
PHYSICAL REVIEW B 88, 235422 (2013)

Negative differential transmission in graphene
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By using the Kubo linear response theory with the Keldysh Green function approach, we investigate the
mechanism leading to the negative differential transmission in a system with the equilibrium electron density
much smaller than the photon-excited one. It is shown that the negative differential transmission can appear at low
probe-photon energy (in the order of the scattering rate) or at high energy (much larger than the scattering rate).
For the low probe-photon energy case, the negative differential transmission is found to come from the increase
of the intraband conductivity due to the large variation of electron distribution after the pumping. As for the high
probe-photon energy case, the negative differential transmission is shown to tend to appear with the hot-electron
temperature being closer to the equilibrium one and the chemical potential higher than the equilibrium one
but considerably smaller than half of the probe-photon energy. We also show that this negative differential
transmission can come from both the inter- and the intraband components of the conductivity. Especially, for the
interband component, its contribution to the negative differential transmission is shown to come from both the
Hartree-Fock self-energy and the scattering. Furthermore, the influence of the Coulomb-hole self-energy is also
addressed.

DOI: 10.1103/PhysRevB.88.235422 PACS number(s): 78.67.Wj, 71.10.−w, 42.65.Re, 72.80.Vp

I. INTRODUCTION

Graphene is an easily accessible, truly two-dimensional
system which is attractive from the point of view of both basic
physics and possible applications. In the past decade, it has
attracted immense investigations.1–12 Among these works, the
time-resolved optical pump-probe measurement is widely used
to investigate the dynamics of electrons in graphene.13–32 With
this method, a pump pulse is used to excite electrons from the
valence band to the conduction one and then a time-delayed
probe pulse with the probe-photon energy ω is applied to
detect the differential transmission (DT). The experimentally
obtained DT under a probe-photon energy much higher than
twice of the Fermi energy is often positive with its fast
relaxation of several hundred femtoseconds followed by a
slower picosecond relaxation.13,20,21,26 From the DT, the
conductivity σ (ω) is extracted. Moreover, if ω is also much
larger than the scattering rate and the electrons are considered
to be free, the conductivity is given by (� ≡ 1)13,33,34

σ (ω) ≈ σfree(ω) = −σ0[fkω,1 − fkω,−1], (1)

in which σ0 = e2/4, fkω,η is the electron distribution with
η = 1 (−1) representing the conduction (valence) band, and
kω = ω/(2�vF ) stands for the resonant absorption state. With
this equation and the temporal evolution of σfree(ω), the
evolution of the electron distribution difference at the resonant
absorption state fkω,−1 − fkω,1 is directly detected.

In addition to the positive DT, the negative DT, which
indicates the increase of the conductivity after the pumping
(positive differential conductivity), has also been observed
in different experiments.14,15,18,24,27 Sun et al. reported a
negative DT in a system of very high equilibrium Fermi energy,
with the probe-photon energy being lower than twice of the
Fermi energy.14 Soon after that, the negative DT was also
observed by George et al. in the case where the probe-photon
energy is as low as tens of meV.15 These two kinds of negative
DT can be well understood theoretically. By considering the

interband conductivity of free electrons [Eq. (1)], the negative
DT reported by Sun et al.14 is shown to come from the
weakening of the Pauli blocking due to the heating of electrons
by the pump pulse.35 As for the case with low probe-photon
energy,15 the heating of the electrons can still contribute to the
negative DT.25,36 Nevertheless, with the scattering taken into
consideration, the intraband conductivity was found to be also
important for the negative DT.15,25

In contrast to the previous two cases with moderate or
small probe-photon energies, the negative DT has also been
observed with the probe-photon energy being very high (e.g.,
>1.5 eV).19,22,24,27,30 The mechanisms lead to this kind of
negative DT is still unclear. At such high probe-photon energy,
the Fermi surface is less possible to be as high as half of the
probe-photon energy and hence the weakening of the Pauli
blocking is less important. As for the intraband conductivity,
its strength is largely suppressed and hence whether it is strong
enough to lead to the negative DT is unclear. Moreover, in
previous works investigating problems of the negative DT, the
scattering strength used was assumed to be constant.25 With
constant scattering strength, the interband conductivity cannot
lead to the negative DT. Nevertheless, with the variation of
the scattering strength taken into consideration, whether it
can lead to negative DT is still unknown. In addition, the
variation of the Coulomb self-energy after the pumping was
also suggested to be the mechanism leading to the increase of
the interband conductivity and hence the negative DT.19,24,27

However, whether it is strong enough to lead to a negative DT
has not been fully theoretically demonstrated and it is even
claimed that the negative DT itself may come from external
factors.30

In this work we calculate the optical conductivity based on
the linear response theory with the Keldysh Green function
approach37,38 by taking into account the contribution of the
electron-phonon and the electron-impurity scatterings as well
as the Coulomb self-energy explicitly. We show that for
graphene with low equilibrium electron density without the
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Coulomb-hole (CH) self-energy,39,40 the negative DT can
appear when the probe-photon energy ω is low (in the order
of the scattering rate) or when ω is high (much larger than the
scattering rate). For the low ω case, the negative DT mainly
comes from the large increase of the intraband conductivity
after the pumping due to the large variation of the electron
distribution. As for the high ω case, the negative DT is shown
to tend to appear when the hot-electron temperature Te is close
to the equilibrium one and the chemical potential is higher
than the equilibrium chemical potential but considerably lower
than ω/2. This negative DT is found to come from the
variation of both the intra- and the interband components of
the conductivity. Especially, for the interband conductivity,
we find that both the scattering and the Hartree-Fock (HF)
self-energy can cause the negative DT.41 In addition, the
influence of CH self-energy is also addressed.

