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Influence of the carrier reservoir dimensionality on electron-electron scattering
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We calculated Coulomb scattering rates from quantum dots (QDs) coupled to a two-dimensional (2D) carrier
reservoir and QDs coupled to a three-dimensional (3D) reservoir. For this purpose we used a microscopic theory
in the limit of Born-Markov approximation, in which the numerical evaluation of high dimensional integrals is
done via a quasi-Monte Carlo method. Via a comparison of the so determined scattering rates, we investigated
the question whether scattering from 2D is generally more efficient than scattering from 3D. In agreement with
experimental findings, we did not observe a significant reduction of the scattering efficiency of a QD directly
coupled to a 3D reservoir. In turn, we found that 3D scattering benefits from its additional degree of freedom in
the momentum space.
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I. INTRODUCTION

In the last decades, semiconductor quantum dots (QDs)
have been intensively studied due to their high performance
in various applications. In particular, for telecom application,
e.g., lasers or amplifiers, QD devices have shown promising
results, like low threshold current and high temperature
stability.1

Typical QD devices contain dots embedded into a two-
dimensional carrier reservoir (2DCR), for example quantum
well (QW), or wetting layer (WL) like structures.1 However,
the 2DCR is believed to hinder high-speed applications of
devices like amplifiers, due to its much slower dynamics
compared to the internal dots.2 Hence, there is an extra effort
in growing devices with QD structures directly coupled to
the bulklike three-dimensional carrier reservoir (3DCR), for
example via droplet epitaxy,3,4 or submonolayer deposition.5

According to Sanguinetti et al.,6 the 2DCR was believed to
boost the feeding of the quantum dot states with carriers,
enabling ultrafast data transmission. Therefore, the aim of this
paper is to answer the question

Is Coulomb scattering between QD and 2D reservoir
generally faster than between QD and bulklike 3D reservoir?

Sanguinetti et al. investigated this fundamental question
experimentally.6,7 Surprisingly, they could not observe any
significant impact of the reservoir dimensionality on QD
capture. Here this question will be addressed from the
theoretical point of view.

The theoretical investigation of Coulomb scattering in QD-
2D systems has attracted much attention.8–19 In contrast, only
few authors investigated QD-3D systems.20–23

One reason might be the high numerical effort that goes
along with evaluation of the kinetic Boltzmann equation24

in such systems. Here we accomplish this challenge by
using a quasi-Monte Carlo (QMC) method25–27 for numerical
integration.

This paper is structured as follows: After the introduction
of the model system, we describe the basic equations. Then
we describe the considered Coulomb-scattering processes.
Afterwards the achieved results will be discussed. Our
main observation from our calculations is that even though

significant differences in particular scattering channels appear,
the reservoir dimensionality does not affect the feeding
of the QD ground state significantly. This is in agreement
with the experimental findings of Ref. 7. A description of the
quasi-Monte Carlo method for numerical integration can be
found in Appendix A.

II. MODEL UNDER CONSIDERATION

A. Model system

The impact of the reservoir dimensionality will be investi-
gated by comparing two systems (cf. Fig. 1). (i) QDs embedded
into a 2DCR. The dots have one s-like ground state envelope
and two degenerate p-like excited states envelopes for each
band. We assume independent dot layers in a multilayer device.
(ii) The same QDs, but coupled to a 3DCR. In both systems
the reservoir is described by a single valence band (VB)
and a single conduction band (CB) with parabolic dispersion
relations, respectively.

1. QD wave functions

To compare both systems on a fair basis, we assume QDs
with the same material parameters and equal wave functions
ψD in both systems. The QDs compound index D includes
the quantum numbers for the band �D , quantum numbers
describing the type of the state, for example, s- or p-shell
envelope, the spin σD , and the QD position �RD (cf. Ref. 11),

ψD(�r) = ψ̂D(�r)u(�D,σD)(�r) = ξD(z)ϕD(�r||)u(�D,σD )(�r). (1)

Here u(�D,σD)(�r) denotes a product of Bloch function times
spin part. ψ̂D(�r) describes the envelope that can be factorized
into two parts: (1) The eigenstates of an infinite barrier ξD(z)
with an effective height L in growth (z) direction. (2) The s-
and p-type eigenfunctions of an harmonic oscillator ϕD(�r||) in
the in-plane (x,y) direction.11,28,29 To distinguish QD ground
(GS) and excited state (ES), we use the notation D = GS
(D = ES), omitting other quantum numbers.
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FIG. 1. (Color online) Illustration of the compared systems.
System (i): QDs embedded into a 2D carrier reservoir (2DCR).
System (ii): QDs embedded into a 3D carrier reservoir (3DCR). For
both systems the capture process into a QD excited state (ES) is
depicted [cf. Eq. (7)].

2. Reservoir wave functions

The envelopes of the 2D reservoir states are also factoriz-
able into z and in-plane direction. In the z direction the same
wave functions ξD(z) as for the QD are assumed. The in-plane
direction ϕki,2D (�r||) is described by 2D orthogonalized plane
waves (2D-OPWs) as described in Ref. 11.

The envelopes of the 3D reservoir states30,31 are described
by 3D-OPWs. Therefore, the orthogonalization scheme de-
scribed in Ref. 11 is applied to full 3D wave functions. As a
result of that, a factorization into z and in-plane direction is no
longer possible.

Reservoir states will be denoted by compound indices ki .
They include band �ki

and spin σki
, as well as the carrier

wave vector �ki : ki,3D = [�i,�ki = (ki
x,k

i
y,k

i
z),σi] defines the 3D

reservoir states and ki,2D = [�i,�ki = (ki
x,k

i
y),σi,R

i
z] defines

the 2D ones. Here also the z position of the 2D reservoir is a
quantum number, as different QD layers need to be specified.
In turn Ri

z does not need to be considered in a single QD layer.
Unless stated otherwise, different effective masses for QDs

(InGaAs) and 3D reservoir (GaAs) are assumed. In turn, we
assume equal effective masses for QD and 2D reservoir [cf.
Table I(A)]. This is a suitable approximation in the QD-2D
system, as it approximately fits to the situation of QDs grown
on a WL. Sanguinetti et al. analyzed a GaAs/AlGaAs system.
However, here we consider an InGaAs/GaAs system due to its
high importance in recent laser applications. All parameters
used in the calculations can be found in Appendix D.

