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Decoherence and lead-induced interdot coupling in nonequilibrium electron transport through
interacting quantum dots: A hierarchical quantum master equation approach
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The interplay between interference effects and electron-electron interactions in electron transport through an
interacting double quantum dot system is investigated using a hierarchical quantum master equation approach
which becomes exact if carried to infinite order and converges well if the temperature is not too low. Decoherence
due to electron-electron interactions is found to give rise to pronounced negative differential resistance, enhanced
broadening of structures in current-voltage characteristics, and an inversion of the electronic population.
Dependence on gate voltage is shown to be a useful method of distinguishing decoherence-induced phenomena
from effects induced by other mechanisms such as the presence of a blocking state. Comparison of results obtained
by the hierarchical quantum master equation approach to those obtained from the Born-Markov approximation to
the Nakajima-Zwanzig equation and from the noncrossing approximation to the nonequilibrium Green’s function
reveals the importance of an interdot coupling that originates from the energy dependence of the conduction
bands in the leads and the need for a systematic perturbative expansion.
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I. INTRODUCTION

Electron transport through nanoelectronic devices involves
fundamentally important principles which often result in
interesting technological applications.1,2 Resonant tunneling
diodes exhibit a nonlinear current-voltage response, in partic-
ular negative differential resistance, due to the quantization
of the respective energy levels.3–5 Quantum interference
phenomena may be used to control the current flow in
three-terminal nanoscale transistors6,7 and single-molecule
junctions.8 Interaction-driven phenomena such as, for ex-
ample, static or dynamical Coulomb blockade1,9,10 or the
Kondo effect11–13 also occur. While these phenomena have
been studied separately, the interplay between interference
phenomena, level quantization, and electron-electron interac-
tions in nanoelectronic devices has been less studied and is an
important open problem.

Interference effects may arise from a spatial separation
of tunneling pathways. As one of many examples, one
may mention quantum dot arrays set up as Aharonov-Bohm
interferometers.14–17 Quasidegenerate energy levels of a single
quantum dot may also be understood as separate tunneling
pathways and the respective conduction properties interpreted
in terms of quantum interference.8,18–26 Both scenarios may
be described by Hamiltonians that are nearly identical.

Interference may be strongly affected by electron-electron
interactions or coupling between electrons and vibrational
modes. Decoherence phenomena arising from electron-
vibrational mode coupling in quantum dot systems27,28 or
single-molecule junctions26,29 have been studied; one strik-
ing result is a pronounced temperature dependence of the
current.8,26,30 In quantum dot arrays, interference effects are
suppressed by spin-flip processes.15,31,32 A similar effect is
observed in InSb nanowires, where interaction- or correlation-
induced resonances occur.33–36

In this paper, we investigate the interrelation between
interference effects and electron-electron interactions in a
nonequilibrium nanoelectronic device modeled as a spinless

two-orbital Anderson impurity coupled to two leads, which
may be maintained at different chemical potentials. The
two-orbital Anderson model is perhaps the simplest model
where the interplay of interference effects and decoherence
phenomena due to electron-electron interactions can be
theoretically studied. It has been considered before by a
number of authors9,27,32–46 and may be physically realized
in a device where the spin degeneracy is lifted by an
external magnetic field or spin-polarized leads. Despite its
deceptively simple structure, the spinless Anderson impurity
model manifests a rich variety of physical phenomena, in-
cluding orbital/pseudospin-Kondo physics,37,40,41,45 popula-
tion inversion,34,44,47 negative differential resistance,38,39,42,48

Fano line shapes,17,49 interaction-induced level repulsion37,38

and resonances.33–36

While different realizations of this model are possible
(cf. Fig. 1), we focus in the following on two complemen-
tary cases, which show the most relevant and pronounced
interference effects. This includes scenarios where the two
dots (or localized orbitals) are coupled in either a serial or
a branched form, including only a weak coupling between
the two dots (see Fig. 1). Thereby, the corresponding eigen-
states are coupled to the electrodes in the same way as
two quantum dots in an Aharonov-Bohm interferometer14–17

such that the two realizations may also correspond to the
two extreme cases where the magnetic flux is π and zero,
respectively (in units of the flux quantum and modulo multiples
of 2π ).

In this work, we identify the finite bandwidth of the
leads as an important but previously poorly studied variable.
Our detailed results show that it can induce a coupling
between the eigenstates of the serial and branched realization
or, equivalently, between the dots of a corresponding AB
interferometer. This coupling gives rise to population inversion
and a strong renormalization of the corresponding signatures
in the transport characteristics, in particular an enhanced
broadening. It is similar to Ruderman-Kittel-Kasuya-Yosida
(RKKY) (spin-spin) interactions in solids50–54 and has also
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FIG. 1. Schematic representation of the nanoelectronic device
that is considered in the text. It consists of two quantum dots (QD) that
are coupled with each other and to a left (L) and a right (R) electrode.
In this work, the interdot coupling is assumed to be nonzero and
smaller than the coupling to the leads 0 < �ε/2 � νx , x ∈ {a,b,c,d}.
Two cases of particular interest are coupling in a serial (νa = νd �= 0,
νb = νc = 0) and a branched form (νa = νb �= 0, νc = νd = 0).

been referred to in the literature as an indirect coupling,41,45

where, however, it is associated with the fact that the
two eigenstates/dots are coupled to the same leads rather
than the energy dependence of the respective conduction
bands.

Electron transport through such nanoelectronic devices has
been studied using approximate methods such as second-55–61

and higher-order39,62–64 master equation methodologies, real-
time diagrammatic techniques,38,65–67 nonequilibrium Green’s
function methods,43,59,68–73 and (nonequilibrium) scatter-
ing state approaches.74 Numerically exact schemes based
on time-convolutionless master equations,75 numerical76–78

and functional33,79 renormalization group theory,35 density
matrix renormalization group methods,80–82 flow equation
approaches,83–85 iterative86–88 and stochastic89–93 diagram-
matic methods, and wave-function propagation algorithms94,95

have also been used. Additionally, numerically exact reduced
dynamics techniques, which exist for population dynamics96

and transport properties,97 have been applied to both the
stochastic diagrammatic methods98 and the wave-function
propagation schemes.99

Our studies are based on the hierarchical quantum master
equation (HQME) approach introduced by Jin et al.100 and
modified by us in several ways, of which the most important
is the use of a truncation scheme different from that proposed
in Ref. 101. The HQME method is in effect a perturbative
expansion in powers of the dot-lead hybridization divided by
the temperature; if carried to infinite order it is exact, and if
the temperature is not too low, convergence can be verified
numerically. The advantages of the HQME method are that
it is time convolutionless, nonperturbative in the electron-
electron interaction and gives numerically exact access to
the steady-state properties of nanoelectronic devices even in
situations (such as those involving quasidegenerate levels)75

where electronic relaxation time scales can become relatively
long.

For comparison, we also employ two approximate methods:
the Born-Markov (BM) master equation method55,59,61,102–105

and a noncrossing approximation (NCA) calculation of the

nonequilibrium Green’s function.93,106–114 The comparison
reveals the importance of a systematic (hybridization) ex-
pansion. In addition, it allows us to assess the role of
renormalization and interstate/interdot coupling effects arising
from finite-lead bandwidths (which is typically neglected)
and the differences arising from different choices of lead
density of states. Note that, only recently, the HQME frame-
work was compared to master equation and nonequilibrium
Green’s function approaches in Ref. 115, where simple
(i.e., noninteracting) time-dependent transport problems were
studied.

The paper is organized as follows. In Sec. II, we outline the
theoretical methodology, including a brief description of the
spinless Anderson impurity model (Sec. II A), the HQME ap-
proach (Sec. II B), the BM master equation scheme (Sec. II C),
and the NCA-based Green’s function scheme (Sec. II D). Our
results are presented in Sec. III, where we discuss the transport
characteristics of the serial (Sec. III A) and the branched
(Sec. III B) realizations of the spinless two-orbital Anderson
model. On the single-particle level, the parallel realization
exhibits constructive interference. Here, the effect of (repul-
sive) electron-electron interactions can be readily understood
as a blocking of transport channels in this system. In contrast,
the serial conduction case shows pronounced destructive
interference- and decoherence-induced phenomena which are
analyzed in detail in Secs. III A 1–III A 3. Section III A 4 then
examines the consequences of an asymmetric coupling to
the electrodes, while Sec. III A 5 presents the gate-voltage
dependence of the decoherence effects discussed here. A
comparison to other systems which show negative differential
resistance due to the effect of electron-electron interactions is
given in Sec. III A 6. In Sec. III A 7, we consider the robustness
of our conclusions under varying the lead density of states.
Section III A 8 includes a discussion of higher-order effects
and some numerical aspects.

II. THEORY

A. Model Hamiltonian

We consider interference effects in electron transport
through a nanoelectronic system (S) that supports two quaside-
generate electronic states. A schematic is shown in Fig. 1.
Physical realizations include two quantum dots arranged
to form an Aharonov-Bohm interferometer14–17 or a single
nanoscale conductor with an appropriate level structure.8,18–26

We model this situation as a two-orbital spinless Anderson
model.40 The corresponding Hamiltonian reads as

HS = ε1d
†
1d1 + ε2d

†
2d2 + Ud

†
1d1d

†
2d2, (1)

where U parametrizes the Coulomb interactions in this
system.