This paper is organized as follows. In Sec. II we set up
the model and lay out the formalism. In Sec. III the results
obtained numerically are presented. We summarize and
discuss in Sec. IV.

II. MODEL AND FORMALISM

The effective Hamiltonian of graphene near the K and K ′
points can be described by42

H0 =
∑
ksμη

ηεkc
†
ksημcksημ. (2)

Here μ = 1 (−1) stands for K (K ′) valley, η = 1 (−1)
represents conduction (valence) band, s denotes spin, and
εk = vF k with vF being the Fermi velocity. In this work we
only investigate the linearly polarized normal incident light
with the electric field along x̂ direction. Then, based on the
effective Hamiltonian, the current operator reads (the in-plane
photon momentum q = 0)34

ĵ =
∑

ksμηη′
d

μ

θkηη′c
†
ksημcksη′μ, (3)

with the dipole matrices being

d
μ

θkηη′ = −|e|vF [η′eiμθk + ηe−iμθk ]/2. (4)

It has been shown that the hot-electron Fermi distribution
is quickly established after the pumping with the hot-electron
temperatures in the conduction and valence bands being the
same while the chemical potentials being different.18,43 Based
on this result, the electron density matrix without interactions
is set to be ρ0 = exp[−∑

ksμη βe(ηεk − μη)c†ksημcksημ], with
μη being the chemical potential in band η, βe = kBTe, and
Te standing for the electron temperature. Then, from the Kubo
formula with the Keldysh Green function approach, the optical
conductivity is expressed as33,37,38,44

σ (ω) =
∫

dk
∫

dω1gd

∑
ηη′

d
μ

θkηη′d
μ

θkη′ηA(k,η′,ω1 + ω)

×A(k,η,ω1)[F (ω1,η) − F (ω1 + ω,η′)]/(16π3ω).

(5)

Here gd = 4 comes from the valley and spin degeneracies and
F (ω,η) = {exp[(ω − μη)/(kBTe)] + 1}−1. In this equation,

the two band indices η and η′ in [F (ω1,η) − F (ω1 + ω,η′)]
can be used to distinguish the contributions of the intra- and
interband conductivities. The intraband conductivity is defined
as terms with η = η′ and the interband one with η �= η′. With
this definition of the inter- and intraband conductivities, their
differential conductivities are defined as the difference of the
corresponding conductivities after and before the pumping.
The electron spectral function is given by

A(k,η,ω) = −2Im{[ω − ηεk − 
R(k,η,ω)]−1}. (6)

Here 
R(k,η,ω) represents the retarded self-energy from
the electron-electron, electron-phonon, and electron-impurity
interactions. The self-energy from the electron-impurity scat-
tering is calculated from34


i(k) = − iπni

2

∫
d2k′

(2π )2

(
Vk′−k

εq

)2

δ(εk − εk′)

× [1 − cos(θk − θk′)][1 + cos(θk − θk′ )]. (7)

Here εq is the dielectric function calculated as Scharf et al.34

and Vq = 2πe2/(κq) represents the two-dimensional bare
Coulomb potentials with κ standing for the background
dielectric constant.34

For the self-energy from the electron-phonon scattering,
although the temperatures of electrons and phonons can be
different, the Feynman rules and diagrammatic technique for
the Keldysh Green function approach are still valid.44 With
this approach, the retarded self-energy is obtained as


R
ph(k,η,ω) =

∑
q,η′,λ

Mη,η′,λ(k − q,q)Mη′η,λ(k, − q)

×
[

nqλ + 1 − F (ε|k−q|,η′)
ω + i0+ − η′ε|k−q| − ωλ(q)

+ nqλ + F (ε|k−q|,η′)
ω + i0+ − η′ε|k−q| + ωλ(q)

]
. (8)

Here Mη,η′,λ(k, − q) are the electron-phonon scattering matri-
ces for phonons in branch λ with their detailed forms given
by Scharf et al.34; nqλ = {exp[ωq,λ/(kBTph)] − 1}−1 is the
distribution for phonons with energy ωq,λ and temperature Tph.
In the following we ignore the effect of polaronic shifts, i.e., the
real part of the electron-phonon self-energy and compensate
such approximation by renormalizing the spectral function to
fulfill

∫
dωA(k,η,ω) = 2π as done by Scharf et al.34

As for the self-energy from the Coulomb interaction, we
take into account the HF self-energy39


HF
k,η =

∑
k′

−η cos(θk − θk′)
Vk′−k

2εk′−k

(
f e

k′ + f h
k′
)
. (9)

Here f e
k = F (εk,1) and f h

k = 1 − F (−εk, − 1) are the elec-
tron and hole distributions, respectively. This self-energy
comes from the Coulomb exchange self-energy45–47