B. Hamiltonian and Coulomb scattering matrix

In the framework of second quantization the occupation
ρa = 〈a†

aaa〉 can be expressed in terms of the well known
creation/annihilation operators a

†
a/aa . The compound index

“a” defines the set of quantum numbers of the system
state |ψa〉 (cf. Ref. 24). We determined the dynamics of
a QD state ρD via Heisenberg equations of motion.24 The
influence of Coulomb scattering processes are included
via a Hamiltonian containing the Coulomb interaction part
HC = 1

2

∑
abcd Vabdc a

†
aa

†
bacad besides the free particle part

H0,el = ∑
m εma

†
mam. HC describes a two particle interaction.

Particles in states a and b are created, whereas particles in
states c and d are destroyed. The sums run over all system
states: The QD states, where the indices have the form of the
compound index D, as well as the 2D- or 3D-reservoir states ki .
Vabdc = − ∫

d3r
∫

d3r ′ψ∗
a (�r)ψ∗

b (�r ′)V (|�r − �r ′|)ψd (�r ′)ψc(�r) is
an unscreened Coulomb matrix element. With the notation
�q = (�q||,qz) = (qx,qy,qz), and the use of its Fourier represen-
tation, the Coulomb potential can be expressed as32

Vabdc = −δRa
z ,Rb

z

δ�a,�c
δ�b,�d

δσa,σc
δσb,σd

A

∑
�q||

e2
0

2εq||

×
∫

dz

∫
dz′ξ ∗

a (z)ξ ∗
b (z′)e−q|||z−z′ |ξd (z′)ξc(z)

×
∫

d2xϕ∗
a (�x)ϕc(�x)e−i �q|| ·�x

∫
d2x ′ϕ∗

b ( �x ′)ϕd ( �x ′) ei �q|| · �x ′
,

(2)
to describe the QD-2D sample and

Vabdc = −δ�a,�c
δ�b,�d

δσa,σc
δσb,σd

ALz

∑
�q

e2
0

ε
(
q2

|| + q2
z

)
×

∫
d3rψ̂∗

a (�r)ψ̂c(�r)e−i �q·�r
∫

d3r ′ψ̂∗
b (�r ′)ψ̂d (�r ′)ei �q· �r ′

,

(3)

for the description of the QD-3D sample. Here A denotes the
area of a QD layer which is also the quantization area (2DCR)
and Lz is the height (z direction) of the quantization volume
A · Lz (3DCR). As a consequence of the 3D orthogonalization
procedure, the in-plane and z direction overlap integrals in
Eq. (3) cannot be calculated independently anymore. The
Kronecker delta δRa

z ,Rb
z

in Eq. (2) expresses the assumption
that only interactions within one layer are considered. Here,
this is justified by a sufficiently large distance of the different
QD layers to each other. The further Kronecker deltas in
the numerators of Eqs. (2) and (3) stem from the scalar
product of Bloch spin part. They describe spin and band
conservation of the scattered particles. The latter one is a
typical approximation.11,24,32

The in-plane parts of the 2D Coulomb matrix elements are
tabulated in Ref. 33.

III. RELEVANT SCATTERING PROCESSES

Within the limit of Born-Markov approximation, the EOM
of the occupation ρD in a QD state D can be cast in the form
of the quantum Boltzmann equation11,24

ρ̇D = 2π

h̄

∑
a,b,c

WDabc(W ∗
Dabc − W ∗

Dacb)

× [ρbρc(1 − ρa)(1 − ρD) − (1 − ρb)(1 − ρc)ρaρD]

× δ(εD + εa − εb − εc) (4)

= S in
D(1 − ρD) − Sout

D ρD. (5)

It describes in and out scattering of carriers into the state D

in terms of the scattering rates S in
D and Sout

D . Wabcd denotes
screened Coulomb matrix elements, in which we included
screening effects in the static limit of the Lindhard formula
(cf. Refs. 15, 24, 34 and Appendix B). The δ distribution in
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Eq. (4) results from the Markov approximation. It describes
energy conservation. Equation (4) already gives an impression
of the shape of the scattering rates as function of the 2D/3D
carrier density n2D/3D of the reservoir. The rates should exhibit
two regimes: First, for lower carrier densities, they should
increase with increasing carrier density. This is caused by
the carrier occupation factor(s) ρi , expressing the increasing
number of scattering partners. Second, for higher carrier
densities, the rates should decrease due to Pauli blocking,
described by the factor(s) (1 − ρi). The existence of these
two regimes was described in Refs. 11 and 15.

The triple sum in Eq. (4) runs over all states under consid-
eration, i.e., of the dots a = Da and 2D or 3D reservoir states
(a = ka). In the 3D system this gives rise to the evaluation of
up to 8D integrals in �k space. This is numerically demanding,
in particular as d = 8 is the efficiency barrier between typical
Simpson integration and standard Monte Carlo integration.
Therefore, we used a quasi-Monte Carlo method25,26 for
numerical integration (see Appendix A), which enables an
efficient evaluation of the high dimensional scattering rates.31

We consider a system in quasiequilibrium: Thus the occupa-
tion probabilities can be approximated by Fermi distributions11

ρx = fx = 1/(1 + e
1

kB T
[εx−μ

λx
2D/3D]). Here εx denotes the energy

of the state x, relative to the reservoir band edge, and μ
λx

2D/3D

is the chemical potential of the 2D/3D carrier reservoirs.24

Furthermore, in quasiequilibrium the related out-scattering
rates can be determined via the principle of detailed balance16

Sout
D = S in

D
1−fD

fD
.

The notation of Eqs. (4)–(10) corresponds to a valence-
conduction band picture. For evaluation the electron-hole
picture is preferable. This can be achieved via the substitution
f VB = 1 − f h. Then the band index λx could stand either for
electron band e or hole band h.