The nanoelectronic system S is coupled to two macroscopic
(metal) electrodes (L/R), which provide reservoirs of electrons.
Departures from equilibrium may be achieved by choosing
different chemical potentials or temperatures for the two leads.
Each of the electrodes can be represented as a continuum of
noninteracting electronic states

HL/R =
∑
k∈L/R

εkc
†
kck. (2)
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The coupling between the system S and the electrodes L and
R is given by

Htun =
∑

k∈L,R;m∈{1,2}
(Vmkc

†
kdm + H.c.). (3)

The coupling matrix elements Vmk determine the so-called
level-width (or coupling density) functions

�K,mn(ε) = 2π
∑
k∈K

V ∗
mkVnkδ(ε − εk) (4)

with K ∈ {L,R}. In the following, we assume these functions
to be Lorentzian,

�K,mn(ε) = 2πνK,mνK,n

γ

(ε − μK )2 + γ 2
, (5)

with the (band)width parameter γ , the chemical potential μK ,
and νK,m denoting the coupling strength between state m and
lead K . This form of the level-width functions is advantageous
in setting up the basic HQME framework. More general
level-width functions can be implemented, using, for example,
the Meir-Tannor parametrization scheme.100,116,117 The basic
physics that is discussed in this paper is not influenced by this
choice of the level-width functions (cf. Sec. III A 7).

We choose the zero of energy to be the average of the two
lead chemical potentials and define 	 as the bias voltage,
so the chemical potentials in the left and the right leads
are given by μL = e	/2 and μR = −e	/2. This description
is appropriate to devices with the structure of the quantum
dot array in Fig. 1 and applies to physical realizations such
as the Aharonov-Bohm–type setups of Refs. 17, 42, and 46
as well as to most single-molecule junctions.118,119 Other
geometries may require a different model for the drop of the
bias voltage.9,120 The full Hamiltonian H is given by

H = HS + HL + HR + Htun. (6)

In the following, we assume the coupling strengths νK,m to
be energy independent. While this is not the most general case,
it provides a sufficient description of the condensed matter
systems of main experimental interest. The assumption allows
us to choose an energy-independent basis where �L,mn(ε) ∼
δm,1δn,1 and �R,mn(ε) = 0 for m,n > 2 and to separate the
energy-dependent part of �K,mn(ε), i.e., 2πγ/[(ε − μK )2 +
γ 2], from the part that depends on the degrees of freedom of
the system S, νK,mνK,n. This allows us to significantly reduce
the numerical effort in the HQME calculations described
next.

B. Hierarchical master equation approach

To calculate the nonequilibrium transport properties of
the spinless Anderson model, we use a modified version
of the HQME method of Jin et al.100,121 The approach is
based on a representation of the reduced density matrix σ in
terms of the Feynman-Vernon influence functional.87,122,123

It was originally developed to describe bosonic reservoir
degrees of freedom,124–126 which are important for example
in photosynthesis.127–129 To lowest order, it reduces to the
non-Markovian density matrix approach of Welack et al.117

The HQME framework is suitable for the present problem
because it represents a time-convolutionless master equation

approach75 which allows us to address the long relaxation
time scales in the presence of quasidegenerate levels and
facilitates a nonperturbative description of electron-electron
interactions. Moreover, populations and coherences of the
system are treated on the same footing, which is necessary for
the investigation of the complex interplay between interactions
and quantum interference effects.

The central quantity of the approach is the reduced density
matrix σ (t). It is defined by the trace over the leads of the total
density matrix �(t):

σ (t) = TrL+R {�(t)} . (7)

The time dependence of the total density matrix �(t) can be
written as

�(t) = U (t,0)�(0)U †(t,0) (8)

with the time-evolution operator

U (t,0) = T
(
e−i

∫ t

0 dτ [Htun(τ )+HS]
)
. (9)

Here, T denotes the time-ordering operator. Note that we
have written the formalism in an interaction picture, where
only the lead Hamiltonians HL/R are used but not the system
Hamiltonian HS. Thus, we avoid the direct appearance of
dynamical phases in the reduced density matrix.

The equation of motion of the reduced density matrix is

d

dt
σ (t) = −i[HS,σ (t)] −

∑
m,s

[
ds

m,σ̃ms(t)
]
. (10)

with ∑
m,s

[
ds

m,σ̃ms(t)
] = iTrL+R{[Htun(t),�(t)]} (11)

and s ∈ {+,−}, d+
n = d

†
n, and d−

n = dn. The reduced den-
sity matrix can thus be obtained from the operators
σ̃ms(t). Writing equations of motion for these opera-
tors leads to an infinite hierarchy of equations involv-
ing the nested commutators [Htun(t),[Htun(t), . . . ,�(t)]],
[∂tHtun(t),[Htun(t), . . . .,�(t)]], and so on. In practical calcu-
lations, this set of equations needs to be truncated at some
finite level. However, it is not a priori clear which of these
operators can be neglected; in particular, a systematic method
for dropping operators involving the time derivatives ∂

q
t Htun(t)

with q ∈ N seems not to be available.
The HQME approach of Jin et al.100 solves this problem in

two steps. First, the operators σ̃ms(t) are rewritten as

σ̃ms(t) =
∑
Kn

∫ t

0
dτ Cs

K,mn(t − τ )

× TrL+R
{
U (t,τ )ds

nU (τ,0)�(0)U †(t,0)
}

−
∑
Kn

∫ t

0
dτ C

s,∗
K,mn(t − τ )

× TrL+R
{
U (t,0)�(0)U †(τ,0)ds

nU
†(t,τ )

}
, (12)

using the correlation functions

Cs
K,mn(t − t ′) =

∑
k∈K

V s
mkV

s
nkTrK

{
σKcs

k(t)cs
k(t ′)

}
, (13)
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where

σK = 1

TrK
{
e
− ∑

k∈K

εk−μL/R
kBT

c
†
kck

}e
− ∑

k∈K

εk−μL/R
kBT

c
†
kck , (14)

kB denotes the Boltzmann constant, T the temperature of
the electrodes, s = −s, V +

mk = Vmk , V −
mk = V ∗

mk , c+
k = c

†
k , and

c−
k = ck . Note that in deriving these expressions it has been

assumed that the system is initially in a factorized state, i.e.,
that the density matrix �(0) at time t = 0 is given by the product
σ (0)σLσR. This choice of the initial state is not important in
the present context because we wish to study the steady-state
properties of the system S.

Second, the correlation functions Cs
K,mn are represented by

a set of exponential functions

Cs
K,mn(t) = νK,mνK,n

γ

∑
p∈N0

ηs
K,pe−ωs

K,pt , (15)

which, due to the self-similarity of these exponentials with
respect to time derivatives, i.e., ∂texp(−ωt) ∼ exp(−ωt),
can also be used to represent the respective time deriva-
tive ∂tC

s
K,mn(t). This property is crucial because it will

allow us to express the various time derivatives of
the hybridization operator Htun(t), which appeared be-
fore in the nested commutators [Htun(t),[Htun(t), . . . .,�(t)]],
[∂tHtun(t),[Htun(t), . . . .,�(t)]], and so on, in terms of known
auxiliary operators rather than an infinite series of unknown
ones and, thus, to truncate the corresponding equations of
motion in a systematic way (vide infra). Explicitly,

ω±
K,p =

{
γ ∓ iμK, p = 0

πkBT (2p − 1) ∓ iμK, p ∈ N
(16)

η±
K,p =

⎧⎨
⎩

π
γ

1+exp(i γ

kBT
) , p = 0

−2πikBT
γ 2

(μK∓iω±
K,p)2+γ 2 , p ∈ N

(17)

where contour integration has been used to obtain the final
result. This representation relies on the assumption that the
level-width function �K,mn can be represented by a set of
Lorentzians [cf. Eq. (5)]. The operators σ̃ms(t) can thus be
expressed in terms of a new class of auxiliary operators

σK,n,s,p(t) = ηs
K,p

∫ t

0
dτ e−ωs

K,p(t−τ )

× TrL+R
{
U (t,τ )ds

nU (τ,0)�(0)U †(t,0)
}

− η
s,∗
K,p

∫ t

0
dτ e−ωs

K,p(t−τ )

× TrL+R
{
U (t,0)�(0)U †(τ,0)ds

nU
†(t,τ )

}
(18)

as

σ̃ms(t) =
∑
Knp

νK,mνK,n

γ
σK,n,s,p(t). (19)

Note that, in general, a decomposition in terms of exponential
functions is only possible for nonzero temperatures. At
T = 0, correlation functions Cs

K,mn may, in general, exhibit
a 1/t dependence, which can not be represented by a (finite)
set of exponentials.

The equations of motion of the auxiliary operators
σK,n,s,p(t) represent the first tier of an infinite hierar-
chy of equations of motion.100 The full hierarchy is then
written as

∂tσ
(α)
j1...jα

(t) = −i
[
HS,σ

(α)
j1...jα

(t)
] −

∑
β∈{1...α}

ω
sβ

Kβ,pβ
σ

(α)
j1...jα

(t)

+
∑

β∈{1...α}
(−1)α−βη

sβ

Kβ,pβ
d

sβ

mβ
σ

(α−1)
j1...jα/jβ

(t)

+
∑

β∈{1...α}
(−1)βη

sβ ,∗
Kβ,pβ

σ
(α−1)
j1...jα/jβ

(t)d
sβ

mβ

−
∑

jα+1,nα+1

νKα+1,mα+1νKα+1,nα+1

γ

× (
dsα+1

nα+1
σ

(α+1)
j1...jαjα+1

(t) − (−1)ασ
(α+1)
j1...jαjα+1

(t)dsα+1
nα+1

)
,

(20)

where the reduced density matrix and the auxiliary operators
enter as σ (0)(t) = σ (t) and σ

(1)
j1

(t) = σK,n,s,p(t), using su-
perindices jβ = (Kβ,mβ,sβ,pβ) for notational reasons (α,β ∈
N). The higher-tier operators σ

(α)
j1...jα

(t) (α � 2) are associ-
ated with the nested commutators [Htun(t),[Htun(t), . . . ,�(t)]].
They can be represented by a set of superoperators, which are
defined by

Bj�(t) ≡ σ
(1)
j1

(t) (21)

as

σ
(α+1)
j1...jα+1

(t) = Bjα
· · ·Bj1�(t). (22)

They enter the hierarchy (20) with prefactors
νKα+1,mα+1νKα+1,nα+1/γ such that a truncation of the hierarchy
at the αth tier leads to an equation of motion for the
reduced density matrix that is valid up to the αth order
in the hybridization strength Γ = max(νK,mνK,n/γ ). The
corresponding dimensionless expansion parameter is the
ratio of Γ to the minimal value of Re[ω±

K,p], which is
∼min(γ,kBT ). Thus, for example, the approach can be
expected to describe Kondo physics if the ratio Γ/(kBTKondo)
of the hybridization strength and the Kondo temperature is
smaller or comparable to one (although convergence may
be achieved for larger values as well).121,130 Further details
on how the hierarchy of equations of motion (20) is solved
numerically are given in the Appendix.

