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We report experimental and theoretical studies of edge magnetoplasmon (EMP) transport in quantum Hall
(QH) devices. We develop a model that allows us to calculate the transport coefficients of EMPs in QH devices
with various geometries. In our model, a QH system is described as a chiral distributed-element (CDE) circuit,
where the effects of Coulomb interaction are represented by an electrochemical capacitance distributed along
unidirectional transmission lines. We measure the EMP transport coefficients through single- and coupled-edge
channels, a quantum point contact, and single- and double-cavity structures. These measured transmission spectra
can be reproduced well by simulations using the corresponding CDE circuits. By fitting the experimental results
with the simulations, we deduce the circuit parameters that characterize the electrostatic environment around the
edge channels in a realistic QH system. The observed gate-voltage dependences of the EMP transport properties
in gate-defined structures are explained in terms of the gate tuning of the circuit parameters in CDE circuits.
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I. INTRODUCTION

The application of radio-frequency (rf) electronic signals
to a one-dimensional (1D) quantum Hall (QH) edge state
excites charge density waves, called edge magnetoplasmons
(EMPs),1–13 that travel chirally along the edge channels.
Because EMPs travel coherently over more than a few
millimeters, it is feasible to design coherent plasmonic
circuits,14 cavities,3–7 and crystals14,15 for EMPs. Such plas-
monic devices can be functionalized by exploiting various
electrostatic tuning techniques using surface metal gates. As
in typical dc transport experiments, one can switch the paths
of EMP transport by selectively activating metal gates to
deplete the two-dimensional electron gas (2DEG) underneath.
More importantly, gate-defined structures provide additional
functionality to plasmonic devices via the sensitivity of EMPs
to their electrostatic environment. When the channel is covered
with a metal, the group velocity of EMPs (vEMP) along an
etched QH boundary (bare edge channel) is significantly
reduced (by more than one order of magnitude) because of
the screening of the electric field.7–9,13 As compared to bare
edge channels, those defined with gates (gate-defined edge
channels) have the advantage that vEMP is tunable, because the
screening effect can be tuned by changing the distance between
the channel and the metal electrode via a gate voltage.12

This feature can be exploited to form tunable delay lines
in plasmonic circuits. In addition, a beam splitter for EMPs
can be constructed from a quantum point contact (QPC),
whose transmission and reflection coefficients can be changed
electrostatically.16–19 Frequency multipliers and mixers based
on the nonlinearity of the transmission characteristics of a
QPC have been demonstrated.20 In this way, we can expect
to establish integrated plasmonic circuits by combining such
EMP devices with electrostatic tuning techniques.

To design and prepare an appropriate electrostatic environ-
ment for EMP transport, it is essential to correctly evaluate
the effect of Coulomb interaction arising from the nonuniform
charge density modulation of EMPs. However, the long-range

nature of the Coulomb interaction makes the calculation
cumbersome, particularly when multiple plasmonic devices
are integrated on a chip. A tractable model with a certain
accuracy is necessary to deal with EMP transport in actual
devices. In this paper, we propose a simple method that
allows us to describe the effect of Coulomb interaction
and dissipation on EMP transport in terms of a distributed-
circuit model. In this model, the wave equation for EMPs
traveling along a single edge channel is expressed in terms
of the distributed electrochemical capacitance between the
channel and the ground (cch: channel capacitance). In addition,
electrostatic coupling between two different channels can be
modeled with distributed elements, which is expressed by the
interedge capacitance (cX: interedge capacitance).19,21 Once
the transport characteristics of each individual device are
obtained with the relevant distributed capacitance, one can
simulate EMP transport in an integrated system by using the
scattering matrix formalism. Since the above modeling method
is developed for chiral edge channels, we call it “the chiral
distributed-element (CDE) circuit model.”

We apply this CDE model to EMP resonance in single
and double plasmonic cavities and compare the results of the
calculations with those of experiments. Our device is designed
such that a single or double cavity can be selectively activated.
As we shall see, the full set of cavity parameters can be
controlled electrostatically, including the resonant frequency,
coupling between the cavities, and coupling to the outside
channels. This allows us to study several types of devices with
different characteristics in one sample. We start from the sim-
plest device, a QPC beam splitter, and then investigate single
and coupled cavities. The measured characteristics of all these
devices show reasonable agreement with the calculations for
the corresponding CDE circuits. In particular, our experiment
successfully identifies the in-phase and antiphase coupling
modes in a coupled cavity predicted by the calculation. These
findings ensure the validity and usefulness of the CDE model
for developing future plasmonic circuits.
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The rest of this paper is organized as follows. In Sec. II,
a detailed account of the CDE model is given. We start by
developing a model for a single edge channel, and then extend
it to other structures: coupled edge channels, a QPC, and single
and coupled cavities. In Sec. III, we present experimental
results and compare them with the calculations based on
the CDE model. In Sec. IV, we discuss the scope of the
model’s application and present a few prospects and comments
regarding improving the model and designing future plasmonic
circuits. Section V is devoted to the conclusion.

II. CHIRAL DISTRIBUTED-ELEMENT CIRCUIT

The transport properties of an EMP, including its dispersion
relation, can in principle be derived by solving the equation
of motion and the continuity equation of charge at the edge
of the QH system, together with the Poisson equation, which
relates the excess charge of EMPs to the electric field.1,2 Such
a hydrodynamic approach, however, is not readily applicable
to real devices, where the Poisson equation must be solved in
three dimensions. In this section, we give a detailed account of
the CDE model, which enables us to simulate EMP transport
in actual QH devices. All the essential ingredients of EMP
transport, such as the wave equations along the edge channels
and the scattering matrices, are naturally derived from its
circuit representation.