It is intuitive to assume that significant differences between
the 2D- and 3D-QD scattering rates stem from carrier tran-
sitions between QD and reservoir states. In the following we
will denote these transitions as subsystem transitions (SSTs).
To gain a deeper insight into the different nature of the
compared SSTs, we decompose the total scattering rate SD

in into
subprocesses18 and classify them by their number of SSTs:

SD
in =

0SST︷ ︸︸ ︷
S in

D,rel,1 +
1SST︷ ︸︸ ︷

S in
D,cap + S in

D,3QD +
2SSTs︷ ︸︸ ︷

S in
D,rel,2 −

not classified︷ ︸︸ ︷
S in

D,exch. .

The main processes for in-scattering into the QD ground state
(GS) are illustrated in Fig. 2.

Note that Fig. 2 refers to the electron-hole picture, whereas
the following formulas refer to the valence-conduction band
picture.35 The various processes are defined as follows.

Without subsystem transition (0 SSTs), relaxation process 1:

S in
GS,rel,1 = 2π

h̄

∑
ka,kb,D2

∣∣WGS kakbD2

∣∣2
fkb

fD2

(
1 − fka

)
× δ

(
εGS + εka

− εkb
− εD2

)
, (6)

Here carriers from the QD excited state (ES) relax into the
ground state (GS) and reservoir carriers are scattered to states
with higher energy.

With one subsystem transition (1 SST):

FIG. 2. (Color online) Scheme of the main scattering processes
in order of the number of subsystem transitions (SSTs). Pure electron
processes are denoted with (α); mixed processes with (β). The
processes are shown in the electron-hole picture, the formulas
(6)–(10) are in a valence-conduction band picture. Not depicted:
Mixed relaxation process containing the hole ground state in S in

GS,3QD.

(I) The capture process

S in
D,cap = 2π

h̄

∑
ka,kb,kc

WD kakbkc

(
W ∗

D kakbkc
− W ∗

D kakckb

)
× fkb

fkc

(
1 − fka

)
δ
(
εGS + εka

− εkb
− εkc

)
. (7)

Here three reservoir states participate (cf. Fig. 2). The capture
process describes the filling of the QD states via reservoir
carriers by means of a redistribution of reservoir carriers.
It includes both direct and exchange interaction. According
to Ref. 18, this process determines primarily the long-time
dynamics of the QD states.

(II) The three QD states relaxation process

S in
GS,3QD = 2π

h̄

∑
ka,D2,D3

WGS kaD2D3

× (
W ∗

GS kaD2D3
− W ∗

GS kaD3D2

)
× fD2fD3

(
1 − fka

)
δ
(
εGS + εka

− εD2 − εD3

)
+ 2π

h̄

∑
ka,D2,D3

∣∣WD D2kaD3

∣∣2
fka

fD3

(
1 − fD2

)
× δ

(
εGS + εD2 − εka

− εD3

)
, (8)

where a carrier from a QD excited state relaxes into the GS
and a third QD carrier enters the reservoir, see Fig. 2.

With two subsystem transitions (2SSTs), relaxation
process 2:

This process describes the in-scattering of a reservoir carrier
into the QD-GS by means of the out-scattering of a QD-ES
carrier into the reservoir:

S in
GS,rel,2 = 2π

h̄

∑
ka,kb,D2

∣∣WGS kaD2kb

∣∣2
fkb

fD2

(
1 − fka

)
× δ

(
εD + εka

− εkb
− εD2

)
+ 2π

h̄

∑
ka,kb,D2

∣∣WD D2kakb

∣∣2
fka

fkb

(
1 − fD2

)
× δ

(
εGS + εD2 − εka

− εkb

)
. (9)
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The second term in Eqs. (8) and (9) describe the related mixed
electron-hole processes [cf. Fig. 2(β)]. These terms are only
nonzero for carriers in different bands. In Eqs. (6) and (7) these
processes are hidden in the sums over all multi-indices, which
still contain sums over spin, carrier bands, and other quantum
numbers describing the state.

The related exchange term of S in
GS,rel,1 and S in

GS,rel,2 has the
form

S in
GS,exch. = 2π

h̄

∑
ka,kb,D2

Re
[
WGS kaD2kb

W ∗
GS kakbD2

+WGS kakbD2W
∗
GS kaD2kb

]
fD2fkb

(
1 − fka

)
× δ

(
εGS + εka

− εD2 − εkb

)
. (10)

It is a mixture of these two processes. Thus, it cannot be
classified by the number of subsystem transitions.

A detailed discussion of possible scattering processes and
their efficiency in QD-2D structures like here can be found in
Ref. 11.

IV. NUMERICAL RESULTS

For a comparison of the 2D and 3D scattering rates, the
area carrier density n2D (cm−2) in the 2D reservoir, and the
3D (volume) density n3D (cm−3) will be related via the well
established36,37 ratio

n3D = n2D

L
. (11)

Thus the carrier density in the 3D reservoir is compared
with the carrier density in the effective volume A · L of the
2D reservoir. It is emphasized that the effective width L of
the 2D reservoir (and the QD) is not arbitrary, but can be
calculated if all parameters are known (cf. Ref. 38). Here
the confinement potential of the mesoscopic structures is
unknown. Therefore, in this section, we chose a value of
L = 10 nm which approximately fits to the height of the QD
structure assumed here.39 All figures in this paper are plotted
in a way that Eq. (11) holds for equal values of the x axis. All
parameters used for calculations in this section can be found
in Table I(A). To investigate the robustness of our findings
versus parameter variations, we made parameter studies
(cf. Appendix C). In this paper we assume charge neutrality
of the reservoirs n2D/3D = ne

2D/3D = nh
2D/3D.

In brief, one can summarize the detailed results of this
section as follows: The calculated scattering rates show a
nonlinear dependency on the carrier densities.11 In agreement
with the experimental findings of Ref. 7, the major scattering
rates of the 2D-QD and the 3D-QD systems show similar
behavior. Nevertheless, the detailed analysis displays some
fundamental differences between the scattering rates, e.g., in
the mixed process of S in

D,rel,2. With that, we can illustrate con-
ditions that support significant disparities in some scattering
processes (cf. Sec. IV D). This section is structured as follows:
In the beginning the different scattering processes will be
characterized, ordered by the number of subsystem transitions
(SSTs): First S in

D,rel,1 (Sec. IV A), followed by S in
D,cap and

S in
D,3QD (Sec. IV B). Then S in

D,rel,2 will be discussed (Sec. IV C).
Then we will discuss under which conditions significant

differences could be observable (Sec. IV D). Finally, we will
compare our results with experimental findings (Sec. IV F).
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carrier densities: 2DCR in 1011cm 2, 3DCR in 1017cm 3

sc
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SGS,rel1,
in

3DCR

2DCR

FIG. 3. (Color online) Carrier relaxation rate S in
GS,rel,1.