While our approach closely follows that of Jin et al.,100

we redefined the auxiliary operators [cf. Eq. (18)] in a
dimensionless way and formulated an improved measure for
truncating the hierarchy of equations of motion systematically
(see Appendix). Thereby, in contrast to earlier work,101

our methodology respects the internal structure of both the
auxiliary operators and the corresponding equations of motion.
Moreover, our choice of the level-width functions [cf. Eq. (5)]
means that, by working in a basis where �L,mn(ε) ∼ δm,1δn,1

and �R,mn(ε) = 0 for m,n > 2, the state variables mβ and
nβ become redundant. In the present context, this reduces
the number of superindices from 2 × Nleads × N2

el × Np to
2 × (Nleads + 1) × Np, where Nleads, Nel, and Np denote
the number of electrodes, eigenstates of the system S, and
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the number of terms considered in the decomposition (15),
respectively.131

In addition to the Matsubara decomposition (15), other
schemes are based on, for example, Gauss-Legendre or Gauss-
Chebyshev quadrature schemes of the Fourier transforms of
Cs

K,mn(t),132 or on hybrid schemes of the latter and the Mat-
subara decomposition scheme121 or on Pade approximation
schemes.133–135 Thus, the efficiency of the HQME method
can be somewhat increased (see the discussion at the end of
Sec. III A 8). However, the basic methodological characteris-
tics, in particular that the method is in effect an expansion in
Γ/min(γ,kBT ), are maintained. Further theoretical progress
is required to address the moderate to the strong coupling
regime, where the hybridization is comparable to or larger
than the temperature scales of the system (such as, e.g., deep
inside the Kondo regime).

C. Born-Markov master equation approach

The long-time limit of the reduced density matrix σ is often
approximated as the stationary solution of the well-established
equation of motion59,61,102–105,136,137

∂σ (t)

∂t
= −i[HS,σ (t)]

−
∫ ∞

0
dτ trL+R{[Htun,[H̃tun(τ ),σ (t)σL+R]]}, (23)

with

H̃tun(τ ) = e−i(HS+HL+HR)τHtune
i(HS+HL+HR)τ . (24)

Here, σL+R represents the equilibrium density matrix of the
leads. Equation (23) can be derived from the Nakajima-
Zwanzig equation,138,139 employing a second-order expansion
in the coupling Htun along with the so-called Markov ap-
proximation. Note that the master equation (23) corresponds
to the Redfield (or Bloch-Wangsness-Redfield) equation if
it is evaluated in the eigenbasis of the system Hamiltonian
HS.140–142

The BM master equation (23) is commonly evaluated by
neglecting the real part � of the self-energy matrix � =
� − (i/2)�, which is associated with the coupling between the
system S and the electrodes L and R. Thus, the renormalization
of the energy levels 1 and 2 due to the coupling to the
leads [given by the diagonal elements �11 and �22 (Refs. 61
and 105)] is neglected. A coupling between these states
mediated by the off-diagonal elements �12 is also neglected.
For systems without quasidegenerate levels, these terms are
not important,61 but in the present situation we will see
by comparison to the HQME method (vide infra) that this
interstate coupling can play an important role for the transport
properties.

D. Nonequilibrium Green’s function approach based on the
noncrossing approximation

The NCA is a popular and successful method for cal-
culating the nonequilibrium Green’s functions of quantum
dots.93,106–114 The NCA involves a hybridization expansion,
where noncrossing diagrams of all orders are summed in
terms of a Dyson series, but diagrams with crossing hy-

bridization lines are excluded. As an approximate method,
it should always be considered less reliable than converged
numerically exact results such as HQME and quantum Monte
Carlo schemes.93,97,114 Nevertheless, the NCA can capture
qualitative aspects of the physics involved in this problem
and represents a standard methodology for the description of
electron-electron interaction effects. It is thus very useful to
compare exact results obtained with HQME to those obtained
with NCA. In the present context, the simplicity and flexibility
of the NCA even facilitates a study of the effects for different
lead density of states (see Sec. III A 7).

In order to extend the NCA framework to the spinless
Anderson model, we consider the Dyson equation for the
causal propagator G(t) = TrL+R{ρ(t = 0)e−iH t }:
G(t − t ′) = G(0)(t − t ′)

+
∫ t

t ′
dt1

∫ t1

t ′
dt2G

(0)(t − t1)�(t1,t2)G(t2 − t ′).

(25)

Here, G(0) is the propagator for the case where the dot-lead
coupling is set to zero and the self-energy � induces all
diagrams arising from the coupling to the electrodes. The
matrix elements Gab ≡ 〈a|G|b〉 of the propagator in the basis
of the dot states can be conveniently represented by a pair of
lines (one for the occupation of each spin level, cf. Fig. 2),
where a dashed line stands for an empty level and a solid line
for a full one.

In the spinful Anderson model, G is diagonal in this basis
and pairs of interactions with the electrodes can be represented
diagrammatically as wavy lines which flip one spin between
interactions (when using the shorthand diagrams in which the
many-body state on the dot is represented by a single line,
the sum over the two arcs is often compactly represented by
a single one). The definition of the NCA self-energy is then
given by the black diagrams in Fig. 2.

The new feature of the model we consider is that nondiago-
nal (m �= n) contributions to �K,mn(ε) are also present. These
induce a new kind of hybridization line, which takes an electron
from one level to the other. The additional diagrams are shown
in gray in Fig. 2; note that, as a result, Gab for |a〉 = |01〉, |b〉 =
|10〉, and vice versa become nonzero and are represented by
pairs of lines in which the level occupations trade places. The
need to store and compute additional matrix elements in the
spinless case complicates the calculation somewhat, but no

FIG. 2. NCA self-energy diagrams for the spinless Anderson
model; gray terms are identically zero in the regular Anderson model.
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conceptual differences arise. Similar NCA treatments have
been used to study multiorbital models143,144 and the spinless
Anderson model.43,45,48 However, it is important to note that
what the authors of these works refer to as the NCA is an
infinite-U approach which differs from the finite-U method
employed here.

E. Observables of interest

The crucial quantities that characterize the nonequilibrium
transport properties of interest here are the steady-state level
populations n1/2, the interlevel coherence σ10,01, and the
electrical current that is flowing through the system S. In
the occupation number representation, the population of the
electronic levels is given by the diagonal elements of the
reduced density matrix

n1 = lim
t→∞[σ10,10(t) + σ11,11(t)], (26)

n2 = lim
t→∞[σ01,01(t) + σ11,11(t)], (27)

while the off-diagonal elements of the reduced density matrix
determine the coherence

σ10,01 = lim
t→∞ σ10,01(t). (28)

The coherence has no classical analog; it encodes quantum
mechanical tunneling and interference effects. For well-
separated energy levels, coherences of the density matrix
vanish. For degenerate or quasidegenerate levels, however,
coherences can become as important as the populations n1/2.
In the present context, the interlevel coherence can be used
as a measure for the strength of interference effects, that
is comparison of the coherence found in the interacting
and noninteracting situations provides an assessment of the
importance of interaction-induced decoherence.

The electrical current flowing through the systems S is
determined by the number of electrons that enter or leave the
electrode K in a given interval of time (K ∈ {L,R})

IK = −e
d

dt

∑
k∈K

〈c†kck〉 ≡ 〈ÎK〉, (29)

where −e denotes the charge of an electron. It can be written
in terms of the first-tier auxiliary operators σ

(1)
j (t) as100

IK = e
∑

K,m,n,p

νK,mνK,n

γ

× lim
t→∞{TrS[σK,m,+,p(t)dn] − TrS[d†

nσK,m,−,p(t)]}
(30)

or, using the BM master equation scheme (see Sec. II C), as

IK = −i lim
t→∞

∫ ∞

0
dτ tr{[H̃tun(τ ),σL+Rσ (t)]ÎK}. (31)

The computation of the electronic state populations, the
coherence, and the electrical current within the NCA frame-
work requires the solution of a set of secondary vertex
equations. A vertex is defined in this context as an object
which exists on both parts of the contour simultaneously (cf.
Figs. 3 and 4). It is specified by an inner vertex, which is
associated with the corresponding observable [for instance,
the inner vertex corresponding to measuring the population
in the state |a〉 is given by Pab(t,t ′) = Gaa(t)G†

aa(t ′)δab] and
outer indices, which connect the inner vertex to the initial
state of the system via the propagator (25). Together with the
specification of the observable, the vertex equations form a
set of coupled integral equations which when solved together
provide a self-consistent resummation of all contour-crossing
NCA diagrams. The vertex terms which appear in the original
Anderson case are the dark diagrams in Fig. 3; off-diagonal
vertex contributions are unique to the spinless case and are

FIG. 3. NCA diagonal vertex diagrams for the spinless Anderson model; gray terms are identically zero in the regular Anderson model.
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FIG. 4. NCA off-diagonal vertex diagrams for the spinless Anderson model; all the terms appearing here are identically zero in the regular
Anderson model.

shown in Fig. 4. An alternative scheme, formulated in terms
of correlation functions instead of propagators, has been
proposed114 but will not be used here.