̂ee(k,η,ω) = −1

2

∑
k′η′

[1 + ηη′ cos(θk − θk′)]

×F (η′vF k′,η′)Vk′−k/εk′−k, (10)

with the exchange term of the full valence band subtracted as
it is already included in the original single-particle energy.41
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However, it is known in semiconductor optics that there is
a Debye shift or the CH self-energy in addition to the HF
self-energy, which is expressed as39,40,48


CH
k,η =

∑
q

η cos(θk − θk+q)Vq
(
1/εq − 1/ε0

q

)/
2, (11)

with ε0
q representing the dielectric function at Te = 0 K and

μ1 = μ−1 = 0 meV. The physics of this CH self-energy is as
follows. After the pumping, the pump-excited electrons change
the screening strength. As a result, the subtracted exchange
term of the full valence band also varies [Eq. (11)]. It has been
shown in semiconductor optics that the CH self-energy leads
to a strong renormalization of the band structure (band-gap
shrinkage).40,48 Due to the similar renormalization of the band
structure in graphene, it was speculated that this variation of
the Coulomb self-energy is responsible for the negative DT.27

In this work, we also calculate the influence of the Coulomb
self-energy to check this speculation.

III. RESULTS

From the relation between the transmission and
conductivity13,49–51

Tω = |1 + Nlayσ (ω)
√

μ0/ε0/(1 + nref)|−2, (12)

one finds that the negative DT emerges when the opti-
cal conductivity increases after the pumping. Therefore,
instead of calculating the DT, we investigate the varia-
tion of the conductivity before and after the pulse (differ-
ential conductivity) �σ (Te,μ1,μ−1,ω) = σ (Te,μ1,μ−1,ω) −
σ (T0,μ

0
1,μ

0
−1,ω). Here, for electrons before the pumping, we

choose their temperature T0 = 300 K. We concentrate on the
case with the photon-excited electron density much larger than
the equilibrium one and hence choose the chemical potential
μ0

1 = μ0
−1 = 0 for convenience. Then, due to the symmetry

between electrons and holes, one always has μ1 = −μ−1

after the establishment of the Fermi distribution. Unlike
some earlier theoretical works claiming that μ1 is always
zero,52–56 our recent work35 shows that μ1 is nonzero when
the Fermi distribution is established. This is because of the
static screening used in these works.52,53,56 With the static
screening, the strong interband scattering due to the Auger
process drives the electrons and holes to the quasiequilibrium
state very quickly and leads to an equilibrium electron-hole
Fermi distribution (i.e., μ1 = 0). However, we have shown that
in graphene the screening should be the dynamic one which
forbids the Auger process adopted in the previous works.57–60

As a result, the interband scattering process is much weaker
and the Fermi distributions are established separately for
electrons and holes.35 This conclusion is also supported by the
experimental results by Breusing et al.18 It is further noted that
this result is also consistent with that in semiconductor optics
dealing with the quasiequilibrium electron-hole plasma,61–63

where the interband scattering is also weak. Based on these
considerations, in this work, we will vary the value of μ1

to investigate its influence. In our calculation, the material
parameters are the same as in Ref. 34 and the impurity density
ni = 5 × 1011 cm−2. The temperature of phonons Tph is chosen
to be the same as electrons and the substrate is chosen to be
SiO2 unless otherwise specified. It is noted that we restrict our

investigation with the probe-photon energy ω being lower than
2000 meV. Hence the energies of the electron states affecting
the conductivities are mainly lower than 1000 meV, where the
linear spectrum approximation is sound.9,64

A. Contributions of intra- and interband
differential conductivities

In this section we first give an analytical analysis on the
intra- and interband components of the conductivity and then
show their contributions to the total differential conductivity
numerically.

1. Analytical analysis on the intra- and interband conductivities

The increase of the total conductivity after pumping may
come from both the intra- and the interband components of
the conductivity. For the intraband component in Eq. (5), it
can be simplified by assuming the self-energy 
R(k,η,ω) =
Re
k,η + i/(2τ ). Furthermore, by using the condition μ1 =
−μ−1 and taking the limit ω → 0, one has

σintra(ω) = e2τD(Te,μ1,μ−1)/[π (1 + ω2τ 2)]. (13)

Here Re
k,η is the real part of the self-energy which comes
from the HF and CH self-energies and

D(Te,μ1,μ−1) = 2
∫ ∞

0
dεε[−∂εF (ε + Re
k,1,1)]

= 2
∫ ∞

−μ′
kB Te

dx(kBTex + μ′)
ex

(ex + 1)2
, (14)

with μ′ = μ1 − Re
k,1. From Eq. (13), one finds that the
increase of the scattering strength, i.e., the decrease of τ ,
leads to the increase (decrease) of the conductivity when the
probe-photon energy ω is larger (smaller) than τ−1. Moreover,
from Eqs. (13) and (14), it is found that the increase of the
electron temperature Te and chemical potential μ1 as well as
the decrease of the self-energy Re
k,1 lead to the increase of
D(Te,μ1,μ−1) and hence σintra.