A. Sin
D,rel,1 without subsystem transitions (0 SSTs)

The relaxation rates for 2DCR and 3DCR S in
GS,rel,1 depicted

in Fig. 3 show a quite similar behavior. They are nearly equal
at low carrier reservoir densities up to about 2 ×1011 cm−2,
respectively 2 ×1017 cm−3. Above these values Pauli blocking
sets in so that the 2D rate starts to decrease for densities above
6 × 1011 cm−2, whereas the 3D rate still increases up to a
density of 12 × 1017 cm−3 (cf. Fig. 3). In consequence, Fig. 3
shows an up to a factor of about 3 times higher 3D rate.

The high similarity of the S in
GS,rel,1 rates before their different

decrease with carrier density could be expected, as the absence
of subsystem transitions should cause similar Coulomb-matrix
elements.

B. Processes with one subsystem transition (1 SST)

1. Sin
D,cap capture processes

Figure 4 shows the capture rates into QDs ground [Fig. 4(a)]
and excited states [Fig. 4(b)] (cf. insets of the figures). The
respective 2D and 3D capture rates are very similar.

For both processes plotted in Fig. 4 the 2D rate is slightly
higher for lower carrier densities. However, for higher densities
the 3D rate exceeds the 2D one. Due to the interplay of many

sc
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te
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g
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te
in

ps
1
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0.3

SGS,cap
in

3DCR

2DCR

a

0 5 10 15 20

SES,cap
in

3DCR

2DCR

b

carrier densities: 2DCR in 1011cm 2, 3DCR in 1017cm 3

FIG. 4. (Color online) Capture rates: S in
D,cap into the QD electron

ground state (a) D = GS, and into an excited state (b) D = ES.
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FIG. 5. (Color online) Carrier relaxation rate S in
GS,3QD.

effects, it is difficult to give a strict reason for this minor
difference in their behavior. Nevertheless, one can state, that
for larger densities, screening effects average over details of
Coulomb potential and the increasing density of states (DOS)
in the 3D reservoir becomes more and more significant.

The latter argument is also in agreement with the fact that
the flattening of the capture rate due to Pauli blocking rises
earlier for the 2D rate, than for the 3D rate [cf. Fig. 4(b)].

These observations remain robust also for different material
parameters (see Appendix C). Therefore, we think that the
described behavior is typical.

2. Sin
D,3QD scattering processes containing three QD states

Similar to the previous findings, the scattering rates S in
GS,3QD,

plotted in Fig. 5, resemble each other qualitatively, differ
approximately by a factor of 2–3, but have the same order
of magnitude. A reason for this relatively large difference
of the rates could be found in the different position of the
maxima of the 2D and 3D rates, similar to S in

D,rel,1: The 2D rate
exceeds its maximum at about n2D = 8 × 1011 cm−2 (which
refers to volume density of n2D/L = 8 × 1017 cm−3), whereas
the 3D rate increases up to about n3D = 16 × 1017 cm−3.
Furthermore, the relatively high momentum transfer which
takes place in the mixed electron-hole contribution of this
process35 also favors 3D scattering. We will discuss this in
more detail in Sec. IV D.

C. Sin
D,rel,2 two subsystem transitions (2 SSTs)

The 2D and 3D rates S in
GS,rel,2 in Fig. 6 show comparable

behavior, though both rates differ significantly already for low
carrier densities. This is different compared to the scattering
processes previously described.

However, also in Fig. 6 the rates are in the same order of
magnitude. It is remarkable that here the rate of the 3D sample
is about 3 times higher than the 2D one, although a maximum
is not reached in the plotted density range. This contradicts the
intuition. One could expect that the transitions between the 2D
reservoir and QD is more effective due to the high overlap of
the wave functions in z direction entering the Coulomb matrix
elements Eq. (2).
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FIG. 6. (Color online) Carrier relaxation rate S in
GS,rel,2.

The higher 3D scattering rate is supported somehow by the
parameter choice of the specific material system (cf. Fig. 12)
and the Coulomb matrix elements are more than pure overlap
integrals of the wave functions. Moreover, there are also
fundamental differences between 2D and 3D scattering, that
in principle favor 3D scattering. This will be discussed in the
next section.

D. Appearance of strong differences in some
scattering processes

It is well known that on average the in-plane part of
Coulomb matrix elements strongly decreases for increasing
momentum transfer (cf. Refs. 11 and 33). As a result of
that, scattering processes where a high momentum transfer
in in-plane direction takes place, are on average inefficient.
Hence, the additional degree of freedom in terms of the z

direction in the 3D reservoir opens the opportunity to increase
the scattering efficiency: For given energies of the scattered
carriers, the momentum of the reservoir carriers in (x,y)
direction can be lowered by the cost of an increased momentum
in z direction. This effect becomes strongly pronounced, e.g.,
in the mixed process of S in

GS,rel,2 depicted in Fig. 7.
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100 x

FIG. 7. (Color online) Mixed electron-hole processes of S in
GS,Rel2.

Note the scaling factor 10−3 of the y axis.
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FIG. 8. (Color online) Exchange terms S in
GS,exch. of the relaxation

processes.

In Fig. 7 the 2D and 3D scattering rates differ by more
than two orders of magnitude. Due to the high effective
mass of the holes, the hole reservoir carriers participating
in the scattering process have a high momentum of at least

h̄|�kmin| = h̄

√
2mhh(|εGS,e |−|εGS,h|)

h̄2 ≈ h̄ 1.1 nm−1. As a result of
that, scattering in the 2D system is very inefficient. In turn
the 3D sample still provides some efficient scattering channels
due to its further degree of freedom. We could observe this
effect also for other parameter sets in the scattering process
S in

GS,3QD, leading to significantly different scattering rates.
Finally, the different DOS could also cause strongly

different scattering rates. Here, for example, the 3D pure
electron rate of S in

GS,3QD vanishes, whereas the 2D one is small
but not zero.