III. RESULTS

We study two complementary realizations of the spinless
Anderson model, which we refer to as DES and CON.
The DES realization may represent a linear (molecular)
conductor20,26 or two quantum dots connected in series.
The second system, model CON, may represent a branched
(molecular) conductor26,145 or two quantum dots connected
in parallel.14–17,32,46,146,147 Mathematically, the two models
are distinguished by the coupling parameters, which reflect
the different connectivities of the eigenstates and the leads.
In model DES, these coupling parameters are symmetric
νL,1 = νR,1 and antisymmetric νL,2 = −νR,2, respectively [the
corresponding dot-lead coupling parameters (cf. Fig. 1) are

νa/d =
√

νL/R,1
2 + ν2

L/R,2 and νb/c = 0]. On the single-particle

level, it has been shown that this form of the coupling
produces strong destructive interference effects which sup-
press the current flow.26,29 In model CON, the coupling
parameters νK,1/2 are the same or, equivalently, symmetric

(νa/b =
√

νL/R,1
2 + ν2

L/R,2 and νc/d = 0). Thus, the system
shows constructive interference effects.148 A detailed list of
model parameters is given in Table I. Note that these model
parameters reflect typical experimental values14,17,36,149 with
respect to the temperature scale kBT ≈ 25 meV that is used in
this paper.

TABLE I. Parameters for the double-dot devices that are investi-
gated in this paper. All energy values are given in eV, the temperature
of the electrodes T is set to 300 K (�25 meV), and the value of the
dot-lead coupling parameter is ν = 42 meV.

Model ε1 ε2 U νL,1 νL,2 νR,1 νR,2 γ

DES 0.5 0.501 0.5 ν ν −ν ν 2
CON 0.5 0.501 0.5 ν ν ν ν 2
CENTRAL 0.5 0.75 0.5 ν ν ν/3 ν/3 2
BLOCK 0.5 0.75 0.5 ν ν ν ν/3 2

A. Transport properties of junction DES

The calculated current-voltage characteristic of junction
DES is shown as the solid blue line in Fig. 5(a). The current
increases monotonically with bias voltage 	 for 	 � 1.7 V.
The monotonic increase occurs both in the nonresonant trans-
port regime (0 < e	 � 2ε1/2 ≈ 1 eV), where both eigenstates
of the junction are located outside the bias window, i.e.,
ε1/2 > μK , and in part of the resonant transport regime
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FIG. 5. (Color online) Current-voltage and electronic population
characteristics of junction DES calculated for different electron-
electron interaction strengths: U = 0 (black lines), U = ∞ (gray
lines), and U ≈ 20kBT (blue lines). The solid lines have been
obtained using the HQME method. The dashed line has been
computed with the BM scheme. Negative differential resistance
occurs in the same voltage range where an inversion of the electronic
populations n1 (solid lines) and n2 (dotted lines) occurs.
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(2ε1/2 � e	 � 2ε1/2 + U ≈ 1.5 eV) where the two levels are
located within the bias window, i.e., μL > ε1/2 > μR. As the
voltage is increased beyond 	 ≈ 1.7 V, junction DES shows
a voltage range with a pronounced decrease of the electrical
current as voltage is increased, in other words, a negative
differential resistance which for the parameters considered
here is peaked at 	 ≈ 1.9 V.

The corresponding populations of the electronic levels
n1 and n2 are shown as the solid and dotted blue lines in
Fig. 5(b), respectively. The two levels are almost unpopulated
in the nonresonant transport regime. In the resonant transport
regime, the chemical potential in one of the leads exceeds
the level positions and, accordingly, the population of the two
levels increases substantially such that the average number
of electrons in the junction is close to n1 + n2 ≈ 1. Despite
the near degeneracy of the two levels, their populations differ
significantly. Moreover, an inversion of the population occurs
for the bias voltages where the decrease of the current level is
most pronounced.

We now show that this behavior is associated with the
quenching of destructive interference effects due to electron-
electron interactions and the energy dependence of the density
of states in the electrodes. The argument has three steps. First,
we study the case where no electron-electron interactions are
present in the system (U = 0) and destructive interference
effects are fully developed. Second, we consider the limit
U → ∞, where destructive interference effects appear to be
quenched. In the third and final step, we consider a finite value
for U and show that the quenching of interference effects
due to electron-electron interactions is no longer effective once
the bias voltage exceeds ≈2(ε1/2 + U ).

1. Noninteracting limit

If electron-electron interactions are neglected in model
DES, one obtains the current-voltage characteristic repre-
sented by the solid black line in Fig. 5(a). It shows a
single step at e	 ≈ 2ε1/2 that indicates the onset of resonant
transport through states 1 and 2. The low value of the
current is due to destructive interference effects.20,26 This
can be inferred from an analysis in terms of a BM master
equation scheme (cf. Sec. II C).61,102,103,105 Using Eqs. (A1)
and (A4) of Ref. 61, the current through junction DES can be
written as

I = 2e�(σ10,10 + σ10,10 − 2 Re[σ10,01]), (32)

where 	 > 2ε1/2 is assumed and the wide-band approximation
with � = �L,11(μL) is employed. The first two terms are given
by the population of the singly occupied states σ10,10 and σ10,10,
respectively. They represent the incoherent sum current that is
flowing through the two states and is approximately given by
the sum of the populations n1 + n2 ≈ σ10,10 + σ10,10. In the
resonant transport regime, this sum is ≈1, indicating that the
bottleneck for transport is given by the small interdot coupling
(ε2 − ε1)/2 rather than by the coupling to the electrodes (i.e.,
the system S is mostly occupied by a single electron). The
last term is given by the real part of the coherence σ10,01. It
encodes the effect of destructive interference and is depicted
in Fig. 6. As can be seen, it almost cancels the first two
terms since its value is very close to 0.5 in the resonant
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FIG. 6. (Color online) Real part of the coherence σ10,01 corre-
sponding to the characteristics shown in Fig. 5. Comparison to the
noninteracting case (black line) quantifies the effect of decoherence
due to electron-electron interactions.

transport regime. The real part of the coherence σ10,01 can
thus be used as a measure for the strength of destructive
interference.

While the suppression of the current flow in systems such
as junction DES is well known,20,26 it is less recognized
that in this model the population of the electronic levels is
significantly different. The two-level occupancies are depicted
in Fig. 5(b) by the solid black and the dotted black line,
respectively. The voltage dependence of the level occupancies
is in general similar to that of the corresponding current-
voltage characteristic, in particular exhibiting a step at e	 ≈
2ε1/2. Despite the near degeneracy of the level energies,
the corresponding populations are not the same, where, for
voltages larger than e	 ≈ 2ε1/2, the population difference
even increases with the applied bias voltage.

An analysis of the retarded/advanced single-particle
Green’s functions Gr/a

mn(ε) reveals the origin of this behavior.
They are defined by150

Gr/a,−1
mn (ε) = (ε − εm)δmn − �K,mn(ε) + i

2
�K,mn(ε). (33)

Thereby, the functions �K,mm(ε) denote the renormalization of
the energy levels εm due to the coupling of the junction to lead
K and the off-diagonal elements �K,mn(ε) (m �= n) encode an
interstate coupling which is induced by the energy dependence
of �K,12(ε). In the present context, the energy dependence is
due to the finite bandwidth γ . In general, it may also be the
result of an energy dependence of the couplings νK,m. Using
the Green’s functions Gr/a

mn(ε), the population of the two levels
can be calculated according to the formula

nm =
∫

dε

2π

∑
Kno

Gr
mn(ε)�K,no(ε)Ga

om(ε)fK (ε). (34)

This procedure yields exactly the same result as the one that is
obtained by the HQME method outlined in Sec. II B. However,
if the off-diagonal elements �K,12(ε) are neglected,151 the
populations of the two levels become very similar (n1 − n2 <

10−3 for 	 > 2ε12 + kBT ). This shows that the off-diagonal
elements �K,12(ε) cause the pronounced asymmetry in the
electronic populations n1 and n2.152 Note that Eq. (32) is
derived from Born-Markov theory, where the effect of the
off-diagonal elements �K,12(ε) is neglected such that the
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corresponding difference in the electronic populations n1 and
n2 is small, that is, the relation I > 2e�

√|n1 − n2| (which
can be derived using the relation |ρ10,01| <

√
ρ10,10ρ01,01) is

fulfilled.

2. Decoherence phenomena in the limit U → ∞
Now, we consider junction DES in the limit U → ∞. The

gray lines in Fig. 5(b) show the corresponding electronic
populations n1 (solid) and n2 (dotted). The difference in
the electronic populations is seen to be considerably larger
at U = ∞ than it is at U = 0. The U dependence arises
because, at U = ∞, transport through one of the two levels is
completely blocked whenever the other level is occupied.

The current-voltage characteristic at U = ∞ is shown as
the solid gray line in Fig. 5(a). At U = ∞, the current
is smaller than the U = 0 current at low and intermediate
bias voltages, i.e., for 	 < 1.3 V, but is larger for higher
bias voltages and continues to increase as 	 is increased
further into the resonant transport regime. The increase of
the current is accompanied by a decrease of the real part
of the coherence σ10,01 (compare the solid gray and black
lines in Fig. 6), indicating that the quenching of destructive
interference effects, which are suppressing the current flow in
this system, becomes progressively stronger as the voltage is
increased.