We consider a 2DEG with electron density ne placed in a
high magnetic field B perpendicular to it. Its dc transport char-
acteristics are described by the longitudinal conductivity σxx

and Hall conductivity σxy ≈ eneB. We restrict our discussion
to the situation |σxx |�|σxy |, i.e., the case where EMP transport
is dominant and bulk plasmons are negligible. For simplicity,
in the following argument we discuss only the fundamental
EMP mode and neglect the acoustic mode.2

A. Unidirectional transmission line

In our circuit representation, an edge channel is modeled
as a unidirectional transmission line consisting of a channel
and a ground, as shown schematically in Fig. 1(a). We take the
x axis to be parallel to the transmission line. We consider the
relation between the voltage V (x, t) and current I (x, t) flowing
in the channel at position x and time t . V (x, t) is related to
the excess charge distribution ρ(x, t) as ρ = cchV through
the channel capacitance cch, which represents the effective
electrochemical capacitance (per unit length) between the
channel and the ground. On the other hand, I (x, t) is related
to ρ(x, t) as ∂I/∂x=−∂ρ/∂t according to the continuity
equation along the 1D channel. Here, we assume that I (x, t)
and V (x, t) satisfy the relation I (x,t) = σxyV (x,t).22 In terms
of circuitry, this implies that we can define the characteristic
impedance of the transmission line as Z+ = V /I = 1/σxy .
From these three relations, we obtain the wave equation for
EMPs as

∂I (x,t)

∂t
= −σxy

cch

∂I (x,t)

∂x
. (1)

YpΔx YpΔx

Δx

EMP: I(x, t), V(x, t)

Gate

Edge Channel

cm
Vg        -∞

(a ) (b)

(c)

cm

cq

cs

gchcch

Yp

FIG. 1. (Color online) (a) Circuit representation of an EMP
transmission line. (b) Components of the admittance Yp between the
channel and the environmental ground. (c) Schematic of the screening
capacitance cm of a gate-defined channel. The distance between the
channel and the metal, and hence cm, can be tuned with the gate
voltage Vg.

The general solution of this equation takes the form I (x −
vEMPt) with velocity

vEMP = σxy

cch
, (2)

whereas the form I (x + vEMPt) cannot fulfill Eq. (1). Note
that the direction of propagation is determined by the sign of
σxy , that is, by the sign of B. This unidirectional nature stems
from the fact that Eq. (1) is expressed by the first derivative
with respect to both space and time, and corresponds to the
chiral transport nature of EMPs. In the circuit representation
of the transmission line of Fig. 1(a), cch is expressed as the
distributed admittance Yp = iωcch for generality. The chirality
of the channel is marked by arrows.

Let us consider the channel capacitance cch in the circuit
representation. In mesoscopic systems, the electrochemical
capacitance is described as a series of the electrostatic geo-
metrical capacitance and quantum capacitance cq ≡ e2D(E),
where D(E) is the electron density of states.16,23–25 In a
1D system, cq = e2D(E)=e2/hvF, where vF is the Fermi
velocity. Further, vF corresponds to the mean drift velocity
vD = (dU/dy)/B due to the Lorentz drift in an electric field
dU/dy, which is determined by the gradient of the edge
confinement potential U at the boundary of the 2DEG.24

First, we consider the strong-screening limit, where Coulomb
interaction between electrons can be ignored because of the
screening of the electric field provided by the surrounding
metals. In this limit, the electrostatic geometrical capacitance
is much larger than cq. Hence, cch is governed by cq in the series
connection; i.e., cch

∼= cq. This leads to vEMP
∼= vD from Eq. (2);

electrons travel as noninteracting Fermions with the drift
velocity vD rather than as plasmons in this strong-screening
limit. For example, for a smooth confinement potential U , one
finds cq = e/(2πl2

m|dU/dy|) ∼= 5 nF/m and vD
∼= 104 m/s for

a typical GaAs heterostructure at B = 5 T, where lm is the
magnetic length.26

In actual QH conductors, however, the screening effect is
not strong enough for this limit to be realized. Usually, vEMP is
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about two orders of magnitude higher than vD (vEMP
∼= 106 m/s

in a filling factor ν=1 QH state 6–8,12,13). This is a manifestation
of the strong Coulomb interaction in a bare edge channel. We
include the effect of this Coulomb interaction by using the
electrostatic capacitance. In principle, the long-range nature
of the Coulomb interaction makes the problem essentially
nonlocal, which implies that V (x) should depend on ρ(x ′)
at any position x ′ in the channel. For an infinitely long
straight edge channel, however, because of the translational
symmetry of the system, the simple relation ρ(x) = cch(k)V (x)
holds for a given wave number k. The effect of nonlocal
ρ(x ′) is incorporated as the k dependence of cch(k) in this
relation. Indeed, the calculation of vEMP in such a scheme
shows a similar k dependence of vEMP = (σxy/ε)ln(γ /|ka|)
for an abrupt electron density profile1 and a soft profile2

at the QH boundary. Here, ε is the dielectric constant, a

is the effective width of the edge channel, and γ is a
numerical constant. Comparing this expression for vEMP with
Eq. (2), one can define a k-dependent effective self-capacitance
cs(k)=ε/ln(γ /|ka|). Its weak logarithmic dependence can be
neglected for a certain wavelength region of interest, where
cs is expressed by considering cs = ε/γ ∗; γ ∗ = ln(γ /|ktypa|)
is a constant, and ktyp is the typical wave number. Because
cs is much smaller than cq in a typical GaAs heterostructure,
vEMP

∼= σxy/cs is generally much higher than vEMP
∼= vD.

