, scattering can even arise for this
type of potential. As a consequence, one obtains (for |μ| � Bz,
ε̂R � 1, and T < Bz − |μ|)

δG

G0
= −n1

(
W

αR

)4(
LBz

αR

)(
T

Bz

)3

e−Bz/T e|μ|/T , (26)

where n1 ≈ 35. The pointlike interaction potential allows scat-
tering processes for which the matrix elements remain finite
even at zero energy. Therefore, the temperature dependence
can be understood as follows: the scattering probability for an
incoming particle involves five integrations over the momenta
of the remaining particles. Two of these are canceled due to
energy and momentum conservation, and the three remaining
ones produce the factor T 3.

Moreover, let us consider the case of a long-ranged potential
where W (kF ) � W (0), such that W (kF ) is negligible. This
condition can be fulfilled for a screened Coulomb potential.
To the fourth order in the interaction strength, one then finds
(for |μ| � Bz, ε̂R � 1, and T < Bz − |μ|),

δG

G0
= −n′

1

(
W (0)

αR

)4(
LBz

αR

)(
T

Bz

)7

e−Bz/T e|μ|/T , (27)

where n′
1 ≈ 103. This result is more strongly suppressed for

low temperatures than Eq. (26) because scattering processes
which involve a momentum exchange kF are no longer
possible. The strongest scattering process at low temperatures
involves an intermediate state where the initial-state particle at
k ≈ 0 is scattered into a virtual state at momentum k′ ≈ 0 in the
opposite channel. Due to the spin structure of the eigenstates,
see Eq. (3), the corresponding amplitude has a prefactor[

sin

(
ξ (k) − ξ (k′)

2

)]2

∝
[

αR

2Bz

(k − k′)
]2

(28)

for |k|,|k′| � Bz/αR . Therefore, the scattering probability
contributes another factor ∝ T 4 compared to Eq. (26). This
explains the prefactor ∝ T 7 in Eq. (27).

C. Experimental visibility in Rashba wires

Let us briefly assess the experimental visibility of the
correction (22) in a Rashba wire using the parameters of Ref. 3.
We consider a clean InSb wire with length L ≈ 2 μm, Rashba
SOC αR = 0.2 eV Å and Zeeman energy Bz = 1.5B meV/T,
where B is the magnetic field. In the limit of weak magnetic
fields and for μ ≈ 0, we can assume vF ≈ αR for the Fermi
velocity.35 A Luttinger parameter K ≈ 0.9, which corresponds
to weak interactions, then leads to W (kF ) ≈ vF /2. Assuming a
temperature T ≈ 50 mK, the correction δG/G0 ≈ −0.03 for
magnetic fields B ≈ 5 mT (such that Bz/T ≈ 1.7). Therefore,
for Zeeman energies Bz � T the correction δG is significant.
Moreover, due to its length dependence, the interaction
contribution (22) can be experimentally distinguished from

the (length-independent) noninteracting correction (13) by
comparing wires of different lengths. In addition, adapting the
estimates of Ref. 24 and using the same parameters, one finds
that the maximum length up to which our model of “very short
wires” applies is l0 ≈ 8 μm, so this limit is indeed appropriate
for current experiments.

V. STRONG MAGNETIC FIELDS

Finally, let us consider briefly the limit of strong magnetic
fields, ε̂R = mα2

R/Bz � 1. In this case, Zeeman splitting
dominates over the Rashba SOC, so the spectrum becomes
increasingly parabolic. In particular, the local maximum of
ε−(k) at k = 0 turns into a global minimum and ε±(k) become
convex functions of momentum. The leading process at low
temperature is again brought about by scattering two particles
near ±kF from the lower channel into a final state which
contains one particle in the upper channel, and one particle in
the lower channel near k = 0.

Since one of the scattered particles must flip its spin, this
correction vanishes for αR = 0. To leading order in αR , one
finds (for μ = 0, ε̂R � 1, and T < Bz)

δG(μ = 0)

G0
≈ −n2

(
mα2

R

Bz

)(
mW (kF )2

Bz

)

×
√

mBzL2

(
T

Bz

)
e−Bz/T , (29)

where n2 ≈ 1.25. The correction due to two-particle scattering
again decreases exponentially for μ �= 0, δG ∝ e−Bz/T e−|μ|/T .

The temperature dependence of Eq. (29) can be understood
physically as follows. Similarly to Eq. (23), we first linearize
the spectrum near |k| ≈ kF and approximate it to quadratic or-
der near k ≈ 0, but in this case m+ ≈ m− ≈ m. In terms of the
center-of-mass momentum p and the relative momentum q of
the initial-state particles, energy and momentum conservation
admit two possible momenta for the final-state particle in the
lower band,

pf 1,± = p ±
√

mvF q − p2. (30)

Scattering is thus possible if q > 0 and p2 < mvF q. Moreover,
the condition that the two particles in the final state have the
same chirality (pf 1pf 2 > 0) now translates to p >

√
mvF q/2.