This decoherence effect can be qualitatively understood
via a Born-Markov analysis similar to that previously given
for the noninteracting case [cf. Eq. (32)]. In the limit U →
∞ and in the Born-Markov approximation, the current is
given by

I = e�(σ10,10 + σ10,10 − 2 Re[σ10,01]). (35)

Comparison to Eq. (32) shows that within the BM approxi-
mation the U = ∞ current is a factor of 2 smaller than the
U = 0 current. However, a decrease in the real part of the
coherence σ10,01 overrides this effect, so that the net result
is an enhancement of the current [cf. Figs. 5(a) and 6]. The
difference with respect to the noninteracting case arises from
the reduction of the Hilbert space of the system S in the
limit U → ∞; this influences the scattering phase shift of the
tunneling electrons and quenches interference effects in this
system due to a reduction of interfering tunneling pathways.

This change in the scattering phase shift has already been
discussed by Wunsch et al.38 in terms of an interaction-induced
renormalization of the (localized) orbitals (and was also found
in more complex systems).58,60 These results, however, have
been derived assuming flat conduction bands, where additional
renormalization effects due to the energy dependence of the
conduction bands are not present. Thus, to provide deeper
insight into the relevant physics, we compare results obtained
from the HQME formalism (Sec. II B) to results obtained from
the BM scheme (Sec. II C). The key difference between the two
schemes is that the additional renormalization � due to the
coupling to the electrodes is included in the HQME method
and discarded in the BM scheme. The BM approximation
to the current-voltage characteristics and the real part of the
coherence σ10,01 are depicted by the dashed gray lines in
Figs. 5(a) and 6, respectively. As can be seen, the BM scheme
yields overall larger current levels and gives, in particular, a

much more rapid increase of the current level at the onset of
the resonant transport regime. The opposite holds true for the
real part of the coherence σ10,01. Considering the analysis at
the end of Sec. III A 1 and that the level renormalizations �11

and �22 are very similar due to the quasidegeneracy of the two
levels, we attribute the reduced current and decoherence levels
obtained by the HQME scheme to the effect of the off-diagonal
elements �12. Note that higher-order effects have been ruled
out by using lower-truncation levels for the hierarchy (20).

The monotonic increase (decrease) of the current (coher-
ence) level for bias voltages 	 > 2ε1/2 is also a consequence
of the energy dependence of the level-width functions �K,mn.
They enter the Born-Markov master equations as �K,mn(ε1/2).
For bias voltages e	 � 2ε1/2, the value of �R/L,mn(ε1/2)
decreases with an increasing bias voltage such that destructive
interference effects and the resulting current suppression
become gradually less pronounced.

3. Decoherence phenomena in the presence of finite
electron-electron interaction strengths U

In the low- and intermediate-bias voltage regimes e	 <

2ε1/2 + U the finite-U case exhibits physics similar to that
of the infinite-U case (see Fig. 5). One difference is that the
system with finite electron-electron interactions has a higher
current, while the difference in the electronic population is
very similar. According to our analysis, the similarity in level
occupation can be attributed to the off-diagonal elements �K,12

which have only a weak U dependence. The associated current
suppression, however, which arises from a modification of
the effective level renormalization38 due to the effect of the
�K,12, exhibits a non-negligible U dependence. To corroborate
this statement, the solid orange lines in Fig. 7 show the
transport characteristic of junction DES calculated with a
reduced bandwidth γ , that is, effectively, with enhanced
off-diagonal elements �K,12(ε). The current level of this
junction is indeed reduced for bias voltages e	 < 2ε1/2 + U ,
while the difference in the electronic populations n1 and n2 is
increased.

At higher-bias voltages 2ε1/2 + U < e	 < 2(ε1/2 + U ),
the intermediate-U case exhibits a qualitatively different
behavior from either the U → 0 or U → ∞ limits. The current
of junction DES passes through a maximum value substantially
larger than found in either of the limits and then decreases,
exhibiting a regime of negative differential resistance. The
maximum value is seen to be close to the one found in
the BM scheme [cf. Fig. 5(a) or 7(a) ]. Moreover, in the
voltage regime of the current peak and negative differential
resistance, an inversion of the electronic population occurs [see
Fig. 5(b)]. These effects are related to the energy dependence
of �K,mn(ε) and arise when doubly occupied states enter
the bias window. As we have already seen in the limit
U → ∞, state 1 is populated more strongly than state 2 for
	 < 2ε1/2 + U . Thus, at higher-bias voltages, adding another
electron into state 2 is more favorable than into state 1.
Due to electron-electron interactions, these addition processes
occur at higher energies ε1/2 + U and, therefore, also with
a higher probability because of the energy dependence of
the level-width functions: �L,mn(ε1/2 + U ) > �L,mn(ε1/2) for
e	 ≈ 2(ε1/2 + U ). When the population of the two levels is
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FIG. 7. (Color online) Current-voltage and electronic population
characteristics of junction DES for different bandwidths γ . The
coupling parameter ν has been adjusted so that the maximal value
of the level-width functions �K,mn is the same in all cases. The solid
and dotted lines have been obtained by the HQME method. The
dashed lines depict the corresponding current-voltage characteristics
obtained by the BM scheme. Decoherence and lead-induced interstate
coupling effects become stronger if the energy dependence of the
level-width functions �K,mn is more pronounced.

approximately the same, the effect of the off-diagonal elements
�12 on the population dynamics is canceled. The associated
current suppression also vanishes leaving the decoherence due
to electron-electron interactions as the dominant effect. The
real part of the coherence σ10,01 and the current level thus
reach a local minimum and a maximum, respectively. Once the
bias voltage exceeds 2(ε1/2 + U ), resonant transport through
one of the levels occurs irrespective of the population of the
other level. Consequently, decoherence due to the reduction of
the Hilbert space is no longer effective and the current level
drops rapidly to the one of the noninteracting case. Also, the
population of the two levels starts to follow again the same
rules as in the noninteracting limit.

The above analysis suggests that the maximal enhancement
of the current due to decoherence by electron-electron inter-
actions is not controlled by the value of the electron-electron
interaction strength U . It rather enters via the asymmetry in
the transfer rates �L,mn(ε1/2) and �R,mn(ε1/2) that increases
with the applied bias voltage 	. This is confirmed by the
current-voltage characteristics shown in Fig. 8 for different
electron-electron interaction strengths U . As can be seen,
the height of the current peaks for different values of U

follows the dashed gray line, which depicts the current-voltage
characteristic obtained from the BM scheme in the limit
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FIG. 8. (Color online) Current-voltage characteristics of junction
DES for different electron-electron interaction strengths, ranging
from U = 0.8 eV � kBT ≈ 25 meV to U = 0.01 eV � kBT .
Decoherence due to electron-electron interactions is independent
of the interaction strength U , as long as it exceeds the broadening
induced by the coupling to the electrodes and temperature.

U → ∞. Thereby, the similarity to the BM U → ∞ case
is only present if the electron-electron interaction strength of
the system is significantly larger than the broadening of the
steps in the corresponding current-voltage characteristic. If the
broadening exceeds the electron-electron interaction strength
U , which, in our case, is given by the thermal broadening
kBT ≈ 25 meV, the decoherence effect becomes quenched.
The same would be true if the broadening due to the coupling
to the electrodes is dominant or comparable to the thermal
broadening � � kBT , as can be inferred from the results of
Wunsch et al.38 This also means that our findings remain valid
at higher temperatures, as long as U � kBT .

4. Asymmetric coupling to the electrodes

So far, we considered only scenarios in which the absolute
values of the coupling parameters |νK,m| are the same. In an
experimental realization of junction DES, the system S may
be coupled more strongly to one of the electrodes than to the
other. The current-voltage characteristic of such a junction
is shown as the solid red line in Fig. 9(a). In comparison to
junction DES (solid blue line), it is described by the same
parameters except for a weaker coupling to the right electrode
νR,1/2 = ν/3. The corresponding population of states 1 and
2 is depicted by the solid and dotted red lines in Fig. 9(b).
As can be seen, an asymmetric coupling to the electrodes
introduces a number of quantitative differences, including a
particle-hole asymmetry and changes to the heights and widths
of the current peaks, but the qualitative behavior is the same
as in the symmetric case. It is interesting to note that similar
current-voltage characteristics have been observed by Osorio
et al.153 but only if the corresponding molecular junctions are
in a low-current state.

The asymmetry with respect to bias voltage may be
understood as follows. For positive bias voltages, where
transport occurs from L→S→R, the two levels are populated
on faster time scales than they become depopulated. Thus,
the population of level 1 is significantly larger at the onset of
the resonant transport regime at e	 = 2ε1/2. At this value of
	, the repulsive electron-electron interactions mean that the

235426-10



DECOHERENCE AND LEAD-INDUCED INTERDOT . . . PHYSICAL REVIEW B 88, 235426 (2013)

n 1, U 0.5eV
n 2, U 0.5eV

n 1, U 0
n 2, U 0

n 1, U
n 2, U

2 1 0 1 2
0.

0.2

0.4

0.6

0.8

bias voltage V

el
ec

tro
ni

c 
po

pu
la

tio
ns

asym m etric
sym m etric

asym m etric, U 0
asym m etric, U

2 1 0 1 2

25

0

25

50

75

bias voltage V

cu
rr

en
t I

nA
(a)

(b)

FIG. 9. (Color online) (a) Current-voltage characteristics of the
symmetrically coupled junction DES (solid blue line) and a very
similar junction, where the coupling to the right lead is reduced by 1

3
(red line). For comparison, the black and gray lines show the current-
voltage characteristics of the asymmetrically coupled system in the
limits U = 0 and U = ∞, respectively. (b) Electronic population
characteristics of the asymmetrically coupled system. Asymmetric
coupling to the leads enhances the effect of population inversion and
decoherence due to electron-electron interaction for one bias polarity,
while for the other polarity both effects are attenuated.

population of state 2 is more strongly suppressed [cf. Fig. 9(b)].
The same arguments apply at higher-bias voltages 2ε1/2 +
U < e	 < 2(ε1/2 + U ), where the population of the two levels
becomes inverted once the doubly occupied states enter the
bias window (cf. the discussion given in Sec. III A 3). Thus, the
current suppression due to the blocking of transport channels is
more pronounced than for the symmetrically coupled junction
such that, at e	 ≈ 2ε1/2 and e	 ≈ 2(ε1/2 + U ), the current
level drops to half of the level in the noninteracting case.
This results also in a narrowing and a shift of the current
peak to lower bias voltages. Compared to the symmetrically
coupled scenario, the height of this peak is substantially
increased, indicating that decoherence due to the reduced
Hilbert space for the tunneling electrons is more pronounced.
This is related to the reduced values of �K,mn in the same way
as the increase of the current level in the limit U → ∞ (cf.
Sec. III A 2). Studying the ratio of the peak height versus the
current level of the noninteracting case (which is equivalent
to the current at 	 = 3 V), one finds that this enhancement of
the current peak is most pronounced for an asymmetry ratio
|νR,1/2|/|νL,1/2| ≈ 0.4 (cf. Fig. 10).