However, we think that appearance of such bottlenecks is
supported by the Markovian treatment. Furthermore, we ob-
served that if such a big difference between the 2D and 3D pro-
cesses appeared in a certain process, its absolute value was sig-
nificantly smaller compared to other scattering processes. Thus
these differences might not be important for device dynamics.

E. The relaxation exchange terms

For completeness in Fig. 8 the relaxation exchange terms
S in

GS,exch. are plotted.
The 2D- and 3D-exchange terms show basically the same

behavior and are of the same order of magnitude. However,
Fig. 8 suggests an in detail more complex behavior of the 2D
rate than the 3D one.

F. Comparison with experiment

Finally, we want to compare our results with the experiment
of Sanguinetti et al.7 They measured the photoluminescence
(PL) rise time τr in dependence of the optical excitation power
PExc (cf. Fig. 3 of Ref. 7). For a full simulation of this
experiment a dynamical simulation would be necessary.17,18

This is beyond the scope of this paper. Instead, we define the

QD-GS filling time τfill:

τfill := 1

2

[
S in

GS,cap + S in
GS,rel,2,eh + 2

(
1(

S in
ES,cap + S in

ES,rel,2,eh

)
+ 1

1
2

(
S in

GS,rel,1 + S in
GS,rel,2,e − S in

GS,exch. + S in
GS,3QD

)
)−1

⎤
⎦−1

,

(12)

which describes the average time it takes to fill the QD-
GS electron level with reservoir carriers. τfill is the inverse
scattering rate of the direct capture (first two terms), plus twice
the rate of the cascading processes (all terms after the factor 2),
accounting for the two excited states. Equation (12) refers to
a device in quasiequilibrium. Furthermore, it was assumed
that hole scattering is faster18 than electron scattering so that
there are always holes present in the QDs. The suffixes e

and eh denote the pure electron and the mixed electron-hole
contribution to a certain process. The factor 1

2 in front of
Eq. (12) stems from the spin degeneracy. Figure 9 shows
the comparison of the filling time τfill for the 2D and 3DCR:
Both curves basically yield the same dependence on carrier
density, thus providing the active support of the experiment.
Sanguinetti et al. observed a slightly shorter rise time for
the sample with 2DCR. Beyond the general differences in
the devices under investigation, this could be caused by the
nonuniform energy spacings of the samples in the experiment.
The lower energy spacings in the sample with 2DCR favor the
Coulomb scattering in this device.

There are several differences in the settings between τfill

(theory) and τr (experiment), like the different QDs, the
equilibrium assumption in theory, which does not hold in
experiment, and the different plot parameter—the optical exci-
tation power PExc is measure for the free carrier concentration,
but probably not a strict linear one. Beside these differences the
quantities τr and τfill themselves are also not fully equal: The
cascading process in a PL measurement includes more steps
than included in Eq. (12) (cf. Ref. 40). Hence the curves in
Figs. 9 and 3 of Ref. 7 are not fully comparable. Nevertheless,
the performed comparison of the relative behavior of the
respective 2D and 3DCR scattering times is appropriate.

0 5 10 15 20
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10
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20

carrier densities: 2DCR in 1011cm 2, 3DCR in 1017cm 3
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ill
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ps

Τfill
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FIG. 9. (Color online) Calculated rise time τfill.
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Figure 9 shows that the calculated filling times obey
approximately an 1

n2D/3D
density behavior (besides the highly

nonlinear rise of the scattering rates at low carrier densities).
This highlights that the bottleneck for the QD filling are the
capture processes, with their approximately linear progression
for medium and higher densities (cf. Fig. 4). This is in
agreement with dynamical simulations.18

V. CONCLUSIONS

We calculated Coulomb scattering rates from QDs coupled
to a 2D carrier reservoir and QDs coupled to a 3D reservoir.
Via a comparison of the scattering rates, we investigated
the question whether scattering from 2D is generally more
efficient than scattering from 3D. For this purpose, we used
a microscopic theory in the limit of Born-Markov approx-
imation. The usage of quasi-Monte Carlo method enables
a very efficient numerical evaluation of the appearing high
dimensional integrals.

We found that although the detailed behavior may de-
pend on specific laser materials, the global behavior of the
significant scattering rates is similar. Particularly the rates
important for laser long time dynamics are in the same order of
magnitude. We could not observe a significant reduction of the
scattering efficiency of a QD directly coupled to a 3D reservoir
in comparison to a 2D reservoir. This is in agreement with ex-
perimental observations.6,7,41 We even found some scattering
processes where the related 3D scattering rates are much higher
than the 2D ones. This is caused by the additional momentum
in the z direction of the 3D reservoir, which could open efficient
scattering channels. However, here these scattering processes
were insignificant for the feeding of the QD-GS.
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APPENDIX A: QUASI-MONTE CARLO

Equations (7) and (8) contain integrals in up to five (2D) and
eight (3D) dimensions, respectively: By transforming the sums
over all reservoir �k states into integrals over the wave number,
for example, the pure electron part of the 3DCR capture rate
Eq. (7) can be cast into the form42∫

d �xF (�x) := 2π

h̄

∑
�ka, �kb, �kc

WD(�ka,�kb,�kc)

× [2W ∗
D(�ka,�kb,�kc) − W ∗

D(�ka,�kc,�kb)]

× fkb
fkc

(
1 − fka

)
δ
(
εD + εka

− εkb
− εkc

)
= 2π

h̄

[
V

(2π )3

]3 ∫
d3ka

∫
d3kb

∫
d3kc

WD(�ka,�kb,�kc)[2W ∗
D(�ka,�kb,�kc) − W ∗

D(�ka,�kc,�kb)]

× fkb
fkc

(
1 − fka

)
δ
(
εD + εka

− εkb
− εkc

)
.