In a realistic QH device, in which such exact translational
symmetry does not exist, the charge distribution ρ(x ′) along
the entire channel must be taken into account. When the device
is covered with a metal electrode, however, partial screening
of the long-range Coulomb interaction allows us to use a
local approximation that considers the Coulomb interaction
only near the channel. This is done by replacing cs with the
electrostatic screening capacitance cm = εa/d between the
channel and the metal, where d is the distance between
the channel and the covering metal. In this case, vEMP is
given by vEMP

∼=σxy/cm
∼=σxyd/εa for d�a.8,9,13 Generally, by

considering all the contributions of cq, cs, and cm, the channel
capacitance cch is conceptually understood using an equivalent
circuit, as shown in Fig. 1(b). The electrostatic screening
capacitances cs and cm are connected to cq in series. Because
cm for a metal-covered channel is generally much larger than
cs and much smaller than cq, the channel capacitance cch is
approximated as cch

∼= cm.
This capacitance approximation also adequately explains

the behavior of vEMP along a gate-defined QH boundary. The
capacitance cm, and hence vEMP, can be tuned with a negative
gate voltage Vg because the distance between the channel
and the metal varies with Vg [Fig. 1(c)].12 In this way, the
variation of vEMP along gate-defined channels is represented
as the variation of a circuit parameter cm. The velocity vEMP

can be estimated by numerically calculating cm for a realistic
electron density profile at the gate-defined QH boundary.

The longitudinal conductance σxx , which was ignored in the
above discussion, causes current leakage from the channel into
the bulk region and the resultant dissipation of EMPs.1 This
source of EMP dissipation can be represented by introducing
a finite conductance gch between the channel and the ground
in the CDE model as shown in Fig. 1(b). The distributed
admittance Yp depicted in Fig. 1(a) is then described by

ℓ

EMP cX

Coupled regionI1,in I1,out

I2,out I2,in0

Z+ = 1/σxy
(1)

Z+ = 1/σxy
(2)

x
FIG. 2. (Color online) Schematic of coupled transmission lines.

Two unidirectional transmission lines are coupled for length l through
interedge capacitance cX.

Yp = iωcch + gch. More detailed discussion on EMP damping
is given in Sec. IV.

B. Coupled transmission lines

In this subsection, we formulate EMP transport in a pair of
parallel edge channels in order to extend the CDE model to
cases where one must consider Coulomb interaction between
edge channels. The interedge Coulomb interaction is a key
factor in understanding the electron dynamics in QH edge
channels, and is believed to dictate the energy relaxation,27–29

decoherence,30,31 and charge fractionalization.32,33 Since our
CDE model allows us to parametrize and evaluate the interedge
Coulomb interaction, it will be helpful for studying the
nontrivial electron dynamics that emerges in coupled 1D
systems.

Figure 2 shows our model for a coupled system in which
two counterpropagating edge channels interact over a finite
length l through interedge capacitance cX. We take the x axis
to be parallel to the edge channels in the interacting region.
We assume that the two unidirectional transmission lines i

(i=1 for the upper channel and 2 for the lower channel) have a
characteristic impedance 1/σ (i)

xy , where σ (1)
xy = −σ (2)

xy = σxy ,

and identical channel capacitances c
(1)
ch = c

(2)
ch = cch. In the

coupling region (0 < x < l), the charge density ρi(x) and
potential Vi(x) (i=1, 2) of the two channels are interrelated as
in the following matrix form:(

ρ1

ρ2

)
=

(
cch + cX −cX

−cX cch + cX

) (
V1

V2

)
. (3)

On the other hand, the relation between the potential Vi and
current Ii for each channel i is Ii = σ (i)

xy Vi . From these re-
lations, along with the continuity equation ∂Ii /∂x=− ∂ρi /∂t ,
the wave equation for the coupled system is

∂

∂t

(
I1

I2

)
= −

(
U0 U12

−U12 −U0

)
∂

∂x

(
I1

I2

)
, (4)

where U0 and U12 are the intra- and interchannel couplings,
respectively:

U0 = σxy

cch

cch + cX

cch + 2cX
,

U12 = σxy

cch

cX

cch + 2cX
.

The above wave equation has two solutions, one that ful-
fills I1=− rI2 and the other that satisfies I2=− rI1, with
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r = (U0 −
√

U 2
0 − U 2

12)/U12. These solutions represent the
coupled modes of EMPs;32,33 the charge ρ1 propagating in
the positive direction in the upper channel (Fig. 2) drags small
amounts of negative charge − rρ2, and vice versa. Note that
the interedge interaction makes the velocity of the coupled
modes vct ≡ |vj | =

√
U 2

0 − U 2
12 [j>0 (j<0) for the modes

moving to the right (left)] slower than that of the uncoupled
modes in the noninteracting regions (x<0 or x>l). As an
example, let us suppose that a pulse of excess charge is injected
from the noninteracting region into the coupled region (I1,in:
upper left in Fig. 2). This excites the right-moving mode (ρ1,
− rρ2) in the coupled region. The remainder of the charge +rρ1

reflected back into the lower left channel generates the output
current I2,out. This process is called “charge fractionalization.”
These EMP transport characteristics are consistent with the
calculations based on the Tomonaga-Luttinger liquid theory.32

It is convenient to define the EMP scattering matrix Sct

of the coupled transmission lines, which relates the outgoing
waves (I1,out, I2,out) to the incoming waves (I1,in, I2,in); see
Fig. 2. In terms of the scattering amplitude r at the left (x = 0)
and right (x = l) junctions and the phase evolution θ = ωl/vct

in the coupled region, Sct is expressed as

Sct = 1

r2 − e2iθ

[
(−1 + r2)eiθ r(e2iθ − 1)
r(e2iθ − 1) (−1 + r2)eiθ

]
. (5)