At yet larger bias voltages e	 > 2(ε1/2 + U ), destructive
interference effects are fully developed and dominate the
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FIG. 10. Ratio between the maximal current and the current level
at 	 = 3 V for junction DES as a function of the asymmetry ratio
|νR,1/2|/|νL,1/2|. The peak in this curve reveals that decoherence due
to electron-electron interactions is most effective for intermediate
asymmetries in the system-electrode coupling

suppression of transport processes. The same holds true at
negative bias polarities, where the time scales for populating
and depopulating the two states are reversed such that electron-
electron interactions and the corresponding decoherence
mechanisms are, a priori, less pronounced. It is also interesting
to note that, at these bias voltages, the current level of the
asymmetrically coupled junction is slightly larger than for the
symmetrically coupled one, despite the reduced coupling to
the right lead. The physical origin of this behavior is that,
again, destructive interference effects are less effective if the
system is less strongly coupled to the electrodes.26

5. Gate-voltage dependence

Aside from a source and a drain electrode, one often uses a
third, so-called gate electrode to study the transport properties
of a nanoelectronic device.17,154,155 Such an electrode is
capacitively coupled to the junction and acts to shift the level
positions εm with respect to the Fermi levels of the leads.
Dependence on gate voltage can help to reveal the nature
of conduction processes. Sequential tunneling may be dis-
tinguished from higher-order processes such as cotunneling or
spin flip (due to Kondo physics)67,156 by its much stronger
gate-voltage dependence. In the following, we study the
gate-voltage dependence of the transport properties of junction
DES by assuming that the gate voltage shifts the level energies
as εm → εm + e	gate.

Figure 11(a) presents a conductance map for junction DES
in the plane of gate and source-drain voltage with negative
conductance depicted in blue, zero in white, and positive
conductance in red. The conductance map is symmetric with
respect to both the bias voltage 	 and the gate voltage 	gate.
The two symmetry axes cross at the charge symmetric point
(e	,e	gate) = (0,−2ε1/2 − U ) ≈ (0,−0.75 eV). We therefore
restrict the discussion to the upper right quarter of this map
in the following. For gate voltages 0 > e	gate > −2ε1/2 ≈
−0.5 eV, the onset of the resonant transport regime at
e	 = 2(ε1/2 + 	gate) as well as the negative differential
resistance (NDR) feature appearing at bias voltages slightly
higher than the resonant tunneling onset decrease linearly
with the applied gate voltage. For yet smaller gate voltages
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FIG. 11. (Color online) Panels (a) and (b) depict the differential conductance dI/d	 and the difference in the electronic populations
n1 − n2 of junction DES as a function of both bias and gate voltage. Comparison shows that the occurrence of negative differential resistance
(blue areas) is correlated with population inversion (turquoise areas) in the resonant transport regime.

−2ε1/2 > e	gate > −2ε1/2 − U where ε1/2 + e	gate < 0, this
trend is reversed. In addition, a more complex structure
emerges, as the current drops in two steps at e	 � −2(ε1/2 +
e	gate) and e	 � 2(ε1/2 + U + 	gate). The current maximum
and the corresponding NDR vanish as the system is driven to
the charge-symmetric point (at e	gate = −2ε1/2 − U ).

The nature of the additional drop in the current can be
revealed by inspection of the conductance map obtained from
the BM master equation scheme shown in Fig. 12. In the

FIG. 12. (Color online) Conductance map similar to the one
shown in Fig. 11(a) but obtained using the BM master equation
scheme (cf. Sec. II C). Comparison of Figs. 11(a) and 12 reveals
the strong renormalization effects that are induced by lead-induced
interstate coupling encoded in the off-diagonal elements �12.

range of gate voltages from −2ε1/2 to −2ε1/2 − U , the onset
of the resonant transport regime at e	 = −2(ε1/2 + e	gate)
does not appear as a step but as a peak in the respective
current-voltage characteristic. This is reflected by high positive
conductance values for e	 � −2(ε1/2 + e	gate) followed by
negative values for e	 � −2(ε1/2 + e	gate). The consecutive
drop of the current at e	 ∼ 2(ε1/2 + U + e	gate) is almost the
same as for higher gate voltages 0 > e	gate > −2ε1/2. The
appearance of the current peaks is related to the fact that, for
e	 � −2ε1/2, transport occurs via a thermally assisted tunnel-
ing process from the junction into the right lead, followed by
another tunneling process from the left lead onto the junction.
While the former exhibits partial Pauli blocking, the latter
does not and, therefore, involves electrons with a wider range
of energies. As a result, destructive interference effects can not
fully develop. This results in a more pronounced increase of
the current level than for thermally assisted transport through
the unoccupied (or doubly occupied) system. For larger
bias voltages e	 � −2(ε1/2 + e	gate), the Pauli blocking of
the tunneling process into the right electrode is no longer
active and destructive interference effects start to suppress the
current flow through the junction, reducing the current level
again.

Considering again Fig. 11(a), where, in contrast to Fig. 12,
the real part of the self-energy matrix � is taken into
account, one observes a strong renormalization of the above-
described temperature-induced decoherence effects, in par-
ticular of the current peaks at e	 � −2(ε1/2 + e	gate). On
one hand, they become quenched the closer the system is
driven to the charge-symmetric point [i.e., for gate volt-
ages 	gate ≈ −(ε1/2 + U/2) = −0.75 V]. Thereby, it should
be noted that the renormalization of these peaks leads to
signatures around zero bias that appear to be similar (but
must not be mistaken) as signatures due to pseudo-Kondo34,37

or Kondo-type correlations.11–13 On the other hand, these
peaks appear much broader. While this broadening exceeds
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the thermal broadening (≈25 meV) or the broadening due
to the coupling to the electrodes (≈2 meV) by more than
an order of magnitude, it is most pronounced around the
charge-symmetric line, i.e., for 	gate ≈ −0.75 V, where
it amounts to ∼0.5 eV. The other (electronic) signatures
of the conductance map exhibit similar broadening. Note
that such a pronounced broadening of electronic signatures
has recently been experimentally observed in the transport
characteristics of a number of single-molecule junctions157

where, however, it has been attributed to electronic-vibrational
coupling.157,158

Figure 11(b) shows the difference in the electronic pop-
ulations n1 and n2. Comparison to Fig. 11(a) reveals that
the appearance of negative differential resistance is closely
linked to population inversion (turquoise areas) in the resonant
transport regime. In the nonresonant transport regime and
gate voltages −2ε1/2 > e	gate > −2ε1/2 − U , the population
of the higher-lying level is also more pronounced, although
the current is monotonously increasing. As this behavior is not
observed using the Born-Markov scheme, we also attribute it
to the interstate coupling effects induced by the off-diagonal
elements �12. Note that the corresponding relaxation time
scale is three orders of magnitude larger in this regime
(ns instead of ps). We therefore computed the detailed data
shown in Figs. 11(a) and 11(b) by truncating the hierarchy of
equations of motion (20) at the first tier. We checked that the
results that have been discussed in this section are not affected
by this choice of the truncation scheme.

6. Comparison to blocking-state scenarios

The mechanism for negative differential resistance that
we investigate in this paper is based on decoherence due
to electron-electron interactions. Another well-known mech-
anism for NDR due to electron-electron interactions involves
electronic states that are weakly coupled to the electrodes.
This includes blocking states55–57,61,159 which are weakly
coupled to only one of the electrodes as well as centrally
localized states61 which are weakly coupled to both electrodes

(or, similarly, spin blockade in systems that are coupled to
ferromagnetic leads160). In these systems, NDR occurs when
the weakly coupled state enters the bias window, leading to
similar features in the current-voltage characteristic than the
decoherence mechanism outlined before. Inspection of the
respective conductance maps, however, reveals important
qualitative differences.

Figures 13(a) and 13(b) show conductance maps of junc-
tions with a centrally localized (model CENTRAL) and a
blocking state, respectively (model BLOCK). A detailed list of
the corresponding model parameters is found in Table I. The
most important difference between NDR due to decoherence
and NDR due to weakly coupled states is the symmetry with
respect to the applied gate voltage. While decoherence leads to
symmetric NDR features, weakly coupled states result in NDR
that is nonsymmetric with respect to the gate voltage 	gate.
Moreover, areas where NDR occurs terminate in different
ways at the central Coulomb diamond. While these areas
almost touch each other when NDR is induced by decoherence,
they terminate at the sides of the diamond when NDR is the
result of weakly coupled states. Note that an asymmetric
coupling to one of the electrodes, for example a weaker
coupling to the right electrode, attenuates the NDR features
only in the upper left and the lower right corners [similar as in
Fig. 13(b)], irrespective of the underlying mechanism (data not
shown).