As for the interband conductivity, its increase may come
from the variations of the scattering (the imaginary part
of the self-energy), the HF self-energy, and the CH self-
energy (the real part of the self-energy). For the scattering,
it can be shown that the interband conductivity increases
with the decrease of the scattering strength.65 Therefore,
the positive differential conductivity may appear when the
scattering strength decreases. On the other hand, for the HF
and CH self-energies, their influences are understood from
the simplified Eq. (5) by neglecting the electron-impurity and
electron-phonon scatterings:

σ (ω) = gdσ0v
2
F

ω

∫ ∞

0
dkkδ

(
ω − 2εk + 
ee

k,−1 − 
ee
k,1

)

× [
F

(−εk + 
ee
k,−1, − 1

) − F
(
ω − εk + 
ee

k,−1,1
)]

= [
F

(−εkω
+ 
ee

kω,−1, − 1
) − F

(
ω − εkω

+ 
ee
kω,−1,1

)]
× gdσ0v

2
F kω

/{
ω

[
2vF − ∂k

(

ee

kω,−1 − 
ee
kω,1

)]}
. (15)

Here kω satisfies ω − 2εkω
+ 
ee

kω,−1 − 
ee
kω,1 = 0 and 
ee

kω,η

stands for the corresponding self-energy from the Coulomb
interaction (HF and CH self-energies). After the pumping,
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FIG. 1. (Color online) (a) Chemical potential and (b) electron
temperature dependencies of �
Re and �(2τ )−1 with and without
the CH self-energy. Here the probe-photon energy ω is chosen to be
1500 meV. For the chemical potential μ1 dependence, the electron
temperature Te = 700 K and for the electron temperature dependence,
the chemical potential μ1 = 300 meV. Moreover, to make the results
clearer, the curves with the CH self-energy plotted in the figure are
�
Re/100. Note that the scale of �(2τ )−1 is on the right-hand side
of the frame.

the difference of the HF self-energy 
HF
kω,−1 − 
HF

kω,1 may
overcome the decrease from the increasing screening strength
and increase due to the increase of the carrier density [Eq. (9)].
Moreover, the difference of the CH self-energy 
CH

kω,−1 − 
CH
kω,1

can also increase due to the enhancement of the screening
strength. As a result, kω may increase, which tends to enhance
the interband conductivity.

2. Numerical investigation on the contributions of intra- and
interband differential conductivities

Since the variations of 
HF
kω,−1 − 
HF

kω,1 and (2τ )−1 after
the pumping are highly related to the interband differential
conductivity as discussed in the previous subsection, we
first investigate their properties as a guidance. We calculate
their variations as �
Re = 
HF

kω,−1 − 
HF
kω,1 − 


HF,0
kω,−1 + 


HF,0
kω,1

and �(2τ )−1 = (2τ )−1 − (2τ0)−1, with 

HF,0
kω,−1, 


HF,0
kω,1 and

(2τ0)−1 obtained before the pumping. Here (2τ )−1 is calculated
from the imaginary part of the retarded self-energy (2τ )−1 =
|Im
R(kω,1,ω̄)|, with ω̄ = vF kω. Moreover, the temperature
of phonons are set to be the same as that of electrons. Then,
the chemical potential and electron temperature dependencies
of �
Re and �(2τ )−1 are plotted in Figs. 1(a) and 1(b),
respectively. From Fig. 1(a) one finds that for �
Re without
the CH self-energy, it is positive when μ1 < 500 meV and
a peak appears around μ1 = 280 meV. Since the positive
�
Re tends to increase the differential conductivity (i.e.,
decrease the DT) as discussed in Sec. III A 1, this positive
�
Re with the peak shown in the figure indicates that the
increase of the carrier densities can lead to the negative DT

unless the chemical potential is so large that the decrease of
�
Re due to the increase of the screening strength becomes
dominant. Moreover, one also finds that �(2τ )−1 shows a
valley in the μ1 dependence. This indicates that a peak of
the differential conductivity in the μ1 dependence can occur,
since the decrease of the scattering strength tends to enhance
the differential conductivity. As for the electron temperature
Te dependencies of �(2τ )−1 and �
Re without the CH
self-energy as shown in Fig. 1(b), one finds that both of them
increase with the increase of temperature in the parameter
range investigated here. This indicates that the HF self-energy
tends to enhance the differential conductivity but the scattering
tends to suppress it with the increase of temperature. In
addition to the case without the CH self-energy, we also show
�
Re with the CH self-energy in the figures. It is found
that the corresponding �
Re increases monotonically with
the increase of μ1 and Te. Moreover, its value is much larger
than the one without the CH self-energy. Hence, one expects
that the differential conductivity is markedly enhanced by the
CH self-energy.

We then numerically calculate the probe-photon energy
dependence of the total differential conductivity. The case
without the CH self-energy is first investigated. It is noted
that the chemical potential μ1 and temperature Te of hot
electrons vary with the temporal evolution after the pumping.
Here we take Te = 500 K and μ1 = −μ−1 = 300 meV as an
example to investigate the possible mechanisms discussed in
Sec. III A 1. The total differential conductivity as function of
probe-photon energy is plotted in Fig. 2(a) (red solid curve).
To identify the individual contributions of inter- and intraband
components, we also plot the differential conductivity with
only the interband component in the figure (open squares).
One finds that, at very low probe-photon energy ω (<50 meV),
the total differential conductivity is positive and far away from
zero, while the interband differential conductivity is negative.
This indicts that the large positive differential conductivity at
low ω comes from the intraband component.