The matrix elements of Sct are periodic functions of θ

and hence ω.19 This periodicity can be regarded as the
consequence of EMP interference propagating through the
distributed capacitors. When l is sufficiently short, such that
θ�1, interchannel coupling can be well approximated by a
lumped capacitance CX = cXl. In this case, the expression for
Sct reduces to

Sct = 1

σxy + iωCX

(
σxy iωCX

iωCX σxy

)
. (6)

When ωCX�σxy , we find S21
∼= iωCX/σxy . This reproduces

the well-known expression for the two-probe admittance of a
mesoscopic capacitor, Y (ω) = iωCX.16–19,24,25

C. Quantum point contact

The EMP transport characteristics through a QPC involve
Coulomb coupling between the input and output channels. In
this subsection, we derive the scattering amplitudes of a QPC.
Figure 3 depicts our model, in which two edge channels are
running antiparallel along each of the split gate metals defining
the QPC. We assume that the interedge Coulomb interaction
exists over a length l along the split gates. As we have shown
in Sec. II B, the effect of the interedge Coulomb interaction
can be evaluated as the capacitance cX.

The EMP scattering amplitude of the system is calculated
by combining the contributions of the electron transport
and capacitive transport. When l is much smaller than the
wavelength λEMP of the EMPs, the distributed capacitance can
be replaced with the lumped capacitance CX = cxl. In this
case, the output currents I1,out and I2,out are given by

I1,out = σxyV1,out

= iωCX(V2,in − V1,out) + TdcσxyV2,in + RdcσxyV1,in,

I2,out = σxyV2,out

cX

I1,in

I1,out

I2,out

ℓ

I2,in

Tdc

Tdc

Rdc Rdc

Sℓ 2

SQPC

Sℓ 2

FIG. 3. (Color online) Schematic of edge channels near a QPC.
Left and right channels are connected via the QPC. Interedge
capacitance cX is distributed over a length l around the QPC.

= iωCX(V1,in − V2,out) + TdcσxyV1,in + RdcσxyV2,in.

Here, Tdc and Rdc are the dc transmission and reflection
probabilities for electron transport, respectively. From these
equations, the scattering matrix SQPC−X of the QPC is
represented as

SQPC−X = 1

σxy + iωCX

(
Rdcσxy Tdcσxy + iωCX

Tdcσxy + iωCX Rdcσxy

)
.

(7)

These scattering amplitudes are controlled by tuning Tdc. When
the QPC is fully open (i.e., Tdc = 1), the off-diagonal element of
SQPC−X, which we denote by tQPC, is unity. In contrast, when
the QPC is pinched off (i.e., Tdc = 0), EMPs are transferred
only through CX, yielding the transmission amplitude tQPC =
iωCX/(σxy + iωCX). Note that, if we set the contribution of
Coulomb coupling to zero (i.e., CX = 0) in Eq. (7), the diagonal
(rQPC) and off-diagonal (tQPC) elements of SQPC−X reduce to
Rdc and Tdc, respectively.

When l is not sufficiently small to ignore the phase
evolution along the interacting region, the lumped-capacitance
approximation breaks down, and the distribution of cX must be
taken into account. To calculate SQPC−X for the entire system,
we define the S matrices for each section in the system; SQPC

is the S matrix for electron scattering at the QPC, and Sl /2 is
that for Coulomb interaction in coupled channels with length
l/2 (see Fig. 3). To combine these S matrices, we convert
them to transmission matrices (T matrices: TQPC and Tl /2)
and calculate the T matrix of the entire system (TQPC−X) as34

TQPC−X = Tl/2TQPCTl/2. (8)

SQPC−X is obtained by reconverting TQPC−X to SQPC−X.
To evaluate tQPC and rQPC in a device having a more

complicated edge channel geometry in which these channels
interact everywhere, the CDE model can be improved as much
as necessary by taking the interedge capacitances elsewhere
into account.
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FIG. 4. (Color online) (a) Schematic of plasmonic cavity confined
with QPCL and QPCR. (b), (c) Calculated |tCavity| from Eq. (10)
as a function of normalized frequency f /fch. (b) |tCavity| in wide
frequency band up to f /fch = 10 for α = 0.03 and (c) those around
the fundamental resonant frequency for α = 0.03, 0.1, and 0.3.

D. Plasmonic cavity resonators

A plasmonic cavity is a typical application of EMPs.3–7 In
this subsection, we derive the transmission spectra of single
and double plasmonic cavities using the CDE model. We
consider closed loops of edge channels having a pair of QPCs
at the entrance and exit of the cavity structures. The S matrices
for individual sections (QPCs and edge channels composing
the cavities) are combined to calculate the S matrix of the entire
system. Here, we consider the lumped capacitance across
QPCs (CX) rather than the distributed capacitance (cx) in order
to simplify the calculation. For the moment, we ignore EMP
dissipation during propagation, assuming gch = 0.

Single plasmonic cavity. Figure 4(a) shows the schematic
of a single-cavity structure. The cavity consists of two QPCs
(QPCp: p = L or R) at the entrance and exit. The scattering
matrix Sp of QPCp is given by Eq. (7). On the other hand, the
scattering matrix of the looped channel in the cavity, SCh, can
be described by

SCh =
[

0 exp (−ikLLL)
exp (−ikULU) 0

]
.

SCh represents the phase evolution of the EMPs during
propagation. Here, kU and kL represent the wave numbers of
the EMPs, and LU and LL are the lengths of the upper and
lower channels in the cavity, respectively. The S matrix of the
entire cavity (SCavity) is obtained from the T matrix (TCavity) of
the entire system, which is given by

TCavity = TLTChTR, (9)

where Tp is the transmission matrix of QPCp and TCh is that of
the channel in the cavity; these variables are converted from Sp

and SCh, respectively. The reflection (rCavity) and transmission
(tCavity) amplitudes are the diagonal and off-diagonal terms of
SCavity, respectively.