7. Influence of the type of conduction bands: Comparison to NCA

In this section we use the NCA (cf. Sec. II D) to investigate
the interplay between decoherence and correlation in junction
DES. The NCA is an infinite-order resummation of a selected
subset of diagrams in a hybridization expansion. As will
be seen, it reproduces some of the qualitative behavior
that is found by the numerically exact HQME method,
although it also misses other aspects and is quantitatively
inaccurate. An advantage, however, is that it facilitates the
study of non-Lorentzian density of states. As an example, we
present here results obtained using semielliptical conduction

FIG. 13. (Color online) Conductance maps of junctions with a centrally localized state (a) and a blocking state (b).
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FIG. 14. (Color online) Level-width functions and the corre-
sponding real parts of the self-energy as a function of energy ε.
The dark green lines refer to Lorentzian conduction bands [cf.
Eq. (5)], while the light green lines are associated with the (modified)
semielliptical bands [cf. Eq. (36)].

bands

�K,mn (ε) = 2π
νK,mνK,n

γ

√
1 − ε2

γ 2
, (36)

For numerical convenience we slightly modified the functional
dependence at the band edges, replacing the square-root
singularity by an exponential decay, so �K,mn(ε) = Ae−α|ε−μK |
when |ε − μK | > εc, where �K,mn(εc) = 0.5�K,mn(μK ) and
the parameters A and α are chosen such that �K,mn and
its first derivative are continuous. The resulting level-width
function(s) and the respective real parts of the self-energy are
depicted in Fig. 14.

The corresponding current-voltage and electronic popula-
tion characteristics are represented by the turquoise lines in
Fig. 15. For comparison, the dark red lines show results that
have been computed using Lorentzian conduction bands [cf.
Eq. (5)]. The basic decoherence phenomena found for the
Lorentzian density of states also occur for elliptical conduction
bands, in particular the interstate coupling effects encoded in
the off-diagonal elements �12, that is an enhanced broadening
of electronic signatures and population inversion. While the
NCA captures these effects qualitatively, it is also evident that
it fails on both a quantitative and a qualitative level. According
to our previous analysis, for example, the differences in the
electronic population should be less pronounced because the
real parts of the corresponding self-energy matrix are smaller
(cf. Fig. 14). This picture can be confirmed very easily in the
noninteracting case, using, for example, the Green’s function
analysis outlined in Sec. III A 1. However, it is reproduced by
the NCA results only in parts. In particular, the difference
of the electronic populations at the onset of the resonant
transport regime e	 ≈ 2ε1/2 and for higher-bias voltages
e	 > 2(ε1/2 + U ) is not smaller but larger in the elliptical
case. This already indicates that the partial resummation of
the NCA diagrams is not sufficient to describe this transport
problem.

A direct comparison of the NCA results with the ones
obtained by the BM and the HQME approach reveals further
inaccuracies. To this end, we show the current-voltage charac-
teristics of junction DES in Fig. 16 that have been obtained by
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FIG. 15. (Color online) Current-voltage and electronic popula-
tion characteristics of junction DES. The turquoise and red curves
depict results that are obtained with the NCA scheme for elliptical
and Lorentzian conduction bands, respectively.

the three methods using Lorentzian conduction bands. Again,
while the NCA captures some aspects of the problem, such
as the decoherence-induced negative differential resistance, it
also shows qualitative differences. This includes an additional
current peak at e	 ≈ 2ε1/2 but, more importantly, also much
higher current levels. Thus, NCA underestimates the effect
of destructive interference effects in this system. Future work
may show if these deficiencies can be overcome using the
one-crossing (or higher) approximation in order to obtain
qualitatively or even quantitatively correct results.161 Note

NCA
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BM
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FIG. 16. (Color online) Current-voltage characteristics of junc-
tion DES obtained by three different methods: the HQME method
(blue line), the NCA (dark red line), and the Born-Markov scheme
(dashed blue line).
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FIG. 17. (Color online) Current-voltage characteristics of junc-
tion DES for different depths of the hierarchy of auxiliary operators
(controlled by the threshold value Ath). At the lowest level, only
resonant processes are included, while, upon increasing the depth of
the hierarchy, higher-order processes enter successively. Unphysical
results are obtained in the nonresonant transport regime, i.e., for
e	 < 2ε1/2 ≈ 1 V, if the depth of the hierarchy is too low.

that another nonequilibrium example where NCA fails in the
presence of nondegenerate levels is given in Ref. 98.

8. Higher-order effects

At this point, some remarks about higher-order effects
and numerics are in order. Figure 17 presents current-voltage
characteristics for junction DES, employing different trun-
cation levels of the hierarchy (20). Thereby, we focus on
the nonresonant transport regime e	 < 2ε1/2, where resonant
processes are energetically not accessible or Pauli blocked
and, consequently, higher-order effects are dominant. This
requires a theoretical description beyond the leading order
in �.39,63,64 In the HQME methodology, the depth of such
an expansion can be controlled by the threshold value Ath,
where lower values correspond to a higher quality of the
result. The details of the truncation scheme are outlined in
the Appendix. Table II summarizes the number of auxiliary
operators σ

(α)
j1...jα

that are included in these calculations at
every tier. The number of auxiliary operators in the αth tier
can be estimated as γ α−1/[(kBT )α−1Athα!] (cf. Appendix).
In the resonant transport regime, we observe only marginal
variations in the transport characteristics of junction DES as
the truncation level is changed because the first tier, including
the effect of resonant processes, is always fully accounted for
by our scheme.

TABLE II. Number of auxiliary operators in each tier α for
different threshold values Ath. Thereby, the first 100 Matsubara
frequencies ωs

K,1...100 are included in order to obtain converged results.

�����α

Ath

100 10−1 10−2 10−3 10−4 10−5

1 202 202 202 202 202 202
2 0 12 97 423 1530 3486
3 0 0 0 17 311 1965
4 0 0 0 0 0 7

TABLE III. Number of auxiliary operators in each tier α for
different threshold values Ath if, instead of the Matsubara decompo-
sition scheme, the Pade approximation (Refs. 133–135) is employed.
Thereby, we included the first 30 poles of this decomposition scheme
in order to obtain converged results.

�����α

Ath

100 10−1 10−2 10−3 10−4 10−5

1 62 62 62 62 62 62
2 0 10 85 392 1381 2896
3 0 0 0 12 235 1442
4 0 0 0 0 0 3

The results are converged to a satisfactory level if Ath �
10−5. They are the same as if all auxiliary operators of the
zeroth, first, and second tiers are included while all other
auxiliary operators are discarded (data not shown). Unphysical
negative currents are obtained for higher-threshold values
Ath � 10−2, which correspond to the same level of accuracy as
the BM master equation scheme including, however, the real
part of the self-energy due to the coupling to the electrodes.
This shows both the importance of second-order effects, which
are only well represented for Ath � 10−4, and the stability of
our results with respect to higher-order effects. Decoherence
due to electron-electron interactions is less pronounced in the
nonresonant transport regime because the population of the
two levels is negligible, n1/2 ≈ 0.

For comparison, we also show the number of auxiliary
operators in Table III that would have been required using the
alternative Pade approximation scheme.133–135 The results are
almost identical to those shown in Fig. 17 (data not shown).
Although the Pade approximation is, in general, more efficient,
the increase is limited. In the present case, the number of
auxiliary operators is reduced by a factor of only 1.2, while a
factor of about 2 can be obtained for lower temperatures. This is
because the Pade and the Matsubara decomposition schemes
share half of the frequencies (16) and the amplitudes (17).
Moreover, the similarity of results and the small gain in
numerical efficiency points out the quality of our truncation
scheme (see the Appendix).

B. Transport properties of junction CON

To complete our discussion, we discuss the transport
properties of the complementary model system CON. The
corresponding current-voltage and population characteristics
are shown in Fig. 18 (blue lines). For comparison, we also show
the transport characteristics of this junction if electron-electron
interactions are neglected (black lines) and for the limit
U → ∞ (gray lines). All three scenarios exhibit NDR in the
resonant transport regime. In contrast to junction DES, the
NDR is not very pronounced and not related to decoherence
effects but rather a direct consequence of the finite bandwidth
γ which results in a reduced overlap of the conduction bands
at ε ≈ ε1/2 and ε1/2 + U and, thus, in reduced current levels
if the bias voltage is increased. Note that this mechanism for
NDR is counterbalanced in junction DES because destructive
interference effects become simultaneously less pronounced.
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FIG. 18. (Color online) Current-voltage and electronic popula-
tion characteristics of junction CON. Interference effects and de-
coherence due to electron-electron interactions are less pronounced
in this system.

Figure 18(a) also shows that the current level of junction
CON is suppressed for bias voltages 2ε1/2 < e	 < 2(ε1/2 +
U ). In this regime of bias voltages, the junction can be
populated via two channels but depopulated only via a single
channel. The corresponding current can thus be estimated as
2�2/(2� + �), corresponding to a reduction of the current
by a factor of 2

3 . This blocking of transport channels is also
reflected in the population of the electronic levels 1 and
2, where the aforementioned asymmetry in the population
and depopulation dynamics of the junction results in an
average population of � 1

3 . At higher bias voltages, both
levels are populated simultaneously and the average population
increases. It exceeds 0.5 due to the finite bandwidth γ .

In comparison to junction DES, interference and lead-
induced interstate coupling effects play no role for the transport
properties of junction CON. The population of the two
eigenstates is almost identical n1 ≈ n2, and the coherence
σ10,01 takes very low values (|σ10,01| � 10−3, data not shown).
This seems counterintuitive at first since the quasidegeneracy
of the eigenstates and the symmetry of the coupling strengths
νK,m implies strong constructive interference effects. Such
effects indeed double the current level of the system in
the nonresonant transport regime.26 At higher-bias voltages,
however, an antiresonance at ε = (ε1 + ε2)/2 cancels the effect
of constructive interference effects (cf. Ref. 26 for a more
detailed discussion). This behavior can also be understood in
terms of the weak coupling between the dots (cf. Fig. 1),
which effectively factorizes the corresponding population
dynamics. As a result, electron-electron interactions have only

an electrostatic influence in this system. A similar behavior is
obtained if |ε2 − ε1| > � (even for junction DES).