(A1)

Integration in moderate and large dimensions cannot be
done by classical quadrature rules because these exhibit the
curse of dimensionality: If one uses grid-based quadrature
formulas in say d spatial dimensions, then a mesh size of
the order ε−d/r is required in order to obtain a prescribed
accuracy ε, given a smoothness r . This is best possible
under sufficient smoothness and using appropriate higher order
quadrature. For the integration problem under consideration,
such smoothness assumptions are not met, and the number
of grid points to reach the accuracy ε will be prohibitively
large.

In order to motivate the use of quasi-Monte Carlo (QMC)
integration rules,25 let us confine ourselves to integration on
the d-dimensional unit cube [0,1)d (for the systems discussed
here, this can be achieved by splitting the integrals and
performing proper substitutions), and integration with respect
to the Lebesgue measure λd . Then the integration of a function
g can be regarded as computation of the expected value, say
Eg. In this case the law of large numbers asserts that the sample
mean value 1

n

∑n
j=1 g(xj ) for independently and identically

distributed according to λd random variables x1, . . . ,xn will
converge to Eg. The error (in root mean square sense)
behaves like (E| ∫ g dλd − 1

n

∑n
j=1 g(xj )|2)1/2 � n−1/2. This

rate is dimensionless and indicates the superiority of
Monte Carlo integration in higher dimension and under
low smoothness assumptions (g just needs to be square
integrable).

The crucial observation for QMC integration is the fol-
lowing: In order to have convergence of the sample mean
to the expected value it is sufficient for the point set
{x1, . . . ,xn} to be uniformly distributed on [0,1)d . Unifor-
mity is measured by the ∗-discrepancy D∗

n(x1, . . . ,xn) :=
sup0<x<1d |#{j, xj ∈ [0,x)}/n − λd ([0,x))|, where the supre-
mum is taken over all rectangular boxes [0,x) anchored at zero.
The integration error is then bounded by the Koksma-Hlawka
inequality as

∣∣∣∣∣∣
∫

g dλd − 1

n

n∑
j=1

g(xj )

∣∣∣∣∣∣ � D∗
n(x1, . . . ,xn)V (g).

Thus, if the function g has bounded variation V (g) (in the
sense of Hardy-Krause25) then the error is controlled by the
∗-discrepancy of the used point set. Finding point sets with
minimal ∗-discrepancy is a subject of its own. However,
the minimum ∗-discrepancy of n points in the cube [0,1)d

is of the order logd−1(n)/n as n → ∞. Such point sets are
called low discrepancy (LD) point sets, and these give rise to
equiweight quadrature rules with (almost) dimensionless error
bounds. Notice that independent and identically distributed
random points have ∗-discrepancy of the order

√
log(n)/n,

which is not competitive to LD points. For further details
on constructions and properties of LD point sets we refer to
Ref. 25.

The construction of LD points in higher dimension was an
issue for a long time, and only recently it became possible to
do so by the so-called component-by-component construction.
The implementation of LD points which is used here is
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due to Refs. 26 and 27. Code provided by Joe and Kuo is
used.

As the numerical experiments in 3D exhibit, a number
of about 6 × 108 LD points is required to uncover the fine
structure of the integrands of the capture rates, regardless of
their LD property. This shows that it is hopeless to use classical
(grid-based) quadrature rules for the problem at hand. In the
2D case the QMC results are in agreement with earlier results,
using grid-based quadrature.11 The authors also performed
some stability experiments to numerically confirm the validity
of the obtained rates.

APPENDIX B: SCREENING

In our calculations we included screening in the static limit
of the Lindhard formula.24 One achieves the relations

W 3D
abcd (�q) = Vabcd (�q)

1 + κ2
3D

|�q|2
(B1)

for 3D, respective

W 2D
abcd (�q||) = Vabcd (�q||)

1 + κ2D
|�q|||

(B2)

for 2D, containing the screening wave number κ (κ2D in 2D
and κ3D in 3D). The screening effects can be self-consistently
derived34 within the framework of the performed cluster
expansion.24

It is well known24 that in 3D there is no possibility to
evaluate the screening wave number κ3D via an exact analytic
expression. For this purpose one often uses approximations
like the 3D Debye-Hückel screening wave number. Here the
3D screening wave number (λ denotes the band index and εbg

the background permittivity)

κ3D =
√√√√ e2

0

εbg

∑
λ=e,h

∂nλ
3D

∂μλ
3D

(B3)

is determined via the approximation

βμλ
3D(n3D) (B4)

≈ ln

[
n3D

nλ
0

]
+ 4.897 ln

[
0.045

n3D

nλ
0

+ 1

]
+ 0.133

n3D

nλ
0

,

with nλ
0 = 1

4

(
2mλkBT

h̄2π

)3/2

,

by Refs. 43 and 44 which is described in Ref. 24. By calculating
the inverse derivative of Eq. (B4), one achieves

∂nλ
3D

∂μλ
3D

(n3D) =
(

∂μλ
3D

∂nλ
3D

)−1

(n3D) (B5)

≈ 0.133 + 0.220365

1 + 0.045 n3D

nλ
0

+ nλ
0

n3D
. (B6)

This can be inserted into Eq. (B3). Equation (B4) is also used
to calculate Fermi distributions in 3D.

APPENDIX C: PARAMETER STUDIES

To affirm the previous findings that the reservoir dimen-
sionality is not significant for the filling of the quantum dot
states, parameter studies have been performed. These should
answer the questions:

1. Are the previous findings robust versus parameter
variations?

2. Are the 2D- and 3D-scattering rates still similar, if one
chooses the chemical potential μ as plot parameter?

In this section the discussion mainly focuses on the capture
process into the excited state S in

ES,cap, as it was found18 to
dominate the long time dynamics for the filling of the QD-GS.
Majer et al. concluded this from dynamical calculations for a
QD-2D sample similar to the one investigated here.

1. Robustness concerning parameter variations

To confirm the robustness of the previous findings versus
parameter variations, the response of parameter variations will
be studied here. Therefore, various scattering rates will be cal-
culated with varied input parameters, see Table I(B) and I(C).

The parameter set Table I(A), standardly used, was adapted
to an experimental situation, where QDs and 2D reservoir
could consist of the same material composition, whereas
the 3D material is definitely different to the QD material.
Therefore, one could ask whether the results remain robust
if equal 2D and 3D material parameters, in particular if equal
effective masses are used. This question should be investigated
with the parameter set Table I(B)

The parameter set Table I(C) represents in addition a
significant change of the QD wave functions, where the QD
level spacing εGS,λ − εES,λ enters.