When the QPCs are pinched off (electron transmission
probabilities Tdc,L = Tdc,R = 0), the cavity couples to the

input and output channels only through CX. In this case, the
transmission spectrum is calculated as

|tCavity| =
∣∣∣∣ −α2e−ifchω/2

(1 + iα)2 − e−ifchω

∣∣∣∣ , (10)

where we assume LU = LL. In Eq. (10), fch is the charac-
teristic frequency fch = L/vch, where L= 2LU = 2LL is the
perimeter of the cavity, and vch = σxy/cch is the characteristic
velocity of the EMPs. Further, α = 2πfchCX/σxy is the
interedge coupling between the cavity and the leads at the
QPCs.

Figures 4(b) and 4(c) show the calculated transmission
spectra as a function of frequency f . As shown in Fig. 4(b),
|tCavity| oscillates as a function of the frequency because of
the resonance of the EMPs. With increasing frequency, the
resonant peaks broaden (i.e., the quality factor decreases)
and, consequently, the contrast between resonance and off
resonance weakens. This is because the capacitive coupling
across the QPCs increases with frequency and so does
the leakage of EMPs. The fundamental resonance shows a
Lorentzian shape in the transmission spectrum, as displayed
in Fig. 4(c). With increasing α, namely, increasing CX, the
resonant peak broadens because the leakage of EMPs increases
with CX. In addition, the increase in α reduces the resonant
frequency owing to the reduced vEMP in the coupled region
near the QPCs.

Double plasmonic cavity. The transmission amplitude
tDouble of a double-cavity device is derived from the combina-
tion of the S matrices for different sections. Figure 5(a) shows a
schematic of the successive sections of a double-cavity device.
The transmission matrix TDouble is obtained from those of the
QPCs (Tp: p = L, M, or R) and the channels inside the left
and right cavities (TCh1 and TCh2) as

TDouble = TLTCh1TMTCh2TR. (11)

The scattering matrix SDouble of the double cavity is converted
from TDouble. The reflection (rDouble) and transmission (tDouble)
amplitudes are the diagonal and off-diagonal terms of SDouble,
respectively. Here, we assume the perimeters of the cavities to
be L1U = L1L = L1/2 and L2U = L2L = L2/2, where L1 and
L2 are the perimeters of the two cavities. As for the single
plasmonic cavity, we define the characteristic frequencies
fch1 = vch1/L1 and fch2 = vch2/L2, where vch1 and vch2 denote
the characteristic velocities of EMPs in these two cavities.

As we discussed in Sec. II C, the transmission amplitude of
a QPC involves real (conductive) and imaginary (capacitive)
parts. These two types of transmission amplitude produce very
different resonance characteristics in a double-cavity device.
To elucidate this difference, we consider two cavities coupled
via QPCM without input and output ports, as shown in Fig. 5(b).
We describe the currents incoming to and outgoing from
QPCM as I1M,in, I2M,in and I1M,out, I2M,out, respectively. These
currents meet the following conditions, where tM and rM are
the transmission and reflection amplitudes of QPCM.

I1M,out = rMI1M,in + tMI2M,in = (1 − tM)I1M,in + tMI2M,in,

I2M,out = tMI1M,in + rMI2M,in = tMI1M,in + (1 − tM)I2M,in.

(12)
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FIG. 5. (Color online) (a) Schematic of successive sections of
a double-cavity structure. (b) Schematic of edge channels near
QPCM. (c), (d) Interedge coupling with closing QPCM for dc current.
(c) In in-phase coupling, the voltage drop across QPCM is zero, so
CM can be neglected. (d) In antiphase coupling, CM is emphasized.
(e) Calculated |tDouble| of the coupled cavities at fch1 = fch2 at
Tdc,M = 1 and α = 0.1 (upper panel) and at Tdc,M = 0 and α = 0.3,
0.1, and 0.03 (lower three panels). (f) Calculated plot of |tDouble| as a
function of normalized input frequency f /fch1 (x axis) and fch2/fch1

(y axis) at Tdc,M = 0 and α = 0.1.

When the resonant frequency of the coupled system is fC, the
conditions

I1M,in = e−2πifC/fch1I1M,out,
(13)

I2M,in = e−2πifC/fch2I2M,out,

are also satisfied. Let us consider the case of fch1 = fch2.
One solution of Eqs. (12) and (13) is always obtained at
fC = fch1 = fch2 with I1M,out = I2M,out. This mode is the
in-phase resonance of EMPs in the coupled cavities. In
addition, when the coupling tM is purely capacitive (tM is
an imaginary number), another solution is obtained at fC

∼=
(1 − tM/iπ )fch1 = (1 − tM/iπ )fch2 with I1M,out = −I2M,out.
This mode is the antiphase resonance. This antiphase mode
does not appear in conductive coupling, because EMPs with
opposite signs cancel each other out at QPCM.

As we discussed in Sec. II B, the interedge Coulomb
interaction decreases the velocity of EMPs. For the in-phase
resonance, the voltage drop across QPCM is zero [Fig. 5(c)],
so the effect of interedge coupling on vEMP disappears.
On the other hand, for the antiphase mode [Fig. 5(d)], the
voltage drop across the QPC is doubled, emphasizing the
effect of the interedge interaction. Consequently, the resonant
frequency of the antiphase mode is always smaller than that

of the in-phase mode. In this way, in capacitive coupling, the
resonant frequency splits into in-phase and antiphase modes,
whereas only the in-phase resonance is obtained in the case of
conductive coupling.