As analyzed in Sec. III A 1, this large positive intraband
differential conductivity at low probe-photon energy ω comes
from the variation of D(Te,μ1,μ−1) and τ after the pumping.
The variation of D(Te,μ1,μ−1) can be obtained from Eq. (14)
if the electron distribution (i.e., Te and μ1) and the HF
self-energy Re
k,1 are known. It is noted that Re
k,1 for
the temperatures and chemical potentials calculated here is
always less than 3 meV, much smaller than the chemical
potential after the pumping (300 meV). Hence, the influence
of the HF self-energy on D(Te,μ1,μ−1) can be neglected and
one obtains D(Te,μ1,μ−1) = 35.8 and 600 meV for the cases
before and after the pumping, respectively. To further identify
the contribution of τ , we fit the total conductivity in the region
ω < 50 meV with

σ̃ (ω) = σintra(ω) + σfree(ω). (16)

Here σfree(ω) is included to take into account the influence
of the interband conductivity. τ is fitted to be 0.07 and
0.17 meV−1 for the cases before and after pumping, re-
spectively [the obtained differential conductivity is plotted in
Fig. 2(a) as the green dotted curve]. One finds that the relative
change of τ is much smaller than that of D(Te,μ1,μ−1). Hence
the variation of the intraband conductivity mainly comes from
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FIG. 2. (Color online) Interband as well as total differential
conductivities with and without the CH self-energy as function of the
probe-photon energy ω. The states after the pumping are chosen to
be (a) Te = 500 K and μ1 = −μ−1 = 300 meV, and (b) Te = 1000 K
and μ1 = −μ−1 = 300 meV. The total conductivity without the CH
self-energy in (a) is fitted for ω � 50 meV by Eq. (16) with the fitted
results plotted as the green dotted curve. The inset zooms the range
at high ω with the interband differential conductivity without the CH
and HF self-energies plotted as brown solid triangles. The black chain
line in the figure marks �σ/σ0 = 0.

the variation of the electron distribution, which leads to the
huge increase of D(Te,μ1,μ−1). Moreover, since the influence
of the HF self-energy on D(Te,μ1,μ−1) can be neglected,
its influence on the intraband component of the differential
conductivity is also marginal. It is further noted from the figure
that, with the increase of the probe-photon energy ω from zero,
�σ decreases fast and becomes negative around ω = 55 meV.
This quick decrease of �σ can be understood from Eq. (13),
which infers that the influence of the intraband component of
the differential conductivity is significant only when ω is in
the order of τ−1.

In addition to the large positive differential conductivity
shown in the case of low probe-photon energy ω, another
small positive total differential conductivity also appears when
ω is high (larger than 1200 meV) as shown by the red
solid curve in the inset. One also finds from the inset that

the interband differential conductivity (open squares) is also
positive. Moreover, it is smaller than the total one with their
difference being in the same order (∼10−3σ0) as the interband
differential conductivity. This means that the positive total
differential conductivity comes from both the inter- and the
intraband components and both contributions are important at
such high ω.

For the positive contribution from the intraband component
at such high ω, it still mainly comes from the large variation
of the electron distribution after the pumping as the case with
low probe-photon energy ω. This is confirmed by calculating
the intraband component in Eq. (5) with the distribution
[F (ω1,η) − F (ω1 + ω,η)] fixed with the pumping. We find
that the obtained intraband conductivity decreases more than
75% for all ω shown in the inset (not plotted in the figure).

As for the positive contribution from the interband com-
ponent, it may come from the variations of both the HF
self-energy and the scattering strength after pumping as
discussed in Sec. III A 1. Although the influence of the HF
self-energy on the intraband component is marginal, it may
have non-negligible influence on the interband component. To
further identify its contribution, we also plot the interband
differential contribution without the HF self-energy in the
inset (brown solid triangles). One finds that the one with
the HF self-energy is about 2–3 times of that without the
HF self-energy. This means that the variations of both the
HF self-energy and the scattering strength have important
contributions to the positive interband differential conductivity
at such high probe-photon energy.

We further investigate the influence of the CH self-energy
on the differential conductivity. With the CH self-energy, the
total differential conductivity and the one with only interband
component are plotted as the blue dashed curve and the blue
solid dots in the figure, respectively. One finds that their
qualitative behaviors are similar to those without the CH
self-energy, i.e., the large positive differential conductivity
from the intraband component at low probe-photon energy ω

as well as the emergence of positive differential conductivity at
high ω. Nevertheless, it is seen that the differential conductivity
with the CH self-energy included varies markedly compared
with the one without the CH self-energy. This means that the
CH self-energy has pronounced influence on the differential
conductivity, which is consistent with the large positive �
Re

with the CH self-energy shown in Fig. 1. Moreover, it is also
seen that with the CH self-energy, the total and the interband
differential conductivities are very close at high ω as shown
in the inset. This indicates that the large influence of the CH
self-energy at high ω is mainly on the interband component.