In Fig. 10 the parameter set Table I(C) is used.
The calculations are done for three different values of the
effective height L. This is crucial as this parameter enters the
ratio n3D = n2D

L
[Eq. (11)] and is therefore of high importance.

The capture rate Fig. 10(b) shows basically the same
behavior as the one in Fig. 4(b). This suggests that the
changes in the effective masses and energy spacings do not
significantly touch our previous findings. Nevertheless, the
fact that the 2D capture rate is slightly more efficient here
for nearly the whole density range shows that the detailed
behavior is strongly parameter dependent. This becomes even

FIG. 10. (Color online) S in
ES,cap as depicted in (b) for parameter

set Table I(B) and (a) L = 5 nm, (b) L = 10 nm, and (c) L = 20 nm.
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FIG. 11. (Color online) Pure electron contribution of S in
GS,rel1 for

sets Table I(A) and I(B).

more obvious in Figs. 10(a) and 10(c). We can see that the
parameter L strongly influences which rate is earlier affected
by Pauli blocking. In principle, this not surprising as for a
given value of n3D the related value of [1 − fk,2D(n2D)] can
be nearly arbitrarily detuned from 1 to 0 by changing L.
Therefore, L defines whether the related 2D density belongs
to the increasing or decreasing regime of the capture rate.
Note that for a given structure L is a fixed, well defined
parameter.38 However, the rates depicted in Fig. 10 stay in the
same order of magnitude, although we varied L within a wide
range. This suggests that the previous findings reflects a typical
behavior.

Figure 10 illustrates that the 3D rates increase for increasing
L, whereas the 2D rates decrease (note the different scaling
factor x in the plot Fig. 10). This seems to be a fundamental
difference in the behavior of the 2D and 3D rates. Furthermore,
the opposite dependency on L partly compensates the effect of
the changed ratio n3D = n2D

L
[Eq. (11)] of the 2D and 3D carrier

densities: (i) Before the Pauli blocking regime is reached the
scattering rates are monotonously increasing with increasing
carrier density. This is due to the larger amount of scattering
partners in the near surrounding of the QDs. (ii) For fixed
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FIG. 12. (Color online) Pure electron contribution of S in
GS,rel2 for

sets Table I(A) and I(B).
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FIG. 13. (Color online) Mixed electron-hole contribution of
S in

GS,rel2 for sets Table I(A) and I(B).

carrier density n3D Eq. (11) determines the related 2D density
n2D. By increasing L also the 2D density n2D is increased.
From (i) and (ii) one would expect comparable higher 2D
scattering rates for increasing L if one neglects the explicit
dependency of the scattering rates on L.

Figure 11 depicts the pure electron contributions of the
relaxation rates S in

GS,rel1, Fig. 12 shows the pure electron
contributions of the relaxation rates S in

GS,rel2. Via these figures
relaxation rates of the parameter sets Table I(A) and I(B) can
be compared. Parameter set Table I(A) is the one standardly
used in the main part of this paper. In parameter set Table I(B)
the 3DCR effective masses are equal to the effective masses of
the QDs and therefore also equal to the effective masses of the
2DCR [cf. Table I(A)]. Furthermore, the QD layer density in
the z direction NWell was adapted to the QD density in-plane
direction NQD so that NWell = √

NQD. Note that the disparities
of parameter sets under consideration [Table I(A) and I(B)] do
not affect the 2D rates. From Figs. 11 and 12 one can see that
the scattering rates of the adjusted parameter set Table I(B)
are nearly equal to the 2D rates. Therefore, they are partially
significantly smaller than the 3D rates of the parameter set
standardly used Table I(A). This shows that the stronger 3D
scattering observed in Figs. 3 and 6 is supported by the different
effective masses of the reservoirs. However, the main message
that 3D scattering is in general not significantly smaller than
2D scattering is not affected.

Figure 13 shows that the appearance of a much higher
3D rate described in Sec. IV D is also not affected by the
adjustment of the reservoir parameters. This confirms the thesis
that the further degree of freedom in the 3D reservoir could
open efficient scattering channels.

a. Hole capture rates

The effective hole masses are about a factor 10 times higher
than the effective electron masses. Hence, the hole capture
rates mirror a strong variation in this parameter. Figure 14
depicts the hole-ES capture rates for the parameter sets
Table I(A) [Fig. 14 (left)] and I(C) [Fig. 14 (right)].
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ES,cap for holes. Left: Parameters of

Table I(A). Right: Parameters of Table I(C).

For both parameter sets the rates of the 2D and 3D sample
are very similar. Thus our main observation remains stable for
strong variations of the effective mass.

b. Conclusion of the parameter studies

The scattering rates shown in Figs. 10–14 mirror a sig-
nificant variation of the input parameters. Nevertheless, the
qualitative behavior is basically the same for the changed
parameter sets. This suggests that our previous findings are
typical.

2. Dependency on the chemical potential

A further useful way to relate the scattering rates is to plot
them as a function of the chemical potential μe. Accordingly,
the two samples are compared under the condition of equal
chemical potentials for the electrons in the 2D and the 3D
reservoir, respectively (μe := μ2D

e = μ3D
e ).45 Here the pure

electron process make the dominant contribution to the capture
rates. Therefore, we can skip the mixed electron-hole processes
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FIG. 15. (Color online) Pure CB-electron capture rates as a
function of the chemical potential μe for different (effective) well
width L. Parameter set Table I(A).

to avoid dealing with deviations from charge neutrality in the
respective reservoirs.

The rates plotted in Fig. 15 show a similar behavior to those
in Fig. 10. The 2D capture rate decreases with increasing well
width L, whereas the 3D rate increases. Here this effect is not
compensated by the density ratio Eq. (11), as it is the case in
Fig. 10. As a result of that, one can observe a more pronounced
difference of the 2D/3D rates for L = 20 nm. However, despite
this difference, the rates still have the same order of magnitude.
This confirms the previous findings of this section, as the main
observations remain robust for different ways of comparing
the 2D- and 3D-scattering rates.