These coupling modes can be seen in simulations using
Eq. (11). Figure 5(e) displays several simulated transmission
spectra of a coupled cavity with fch1 = fch2. Here, we define
the coupling parameter α = 2πfch1CX/σxy . When QPCM is
conductive (Tdc,M = 1, uppermost panel), |tDouble| exhibits a
single resonant peak near f /fch1 = 1 (this corresponds to the
second-harmonic resonance of the combined cavity). On the
other hand, when these cavities are coupled only through CX

(Tdc,M = 0), the resonant peak splits into two (lower three
panels). The splitting f develops with increasing α, namely
increasing coupling capacitance CX. This demonstrates that the
coupling strength is parametrized with CX in this double-cavity
device. Figure 5(f) shows an image plot of the calculated
|tDouble| at Tdc,M = 0 for α = 0.1 as a function of the normal-
ized measurement frequency f /fch1 (x axis) and detuning
parameter fch2/fch1 (y axis). A clear anticrossing of the two
resonant modes appears at fch2/fch1 = 1. Thus, the resonance
of the EMPs exhibits dramatically different characteristics
depending on whether the coupling is conductive or capacitive.
Note that the mode splitting in capacitively coupled systems
is a key factor in designing plasmonic band structures.14,15

III. EXPERIMENTS

In this section, we present the results of EMP transport
measurements. First, we compare the measured transmission
amplitude tQPC of a QPC with the calculation using Eqs. (5) and
(6), in which interedge Coulomb interaction across the QPC
is evaluated as the interedge capacitance. Second, we study
the EMP resonance in a gate-defined single-cavity structure.
We extract the velocity vEMP and dissipation gch of EMPs
[Fig. 1(b)] in the cavity from the center frequency and Q factor
of the resonance. We also show that the resonant frequency,
which is a function of vEMP, can be tuned with gate voltages
applied to a delay gate in the cavity. Third, coupled resonance
of EMPs in a double-cavity structure is reported. When
the intercavity coupling is conductive, we observe a single
resonant peak in the transmission spectra, while a double-peak
structure appears for purely capacitive coupling, indicative of
mode splitting into in-phase and antiphase resonance.

A. Device and measurement setup

Figure 6(a) shows a colored optical micrograph of the
device and the measurement setup. The EMP devices were
prepared in a 2DEG in a GaAs/Al0.3Ga0.7As heterostructure
with electron density ne = 1.3 × 1011 cm−2 and mobility
μ = 2.1 × 106 cm2 V−1 s−1. They have three split gates [(Up,
Lp); p = A, B, or C] to form QPCs and four screening gates
(Sq: q = 1, 2, 3, and 4) to tune the degree of screening for each
section of the upper and lower edge channels. The detailed
geometry of the gate metals near the QPCs is illustrated
schematically in Fig. 6(b). Plasmonic cavities are formed by
activating more than one QPC. For example, a large cavity
is formed with QPCA and QPCC [Fig. 6(c)], while a double
cavity is formed with all the QPCs [Fig. 6(d)].
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FIG. 6. (Color online) (a) Colored optical micrograph of device
and measurement setup. White lines with arrows show the geometry
of the edge channels forming a plasmonic cavity. (b) Schematic of
gate metals of QPCp and edge channels (ECs). (c) Schematic of large
single cavity formed with QPCA and QPCC. (d) Schematic of double
cavities formed with all QPCs.

The measurements were performed at 280 mK in a 3He
cryostat with a high magnetic field (5.3 T) applied perpen-
dicular to the 2DEG (bulk filling factor ν = 1). The chirality
of the edge channels was set to clockwise, as shown by the
white arrows in Fig. 6(a). In this setup, we applied both dc
and rf excitation to the Ohmic contact �1 and simultaneously
measured the dc and rf output signals from �2 with the other
Ohmic contacts (�3 and �4) grounded. The dc measurements
were performed using a standard lock-in technique at 31 Hz.

The electron transmission probability Tdc of a gate-defined
structure was measured as the collection efficiency Tdc =
Idc,2/Idc,1 of the dc current at �2 for a dc current Idc,1

injected from �1. In the ν = 1 QH state, Tdc = 1 corresponds
to G21 = e2/h, where G21 is the conductance from �1 to �2.
We confirmed Tdc>0.97 when all the gate voltages were set
to zero. This ensures that edge transport is dominant in the
present device, and transport through the bulk QH state can be
neglected (i.e., σxx

∼= 0).
The EMP transport properties were investigated by mea-

suring the scattering matrix element S21,meas for rf signals
between �1 and �2 using a vector network analyzer. The
excitation voltage applied to �1 was about 1.4 mV rms.35

We estimated the transmission amplitude t of the device as
t = S21,meas/S

(0)
21,meas, where S

(0)
21,meas is the scattering matrix

element for full transmission at VLA = VLB = VLC = 0 V. With
this calibration, the frequency dependence of the measurement
system, e.g., the frequency dependence of the insertion loss
of the coaxial cables and/or gain of the amplifiers, can be
removed.