To further show the influence of Te, we plot the probe-
photon energy ω dependence of the differential conductivities
at the electron temperature Te = 1000 K and chemical poten-
tial μ1 = 300 meV in Fig. 2(b). For the case without the CH
self-energy, the total differential conductivity (red solid curve)
at high ω (>1200 meV as shown in the inset) becomes negative,
which is different from the case at Te = 500 K. To show the
origin of this negative differential conductivity, we plot the
interband one with (red open squares) and without (brown solid
triangles) the HF self-energy in the inset. It is shown that they
are also negative and the total differential conductivity is close
to the interband one without the HF self-energy. This indicates
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that the negative total differential conductivity comes from the
negative interband differential conductivity without the CH
and HF self-energies under high temperature at high ω. To see
the influence of the CH self-energy, we plot in the inset both
the total (blue dashed curve) and the interband (blue solid dots)
differential conductivities. One finds both become positive for
the high ω case. This again shows that the CH self-energy has
a large influence on the differential conductivity.

B. Condition for negative DT

In the previous section, the mechanisms and their contribu-
tions to the positive differential conductivity are investigated
under specific electron temperatures Te and chemical potential
μ1. However, the hot-electron temperature and the chemical
potential after the pumping vary with time. Here we investigate
the conditions of Te and μ1 as well as the probe-photon
energy ω for the emergence of the positive differential
conductivity (i.e., negative DT). Since the positive differential
conductivity in the low ω case has been shown to come
from the intraband component of the conductivity, in this
section, we only investigate the case with high ω, where
the negative DT was speculated to come from the scattering
and the Coulomb self-energy.19,24,27 The cases without the
CH self-energy are first studied with the total differential
conductivity in the ω-μ1 parameter space plotted in Fig. 3(a).
Here the electron temperature is chosen to be 700 K, which
is among those estimated in the experiment and the phonon
temperature is chosen to be the same as that of electrons.
We only plot the region with positive differential conductivity
for clarity. It is found that if the probe-photon energy is
larger than 1250 meV, the positive differential conductivity
emerges with the corresponding range of μ1 depending on ω.
To further show the contributions of the inter- and intraband
components, we plot the chemical potential dependence of the
total and the interband differential conductivities in Fig. 3(b)
with ω = 1500 and 1700 meV. From the figure, one finds
that the interband differential conductivities (open squares
and dashed curve) are negative but the total conductivity
is positive when 160 < μ1 < 420 meV for ω = 1700 meV
(solid curve) and 140 < μ1 < 340 meV for ω = 1500 meV
(dots). This indicates that the positive differential conductivity
comes from the intraband component. This result is consistent
with previous ones that the intraband differential conductivity
increases with Te and μ1 [Eq. (14)], while the interband one is
negative if the hot-electron temperature is much larger than the
equilibrium one. Moreover, one also finds that peaks appear in
the chemical potential dependencies of both the total and the
interband differential conductivities with the corresponding μ1

considerably smaller than ω/2. Considering that the intraband
differential conductivity increases with μ1 monotonously, the
peak shown in the total differential conductivity is understood
to come from the interband one, which is consistent with the
valley of �(2τ )−1 shown in Fig. 1(a) as discussed in the first
paragraph of Sec. III A 2. In addition, it is also shown in the
figure that with the increase of ω, the peak of the interband
differential conductivity appears at higher μ1 (pointed by
the arrows), this explains that the positive total differential
conductivity tends to appear at higher μ1 with the increases of
ω as shown in Fig. 3(a). To further show the influence of the
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FIG. 3. (Color online) (a) Total differential conductivity in ω-μ1

space with Tph = Te = 700 K. (b) Chemical potential dependence
of the total differential conductivity at ω = 1500 meV (blue solid
dots) and 1700 meV (blue solid curve) as well as the interband one at
ω = 1500 meV (red open squares) and 1700 meV (red dashed curve).
The chemical potential dependence of the interband differential
conductivity without the HF self-energy at ω = 1700 meV is also
plotted as the green dashed curve. Here Te = Tph = 700 K. The red
arrows mark the peak of the interband differential conductivities.
(c) Total differential conductivity in the ω-μ1 parameter space with
Tph being 200 K lower than Te. (d) Chemical potential dependence
of the total differential conductivity at ω = 1700 meV as well as
that for the interband one with and without the HF self-energy. Here
Te = 700 K and Tph = 500 K. (e) Total differential conductivities
in the Te-μ1 parameter space. Here ω = 1500 meV and Tph = Te.
(f) Temperature dependence of the total differential conductivity as
well as that for the interband one with and without the HF self-energy.
Here μ1 is chosen to be 320 meV. For clarity, only the positive
differential conductivity is plotted in (a), (c), and (e). The chain lines
in (b), (d), and (f) mark �σ/σ0 = 0.

HF self-energy on the interband differential conductivity, we
plot the interband differential conductivity at ω = 1700 meV
without the HF self-energy (green dashed curve) in Fig. 3(b). It
is shown that the interband differential conductivities with and
without the HF self-energy are close at small μ1 (<200 meV).
This is understood since the HF self-energy is small when
the excited electron density is small (i.e., μ1 is small). On
the other hand, the HF self-energy becomes large when the
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chemical potential after the pumping is several hundred meV
larger than the equilibrium one with the screening not strong
enough to suppress it. This has been shown in Fig. 1(a), where
a peak occurs in the chemical potential dependence of the
variation of the HF self-energy (i.e., �
Re shown by the red
solid curve) around μ1 = 300 meV. One finds that the region
of the peak is just the one that the HF self-energy leads to an
obvious increase of the interband differential conductivity as
shown in Fig. 3(b).