In contrast to Fig. 10(c), in Fig. 15 the 2D rate does not
start to saturate. This confirms that the onset of Pauli blocking
in Fig. 10(c) is a parameter effect that is caused by the way of
relating the 2D and 3D carrier density.

However, Eq. (11) seems to be the most useful way to relate
the scattering rates.

APPENDIX D: PARAMETERS

See Table I.

TABLE I. List of parameters used in calculations. The effective electron (hole) masses me (mhh) are used for
the QDs and 2DCR, whereas meB (mhhB ) for the 3DCR. The QD sheet density NQD and the layer density in the z

direction30 NWell enter in the OPW scheme.11 The QD energies for ground state εGS,x and excited state εES,x electrons
(x = e) and holes (x = h) are given with respect to the reservoir band edge. Columns (B) and (C) show only quantities
that are changed with respect to the standard parameter set column (A).

Symbol (A) Standard value (B) (C)

T 300 K
me 0.038 m0

mhh 0.492 m0

meB 0.067 m0 0.038 m0 0.038 m0

mhhB 0.5 m0 0.492 m0 0.492 m0

NQD 1010 cm−2

NWell 2 × 105 cm−1 1 × 105 cm−1 1 × 105 cm−1

L 10 nm
εGS,e −130 meV −80 meV
εES,e −65 meV −40 meV
εGS,h −35 meV −30 meV
εES,h −30 meV −15 meV
εbg 12.5
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16K. Lüdge and E. Schöll, IEEE J. Quantum Electron. 45, 1396
(2009).
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40J. Siegert, S. Marcinkevičius, and Q. X. Zhao, Phys. Rev. B 72,
085316 (2005).

41V. B. Verma, Martin J. Stevens, K. L. Silverman, N. L. Dias,
A. Garg, J. J. Coleman, and R. P. Mirin, J. Appl. Phys. 109, 123112
(2011).

42In Eqs. (4)–(10), the sums still contain multi-indices, especially the
band-index and spin sums are not evaluated on this level. Note, that
in Eq. (A1) the sum contains just the wavevectors �ki . The other
sums have been evaluated, causing the factor 2 in front of W ∗.

43J. Joyce and R. Dixon, Appl. Phys. Lett. 31, 354 (1977).
44V. Aguilera-Navaro, G. Esterez, and A. Kostecki, J. Appl. Phys. 63,

2848 (1988).
45One should note that the 2D reservoir and the 3D reservoir belong

to different samples. Thus, this assumption has nothing to do with
an equilibrium between the 2D and 3D reservoir.

235421-11

http://dx.doi.org/10.1063/1.3073715
http://dx.doi.org/10.1063/1.3073715
http://dx.doi.org/10.1016/S0022-0248(03)01016-9
http://dx.doi.org/10.1007/s11671-010-9687-x
http://dx.doi.org/10.1007/s11671-007-9078-0
http://dx.doi.org/10.1063/1.1495525
http://dx.doi.org/10.1088/0268-1242/19/4/098
http://dx.doi.org/10.1063/1.365363
http://dx.doi.org/10.1063/1.365363
http://dx.doi.org/10.1103/PhysRevB.66.041310
http://dx.doi.org/10.1103/PhysRevB.66.041310
http://dx.doi.org/10.1103/PhysRevB.70.235308
http://dx.doi.org/10.1103/PhysRevB.70.235308
http://dx.doi.org/10.1103/PhysRevB.69.235314
http://dx.doi.org/10.1103/PhysRevB.69.235314
http://dx.doi.org/10.1103/PhysRevB.73.085324
http://dx.doi.org/10.1103/PhysRevB.74.035334
http://dx.doi.org/10.1103/PhysRevB.72.205331
http://dx.doi.org/10.1103/PhysRevB.72.205331
http://dx.doi.org/10.1109/JSTQE.2007.905148
http://dx.doi.org/10.1109/JSTQE.2007.905148
http://dx.doi.org/10.1109/JQE.2009.2028159
http://dx.doi.org/10.1109/JQE.2009.2028159
http://dx.doi.org/10.1140/epjd/e2010-00041-8
http://dx.doi.org/10.1103/PhysRevB.82.235301
http://dx.doi.org/10.1007/s11082-011-9479-2
http://dx.doi.org/10.1007/s11082-011-9479-2
http://dx.doi.org/10.1103/PhysRevB.49.2536
http://dx.doi.org/10.1103/PhysRevB.49.2554
http://dx.doi.org/10.1016/j.physb.2010.10.053
http://dx.doi.org/10.1063/1.1739284
http://dx.doi.org/10.1063/1.1739284
http://dx.doi.org/10.1145/641876.641879
http://dx.doi.org/10.1145/641876.641879
http://dx.doi.org/10.1137/070709359
http://dx.doi.org/10.1103/PhysRevB.54.5604
http://dx.doi.org/10.1103/PhysRevB.54.5604
http://dx.doi.org/10.1063/1.122766
http://dx.doi.org/10.1103/PhysRevB.80.245401
http://dx.doi.org/10.1002/pssc.201100101
http://dx.doi.org/10.1002/pssc.201100101
http://dx.doi.org/10.1016/j.chemphys.2012.07.013
http://dx.doi.org/10.1016/j.chemphys.2012.07.013
http://dx.doi.org/10.1109/JSTQE.2003.818343
http://dx.doi.org/10.1109/JSTQE.2003.818343
http://dx.doi.org/10.1002/1521-3951(200009)221:1<473::AID-PSSB473>3.3.CO;2-9
http://dx.doi.org/10.1002/1521-3951(200009)221:1<473::AID-PSSB473>3.3.CO;2-9
http://dx.doi.org/10.1103/PhysRevB.76.205324
http://dx.doi.org/10.1103/PhysRevB.76.205324
http://dx.doi.org/10.1103/PhysRevB.72.085316
http://dx.doi.org/10.1103/PhysRevB.72.085316
http://dx.doi.org/10.1063/1.3599889
http://dx.doi.org/10.1063/1.3599889
http://dx.doi.org/10.1063/1.89697
http://dx.doi.org/10.1063/1.340957
http://dx.doi.org/10.1063/1.340957