B. Quantum point contact

First, we investigated the electron transmission probability
Tdc,p through QPCp (p = A, B, or C). We measured Tdc,p as

(b)
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FIG. 7. (Color online) (a) Transmission amplitude |tA| of QPCA

as a function of VLA measured at 80 MHz (red circles). Black dotted
line is measured Tdc,A and blue solid line is simulated |tA| from
Eq. (6) assuming CX = 22 fF. Open symbols show the gate voltages,
where |tCavity| was measured as shown in Fig. 10(a). (b) Frequency
dependence of the measured |tA| with QPCA closed (Tdc,A = 0 at
VLA = −1.2 V). Blue dashed line indicates simulation using Eq. (6)
with CX = 22 fF. Black solid line indicates simulation using Eq. (5)
with cch = 130 pF/m, cX = 47 pF/m, and l = 420 μm.

a function of the lower gate voltage (VLp) while applying
VUp = − 1.0 V to the upper gate. The measured Tdc,A is
shown in Fig. 7(a) by a black dotted line. QPCA is formed
at VLA

∼= −0.25 V, where Tdc,A steeply decreases: Tdc,A<1
at this QPCA definition voltage is a result of the narrow
gap of our split gates [400 nm; see Fig. 6(b)], which causes
backscattering between the counterpropagating edge channels
immediately after the QPC formation. Applying a more
negative VLA decreases Tdc,A until it reaches Tdc,A = 0 at around
VLA = −0.95 V. The small features observed in the range
−0.6 V<VLA<−0.95 V originate from scattering at impurities
around the QPC. We observed a similar VLp dependence of
Tdc,p for the other two QPCs (not shown).

The absolute transmission amplitude |tA| of QPCA measured
at 80 MHz is also plotted in Fig. 7(a). Although Tdc,A = 0
below the pinch-off voltage VLA

∼= −0.95 V, |tA| remains finite
even after the QPC is fully pinched off because of the Coulomb
coupling across the QPC. We modeled these interactions as the
interedge capacitance across QPCA, as shown in Fig. 3. When
QPCA is closed for dc current, the system can be regarded
as coupled 1D transmission lines (Fig. 2). In this case, |tA| is
expected to oscillate as a function of frequency, as discussed
in Sec. II B. Figure 7(b) shows the frequency dependence of
the measured |tA| at VLA = −1.2 V (where Tdc,A = 0). The
experimental data are fitted well by Eq. (5). From this fitting,
the coupling parameters of the present system were found to be
cch = 130 pF/m, cX = 47 pF/m, and l = 420 μm. These values
of cX and l are comparable to those obtained in our previous
study.19

At low frequencies, the interedge Coulomb interaction
can be simply described by the lumped capacitance CX
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across the QPC. As seen in Fig. 7(b), below 100 MHz, |tA|
monotonously increases with frequency, reflecting the relation
tA ∼= iωCX/σxy (ωCX�σxy). Indeed, the data below 100 MHz
can be well fitted with Eq. (6) with CX = 22 fF. With this
parameter, the measured VLA dependence of |tA| shown in
Fig. 7(a) is well reproduced using Eq. (7) over the entire range
of VLA.

C. Single plasmonic cavity

In this subsection, we present the results of transmission
measurements for a single plasmonic cavity. As sketched in
Fig. 6(c), our cavity is defined by using nine gate electrodes.
QPCA and QPCC are formed by applying a constant gate
voltage VUA = VUC = −1.0 V to the upper gates UA and UC
and varying voltages VLA and VLC to the lower gates LA and
LC so that the QPC openings can be tuned. The upper and
lower channels in the cavity are defined by the four screening
gates, which are biased at VSβ = −0.5 V (β = 1, 2, 3, and 4).
Additionally, gate UB was exploited to tune the perimeter L of
the cavity. EMPs injected from �1 enter the cavity via QPCA

and exit from QPCC to be collected at �2.
A typical frequency dependence of the transmission

amplitude |tCavity| of the cavity is shown in Fig. 8. The
spectrum was obtained with both QPCs pinched off (Tdc,A =
Tdc,C = 0 at VLA = VLC = −1.2 V). A sharp peak appears near
90 MHz, corresponding to the fundamental resonance. We
simulated |tCavity| using Eq. (9), with the interedge coupling
across the QPCs modeled as a distributed capacitance with
cch = 130 pF/m, cX = 47 pF/m, and l = 420 μm. Unlike
the simulations shown in Figs. 4(b) and 4(c), the height of
the resonant peaks does not reach |tCavity| = 1 due to EMP
dissipation during propagation along the channel in the cavity.
We assumed gch = 1/260 �−1 m−1 to include the effect of this
dissipation; the mean free path of EMPs estimated from this
gch is about 10 mm. The simulation (black solid line in Fig. 8)
reproduces the experimental data exceedingly well, including
the second-harmonic resonance around 180 MHz, indicating
the validity of our CDE model. Both the experiment and
simulation show that the peak height of the second-harmonic
resonance is much smaller than that of the fundamental
resonance. This is because, when the QPCs are closed for
dc currents, EMP transmission amplitude across the QPCs is
strongly suppressed near 200 MHz due to EMP interference
as seen in Fig. 7(b).
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FIG. 8. (Color online) Typical |tCavity| of a single plasmonic cavity
measured at VLA = VLC = −1.2 V and VUB = −0.36 V. Black solid
line is simulation assuming a distributed capacitance across the QPCs.
Blue dashed line shows the fitting assuming lumped capacitance in
the frequency band from 50 to 120 MHz.
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FIG. 9. (Color online) (a) Transmission spectra |tCavity| of
the single cavity shown in Fig. 6(c) measured at several VUB.
(b) Geometry of edge channel in the cavity at VUB = 0 V (upper)
and at VUB<−0.3 V (lower). (c) Group velocity vUB (open circles)
and channel capacitance cch (filled squares) along the gate UB derived
from the observed resonant frequencies.