As a consequence, scattering which changes the current is
possible in the range√

mvF q

2
< p <

√
mvF q. (31)

The probability for finding an empty state in the lower channel
near k ≈ 0 is proportional to eεf 1/T , where εf 1 = p2

f 1/(2m) −
Bz < 0. This makes it favorable to create the final-state particle
in the lower channel at the highest allowed momentum, i.e.,
pf 1 = √

2mvF q. Note that in contrast to the discussion after
Eq. (25), there is no Van Hove singularity at this momentum.
Hence, a missing factor 1/

√
T compared to Eq. (22) indeed

gives a conductance proportional to T e−Bz/T .
For |μ| � Bz and ε̂R � 1, three-particle scattering yields

again the most important correction. For αR = 0 and point-
like interaction potential W (k) = const, the system becomes
integrable,36–38 and we find that the backscattering amplitude
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and thus the current correction vanishes. On the other hand,
for a generic finite-range interaction, a nonzero contribution
arises. For μ ≈ Bz (μ ≈ −Bz), the most relevant process
involves an initial state with two particles near the Fermi
points and one particle in the upper (lower) channel near
k = 0. Scattering with small momentum transfer changes the
direction of the particle at k = 0. For αR = 0, this process is
identical to the one considered in Ref. 22. One thus finds a
correction δG ∝ −e−Bz/T e|μ|/T , with a prefactor that depends
on the detailed form of the interaction potential W (k).22

VI. SYSTEMS WITH NUCLEAR SPIN ORDER

It was predicted several years ago that systems with nuclear
spins and hyperfine interaction, even in the absence of Rashba
spin-orbit coupling, can have physical properties which are
very similar to those of Rashba wires.6 This makes it possible
to realize the Hamiltonian (1), e.g., in conventional GaAs
systems.6 In these systems, an effective Rashba spin-orbit
coupling is produced by the interplay between the nuclear spins
and the conduction electrons, and the corresponding state has
been called a “spiral Luttinger liquid.”7 Indeed, the conduction
electrons allow distant nuclear spins to interact via the
Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction. At low
temperatures, this allows the nuclear spins to order in a helical
arrangement. The resulting helical magnetic fields acts back
on the conduction electrons, and has a similar effect as Rashba
spin-orbit coupling. Signatures of such a helical nuclear spin
ordering have recently been observed in experiments.8

The starting point is a spin-degenerate Hamiltonian for the
conduction-band electrons in a quantum wire,

H0 =
∑

σ

∫
dxψ†

σ (x)

(
− ∂2

x

2m
− μ

)
ψσ (x), (32)

with chemical potential μ = k2
F /(2m). The polarization of

the nuclear spins creates a helical magnetic field �B(x) =
B[cos(2kF x)�ex + sin(2kF x)�ey] which rotates with a wave
vector 2kF in the spin x-y plane. This corresponds to the
Hamiltonian6

HB =
∑
σσ ′

∫
dxψ†

σ (x)[ �B(x) · �S]σσ ′ψσ ′(x), (33)

where �S is the vector of Pauli matrices. The strength of the
magnetic field B depends on the hyperfine interaction and the
magnetization of the nuclear spins, which is in turn temperature

dependent. The Hamiltonian HB allows scattering of spin-
down particles with momentum near kF into spin-up particles
with momentum −kF , and vice versa, and thus opens a partial
gap at the Fermi points.

The unitary transformation U = eiA with A =
kF

∑
σ σ

∫
dxxψ†

σ ψσ maps the Hamiltonian H0 + HB

onto a Rashba Hamiltonian. A subsequent spin axis rotation
with the unitary transformation W = σxe

iπσy/4 makes the
resulting Hamiltonian identical to Eq. (1) with the parameters

αR = kF

m
= vF , Bz = B, μ = 0, (34)

where vF is the Fermi velocity. The mapping between spiral
liquids and Rashba systems works even in the presence of
density-density interactions, because the unitary transforma-
tion U commutes with the spin densities ψ†

σ (x)ψσ (x).
As the helical magnetic field is much smaller than the

Fermi energy, ε̂R � 1 is the experimentally relevant regime
for spiral liquids. Therefore, because μ = 0, we expect the
temperature-dependent conductance G(T ) of a clean, weakly
interacting spiral liquid at temperatures below the ordering
temperature of the nuclear spins to be described by Eq. (22)
with the parameters (34).

VII. CONCLUSIONS

In conclusion, we have calculated the temperature-
dependent conductance of a clean, weakly interacting quantum
wire subject to Rashba spin-orbit coupling and a perpendicular
magnetic field. We found that at nonzero temperatures,
interactions cause length-dependent corrections δG(T ) to the
quantized conductance, which are not captured by Luttinger
liquid theory because they rely on the nonlinearity of the
spectrum. For chemical potential μ = 0, two-particle scatter-
ing is the most important process. Three-particle processes
become increasingly relevant for |μ| � Bz. Using realistic
experimental parameters, we estimated that for μ = 0 the
correction δG should be experimentally observable for small
Zeeman energies Bz � T .
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