According to this analysis, junctions DES and CON can
be viewed as two extreme cases, where decoherence due to
electron-electron interactions is fully developed and where it
plays no role, respectively. It is thus interesting to note that the
BM scheme is also capable of describing resonant transport
through junction CON both qualitatively and quantitatively
(except for the broadening due to the coupling to the electrodes,
data not shown).

IV. CONCLUSION

We have investigated the electrical transport properties of an
interacting double quantum dot system with quasidegenerate
electronic states, focusing on decoherence phenomena due
to electron-electron interactions and employing a modified
version of the numerically exact HQME approach of Jin
et al.100 The HQME approach allowed us to validate our results
with respect to higher-order (�2) effects in a systematic,
numerically exact way. This is crucial in the present context,
as the most important effects are associated with sequential
tunneling39 while, concurrently, a strict second-order expan-
sion yields unphysical results in some parameter regimes. In
addition, a comparison of the HQME and the BM scheme
elucidated strong interstate coupling effects that originate in
these systems from the energy dependence of the tunneling
efficiency between the dots and the electrodes. We find that
interaction-induced decoherence gives rise to pronounced neg-
ative differential resistance,38,39,42 an enhanced broadening
of the corresponding electronic signatures, and an inversion
of the electronic population of the junction (cf. Fig. 7). We
found that these phenomena can be even more pronounced for
intermediate asymmetries in the coupling to the electrodes.
An important experimental signature which distinguishes
decoherence-induced NDR from other mechanisms, for exam-
ple a centrally localized or a blocking state, is the symmetry
with respect to a gate voltage around the charge-symmetric
point [compare Figs. 11(a) and 13].

The decoherence mechanism that underlies these effects
is based on the blocking of (doubly occupied) states. The
principal effects are thus only weakly dependent on the
electron-electron interaction strength and enter only via
the relative position of resonances as well as the energy
dependence of the tunneling efficiency between the dots
and the electrodes. The enhanced broadening of electronic
signatures in the transport characteristics and the inversion of
the electronic population can be solely attributed to the effect
of the latter and the associated interstate coupling while the
shape of the associated current peaks or the appearance of
negative differential resistance is also strongly modified. As
a consequence, the corresponding conductance map shows
resonance lines that can be disconnected, bent, and even
smeared out [compare Figs. 11(a) and 12]. These results have
been further corroborated by studying different functional
forms of the tunneling efficiency between the dots and the
electrodes using NCA. While the BM and the NCA method
capture but also miss some of the qualitative aspects, they
fail to describe the transport characteristics of these systems
on a quantitative level. Note that, according to the results of
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Pedersen et al.,39 one can expect that the decoherence effects
described in this work are even more pronounced for the
spinful case.
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APPENDIX: NUMERICAL SOLUTION OF THE
HIERARCHICAL EQUATIONS OF MOTION

The hierarchical equations of motion (20) are numeri-
cally integrated using the Euler method. Thereby, the initial
conditions are set to the state where the system is initially
unpopulated. Other initial conditions, associated with the
singly occupied and doubly occupied systems, have also been
considered. The steady-state properties studied in this paper
did not show any dependence on the choice of the initial states.
In this context it should be noted that all auxiliary operators
are identical to zero at t = 0. This can be inferred from the
definitions (18) and (22) and corresponds to the choice that the
system S and the electrodes L and R are initially uncorrelated.

The numerical effort in the evaluation of the hierarchical
equations of motion (20) can be reduced, using that

(
σ

(α)
j1...jα

(t)
)† = (−1)

∑
β=1...α βσ

(α)
j 1...jα

(t), (A1)

where j 1 = (Kβ,mβ,sβ,pβ), and

Bj1Bj2 = −Bj2Bj1 . (A2)

The latter identity implies that the auxiliary operators σ
(α)
j1...jα

(t)
are identical to zero if two of the superindices j1 – jα

coincide.100 It should be noted at this point that there is, in
general, an infinite number of superindices jβ and, accordingly,
of auxiliary operators such that the hierarchy of equations of
motion (20) does in general not terminate automatically. Only
in specific limits, in particular the noninteracting limit (U = 0)
or for U → ∞, the hierarchy of equations of motion (20)
truncates automatically at the second tier.100,162 Respecting
the relations (A1) and (A2), the number of auxiliary operators

is given by 2N−1, where N denotes the number of different
superindices jβ .

The above result for the number of auxiliary operators
only applies if all tiers of the hierarchy (20) are taken into
account. In practice, however, it is truncated at a finite
tier α. This reduces the number of auxiliary operators
considerably to

∑
β=1...α

N!
2β!(N−β)! ∼ Nα/α!. The number

of auxiliary operators can be reduced even further because
the frequencies ωs

K,p and the amplitudes ηs
K,p typically

vary by orders of magnitude. The amplitudes ηs
K,p enter the

definition of the auxiliary operators as
∏

β=1...α η
sβ

Kβ,pβ
[cf.

Eq. (22)], while the real parts of the frequencies Re[ω±
K,p]

determine the time scales, where the dynamics of the system
influences these quantities. The relative importance of
the auxiliary operators σ

(α)
j1...jα

(t) can thus be assessed by

the dimensionless amplitude
∏

β=1...α |ηsβ

Kβ,pβ
|/Re[ω

sβ

Kβ,pβ
].

Furthermore, the importance of the respective tier level
α can be estimated by the prefactors νKα,mα

νKα,nα
/γ and

the sum of the frequencies
∑

β=1...α ω
sβ

Kβ,pβ
, which link

auxiliary operators of different tiers in Eqs. (20), in particular
when the system is close to a stationary state. Therefore,
in practical calculations, we neglect all auxiliary operators
in the second and higher tiers that have a dimensionless
amplitude |γ 1−α(

∏
β=1...α−1 ν2

Kβ,nβ
/
∑

β ′=1...β Re[ω
sβ′
Kβ′ ,pβ′ ])

(
∏

β=1...α η
sβ

Kβ,pβ
/Re[ω

sβ

Kβ,pβ
])| that is smaller than a threshold

value Ath. This value is reduced and, concurrently, the
number of auxiliary operators in the first tier is increased until
converged results are obtained. Note that, due to this choice of
the amplitudes, it is not relevant whether the factor π , which
appears in Eqs. (17), is included in the amplitudes ηs

K,p or in
the prefactors νKα,mα

νKα,nα
/γ .

Using this truncation scheme, the numerical effort can
thus be reduced to a feasible level, as is further discussed
in Sec. III A 8. The numerical effort scales as ∼Nα−1/α! con-
sidering that the amplitude condition cuts out a hypersurface of
the total index space. For the specific parametrization scheme
employed in Eq. (15) this statement can be formulated more
explicitly. As∣∣ηs

K,p

∣∣/Re
[
ωs

K,p

] ∼ 1

2p − 1

1

(2p − 1)2 − (
γ

kBT

)2 (A3)

an upper bound for the width and the radius of the correspond-
ing hypersurface may be estimated as ∼1/Ath and ∼γ /(kBT ),
respectively. Accordingly, the number of auxiliary quantities at
each tier α scales as γ α−1/[(kBT )α−1Athα!]. Finally, it should
be noted that the density and all auxiliary operators include
2Nel matrix elements.

*Institut für theoretische Physik, Georg-August-Universität
Göttingen, Friedrich-Hund-Platz 1, D-37077 Göttingen, Germany.

1M. A. Kastner, Ann. Phys. (Leipzig) 9, 885 (2000).
2J. C. Cuevas and E. Scheer, Molecular Electronics: An Introduction
To Theory And Experiment (World Scientific, Singapore, 2010).

3L. L. Chang, L. Esaki, and R. Tsu, Appl. Phys. Lett. 24, 593
(1974).

4J. H. Davies, S. Hershfield, P. Hyldgaard, and J. W. Wilkins, Phys.
Rev. B 47, 4603 (1993).

5H. Mizuta and T. Tanoue, The Physics and Applications
of Resonant Tunneling Diodes (Cambridge University Press,
New York, 1995).

6C. A. Stafford, D. M. Cardamone, and S. Mazumdar,
Nanotechnology 18, 424014 (2007).

235426-17

http://dx.doi.org/10.1002/1521-3889(200011)9:11/12<885::AID-ANDP885>3.0.CO;2-8
http://dx.doi.org/10.1002/1521-3889(200011)9:11/12$<$885::AID-ANDP885$>$3.0.CO;2-8
http://dx.doi.org/10.1002/1521-3889(200011)9:11/12$<$885::AID-ANDP885$>$3.0.CO;2-8
http://dx.doi.org/10.1002/1521-3889(200011)9:11/12$<$885::AID-ANDP885$>$3.0.CO;2-8
http://dx.doi.org/10.1063/1.1655067
http://dx.doi.org/10.1063/1.1655067
http://dx.doi.org/10.1063/1.1655067
http://dx.doi.org/10.1063/1.1655067
http://dx.doi.org/10.1103/PhysRevB.47.4603
http://dx.doi.org/10.1103/PhysRevB.47.4603
http://dx.doi.org/10.1103/PhysRevB.47.4603
http://dx.doi.org/10.1103/PhysRevB.47.4603
http://dx.doi.org/10.1088/0957-4484/18/42/424014
http://dx.doi.org/10.1088/0957-4484/18/42/424014
http://dx.doi.org/10.1088/0957-4484/18/42/424014
http://dx.doi.org/10.1088/0957-4484/18/42/424014
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