One also finds from Fig. 3(a) that the positive differential
conductivity (negative DT) emerges only when the probe-
photon energy ω is high enough. This is supported by the
experimental data by Shang et al.24 They showed that the
negative DT appears when the probe-photon energy ω is
larger than 2000 meV but disappears when ω is smaller than
1835 meV under very strong pumping strength. From the
numerical results shown in Fig. 3(a) (where Te = 700 K),
this property can be shown by electrons with the chemical
potential μ1 around 490 meV. One finds that the corresponding
differential conductivity (DT) changes from negative (positive)
to positive (negative) when ω > 1900 meV. It is noted that the
electron density under these Te and μ1 is 1.9 × 1013 cm−2.
This electron density is also reasonable since the pumping
strength used in the experiment is very strong.

It is noted that in our calculation, all modes of phonons
are assumed to be at the same temperature as electrons.
This is suitable when the DT is measured at the time
long enough after the pumping.20 Nevertheless, as shown in
the literature,35,43,66–69 the temperatures of phonons can be
several hundred Kelvins lower than that of electrons when the
hot-electron–Fermi distribution is just established. To further
investigate the influence of the lower phonon temperature,
we also show the results with the phonon temperature being
200 K lower than the electron temperature Te in Fig. 3(c). It is
shown that with the decrease of the phonon temperature, the
region of the positive differential conductivity is enlarged. This
is understood since the electron-phonon scattering strength
decreases with the decrease of the phonon temperature, which
increases the interband differential conductivity.65 To confirm
this, we also plot the chemical potential dependence of the
total and the interband differential conductivities with Tph =
500 K and ω = 1700 meV in Fig. 3(d). Compared to the one
with Tph = 700 K [Fig. 3(b)], it is found that the interband
differential conductivity without the HF self-energy (green
dashed curve) increases markedly and it can even lead to
positive differential conductivity at 45 < ω < 350 meV.

We further give a detailed investigation on the total dif-
ferential conductivity in the electron-temperature–chemical-
potential (Te-μ1) space at a fixed probe-photon energy ω =
1500 meV. The phonon temperature is chosen to be the same as
the electrons and the results are plotted in Fig. 3(e). One finds
that the positive differential conductivity can appear when
Te < 730 K. To further identify the contributions of the inter-
and intraband components, we plot the temperature depen-
dence of the differential conductivity in Fig. 3(f) with μ1 =
320 meV. One finds that the total differential conductivity
(solid curve) is obviously larger than the interband one (dotted
curve). This indicates the important positive contribution of
the intraband component. Moreover, it is also shown that the
difference between the interband differential conductivities

with (red dotted curve) and without (green dashed curve) the
HF self-energy varies slowly with the temperature. This means
that in the parameter range investigated here, the influence of
temperature on the HF self-energy is small. In addition, it
is also found that the interband differential conductivity with
only scattering (i.e., without the HF self-energy) can also be
positive when Te is close to the equilibrium one (300 K).
However, it decreases with the increase of the temperature
quickly and becomes negative when Te > 550 K.

Now, we can lay out the conditions for the emergence of
the negative DT (or equivalently, positive differential conduc-
tivity) in graphene with low equilibrium electron density. The
negative DT can appear both in the low probe-photon energy ω

(in the order of the scattering rate) case and in the high ω case
(much larger than the scattering rate). For the low ω case, this
negative DT mainly comes from the increase of the intraband
conductivity. This increase is mainly due to the large variation
of the electron distribution after the pumping and is almost
not influenced by the HF self-energy in the temperature range
investigated here. As for the high ω case, although the DT for
free electrons [i.e., the one with the conductivity calculated
from Eq. (1)] can never be negative, the negative DT can
appear if the scattering is taken into consideration. With the
scattering, the interband conductivity tends to lead to a negative
DT when the hot-electron temperature Te is close to the
equilibrium one and the chemical potential μ1 is higher than
the equilibrium chemical potential but considerably smaller
than ω/2. Moreover, this region of the negative DT determined
by the interband conductivity can be further expanded by
the intraband one, which always tends to decrease the DT
if Te and μ1 increase after the pumping. Furthermore, the
HF self-energy can also contribute to the negative DT by
increasing the interband differential conductivity when μ1 is
much higher than the equilibrium chemical potential (about
several hundred meV) but is not too high to avoid the strong
suppression of the HF self-energy from the screening in the
temperature range usually estimated in the experiment (around
1000 K). This further expands the region of the negative DT
at high ω. We further note that if the phonon temperature is
considered to be smaller than that of electrons, the interband
differential conductivity increases, which also expands the
region of the negative DT.

C. Influence of CH self-energy

Finally, we address the influence of the CH self-energy
on the emergence of the negative DT (positive differential
conductivity). The total differential conductivity with the CH
self-energy for graphene on SiO2 substrate in the electron-
temperature–chemical-potential (Te-μ1) parameter spaces is
plotted in Fig. 4(a). Here the probe-photon energy ω is chosen
to be 1500 meV. Comparing with the results without the
CH self-energy [Fig. 3(e)], one finds that the CH self-energy
enhances both the region and the magnitude of the positive
differential conductivity markedly. This means that the varia-
tion of the CH self-energy after the pumping is the dominant
mechanism leading to the positive differential conductivity
at such high ω if it is taken into consideration. It is worth
noting that the shape for the region of the positive differential
conductivity with the CH self-energy is similar to the one
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FIG. 4. (Color online) Total differential conductivity with the CH
self-energy for graphene on SiO2 (a) and SiC (b) in Te-μ1 parameter
space. For clarity, only the positive differential conductivity is plotted.

without it [Fig. 3(e)] (this is also true for ω-μ1 parameter
space). This means that the tendency for the emergence of
the total differential conductivity summarized in Sec. III B is
still valid, although the variation of the CH self-energy after
the pumping becomes the dominant mechanism leading to the
positive differential conductivity.

It is noted that since the CH self-energy mainly comes
from the variation of the screening, its influence should
be smaller if the graphene layer is on a substrate with
higher background dielectric consistent. To confirm this, we
show the results for graphene on SiC [Fig. 4(b)], whose
background dielectric constant is 2.2 times of that for SiO2.
One finds that both the magnitude and the region of the
positive differential conductivity decrease obviously compared
with the one on SiO2 substrate. Nevertheless, the positive
differential conductivity (negative DT) region shown on SiC
substrate is still very large.

Actually, the negative DT region shown on SiO2 and
SiC substrates with the CH self-energy is so large that
it disagrees with some of the existing experiments.13,30,31

Dawlaty et al.13 have shown experimentally for graphene on
SiC substrate that the DT is positive when the optical excited
electron density is about 1012 cm−2 with the corresponding
Te estimated to be around 900 K and μ1 around zero under
the probe-photon energy close to 1500 meV.20 However, the
numerically obtained DT with these parameters is negative
as shown in Fig. 4(b). Moreover, Ruzicka et al.30 and Brida
et al.31 also showed in graphene on SiO2 substrate that the
DT is positive when the excited electron density is about
1013 cm−2 with the corresponding Te estimated to be around
1000 K and μ1 around 350 meV.30 However, the numerically
obtained DT with the CH self-energy is also negative as
shown in Fig. 4(a). Nevertheless, for the case without the CH
self-energy, the DTs under these parameters are all positive
[Fig. 3(e) for the SiO2 substrate and that for the SiC substrate
is not shown]. Further considering the fact that the result
obtained without the CH self-energy is consistent with the
experiment with the negative DT (Sec. III B),24 one concludes
that although the calculation of the CH self-energy used here
is very successful in semiconductors,39,40 it overestimates the
Coulomb self-energy in the gapless graphene system. This
may come from the approximations used to obtain Eq. (11).
For example, the background dielectric constant κ is taken to
be constant although it is shown to increase with q (Ref. 70)
and the vertex correction38 for the Coulomb screening is

neglected. A better description on the influence of the Coulomb
self-energy is beyond the scope of this investigation.

IV. SUMMARY

In summary, we have investigated the emergence of the
negative DT by calculating the optical conductivity based on
the linear response theory with the Keldysh Green function
approach. In our calculation, the influences of the electron-
phonon and electron-impurity scatterings as well as the
Coulomb self-energy are explicitly included. We investigate
the system with the photon-excited electron density much
larger than the equilibrium one and show that the negative
DT (or equivalently, the positive differential conductivity) can
appear at low probe-photon energy ω (in the order of the scat-
tering rate) or at high ω (much larger than the scattering rate).

For the low ω case, the negative DT is shown to mainly
come from the large increase of the intraband conductivity
due to the large variation of the electron distribution after
the pumping. As for the high ω case, it is shown that the
interband conductivity with only scattering can lead to the
negative DT when the hot-electron temperature Te is close
to the equilibrium one and the chemical potential μ1 is higher
than the equilibrium chemical potential but considerably lower
than ω/2. Moreover, the intraband conductivity can further
expand this region of the negative DT because it always tends
to decrease DT if Te and μ1 increase after the pumping.
Furthermore, in the temperature range usually estimated in
the experiments (around 1000 K), the HF self-energy is also
shown to be able to contribute to the negative DT by increasing
the interband differential conductivity considerably when μ1

is several hundred meV higher than the equilibrium one. This
further expands the region of the negative DT at high ω.
Nevertheless, the HF self-energy has little influence on the
intraband conductivity and hence its effect on the negative
DT at low ω can be neglected. In addition, we also show that
if the phonon temperature is smaller than that of electrons,
the interband differential conductivity is increased which also
expands the region of the negative DT. Our numerical results
are consistent with the ω dependence of the negative DT
obtained experimentally by Shang et al.24

The influence of the CH self-energy is also investigated.
We find that it markedly expands the region of the negative
DT. However, this expansion is too large which makes the
obtained region of the negative DT become incompatible
with the existing experiments.13,30,31 This means that the CH
self-energy calculated with the well established approach in
semiconductors39,40 overestimates the Coulomb self-energy
in the gapless graphene system. More investigation to take
into account the high order correlation is needed.
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