At low frequencies, the calculation can be further simplified
by introducing a lumped capacitance CX across the QPCs.
As shown by the dashed line in Fig. 8, the data below
120 MHz can be well fitted by the lumped-capacitance model
using the parameters CX = 18 fF, vch = 2.17 × 105 m/s, and
gch = 1/260 �−1 m−1. The CX value is close to that obtained
for a single QPC in Sec. III B (CX = 22 fF), and the above
vch value is consistent with those previously reported for
ν = 1.6–8,12,13 In the remainder of this section and the following
subsection, we focus on the fundamental resonance and use
the lumped-capacitance model to simplify the calculation.

Figure 9(a) shows the transmission spectra measured at
several values of VUB with both QPCs pinched off (Tdc,A =
Tdc,C = 0). When VUB is changed from 0 V to −0.36 V,
the resonant frequency fRES shifts from 125 to 85 MHz. At
VUB = 0 V, EMPs take a shortcut under the gate UB, which
makes a short cavity perimeter of L∼= 1750 μm, whereas
at VUB<−0.3 V, EMPs make a detour, and L increases to
L∼= 2250 μm [Fig. 9(b)]. As VUB decreases further to more
negative values, fRES gradually increases and saturates at
fRES

∼= 105 MHz at VUC<−0.8 V. This is a consequence of
the gate-voltage dependence of the velocity vUB along gate
UB.12 We extracted the velocity vUB by comparing the resonant
frequencies for the cases with and without a detour around UB.
The obtained vUB values are shown in Fig. 9(c) as a function
of VUB. As VUB decreases from −0.3 to −1.2 V, vUB increases
by a factor of 3. This suggests that, by appropriately designing
the cavity structure, it is possible to vary fRES electrostatically
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FIG. 10. (Color online) (a) Measured |tCavity| at several Tdc

[VL = −0.7, −0.85, −0.95, and −1.02 V; marked by open symbols in
Fig. 7(a)] at VUB = −1.2 V. (b) Quality factor of the measured resonant
peaks (circles) as a function of Tdc with those calculated from Eq. (9)
for gch = 1/260 �−1 m−1 (solid blue line) and for gch = 0 (dashed
black line). (c) (Main panel) Temperature dependence of Q factor of
the fundamental resonance in the single cavity. (Inset) Transmission
spectra of the resonance obtained at various temperatures.

over a wide range by up to a factor of 3. In Fig. 9(c), we also
plotted the channel capacitance cch along UB deduced from
the vUB values using Eq. (2). As VUB decreases, cch decreases,
reflecting the growing distance between the channel and the
gate, which decreases cm between them. The extracted value
of cch (about a few hundred pF/m) is close to the value of
cm estimated from a finite element calculation (a few hundred
pF/m, assuming a distance of a few micrometers between
the channel and the gate metal and a channel width of a few
hundred nanometers.36)

Figure 10(a) shows the effect of QPC openings on |tCavity|.
The four spectra shown were taken at different gate voltages
VL≡VLA = VLC ranging from −1.02 to −0.70 V [marked by
open symbols in Fig. 7(a)] corresponding to different values
of Tdc (≡Tdc,A = Tdc,C). The data show that the resonant peak
becomes sharper with decreasing VL and hence decreasing
Tdc. At VL = −1.02 V, where both QPCs are pinched off and
the coupling is purely capacitive, the peak height becomes
|tCavity| ∼= 0.2 with Q = fRES/fFWHM

∼= 7, where fFWHM is
the full width at half maximum (FWHM) of the resonant peak.
As shown in Fig. 10(b), the measured Q factor increases with
decreasing Tdc. This is consistent with the intuitive expectation
that the resonance is sharper when the leakage of EMPs
through the QPCs is smallest. Calculation of the Q factor
using Eq. (9) reveals that gch = 1/260 �−1 m−1 provides a
good account of the obtained Tdc dependence of Q [solid line
in Fig. 10(b)]. If we set gch = 0 in Eq. (9), the resultant Q factor
deviates from the data at low Tdc, reaching Q>20 at Tdc = 0
[dashed line in Fig. 10(b)]. This means that when the QPCs

are pinched off, Q is limited not by the leakage at the QPCs,
but by the dissipation of EMPs during propagation, namely, by
gch. From these results, we can expect that a higher Q factor
is obtained in a smaller cavity.

To explore the origin of EMP dissipation, we measured
the temperature dependence of the Q factor. The inset of
Fig. 10(c) shows transmission spectra obtained at several
temperatures. The resonant peak is most pronounced at the
lowest temperature, and the Q factor monotonically decreases
with increasing temperature [Fig. 10 (main panel)]. The
temperature dependence of Q is fitted well by an exponential
function, Q0exp(−Ts/Tres), where Q0 is the Q factor at a
temperature of 0 K, and Ts is the temperature of the system.
Tres represents the characteristic temperature of the resonance
broadening. We found Tres = 1.4 K from the fitting, which
is comparable to the Zeeman gap (∼= 1.2 K, assuming the g

factor in the GaAs/Al0.3Ga0.7As heterostructure to be |g| ∼= 0.4)
at B = 5.3 T. We will discuss possible mechanisms of this
temperature dependence in Sec. IV.

D. Coupled plasmonic cavities

In this subsection, we examine the coupling of the res-
onance in a double-cavity structure. As shown in Fig. 6(d),
the double cavity is defined by activating gate LB as well as
UB, and thus by forming QPCB, which separates the entire
cavity into left cavity (cavity 1) and right cavity (cavity 2)
components. We applied fixed voltages of −1.0 V to the upper
gates (UA, UB, and UC) and −1.2 V to gates LA and LC,
but varied VLB of gate LB to tune the transmission amplitude
tB of QPCB. The resonant frequencies of cavity 1 (fRES1)
and 2 (fRES2) can be independently controlled by tuning
VSG1≡VS1 = VS3 and VSG2≡VS2 = VS4, respectively. These
cavities have the same perimeters of L1 = L2 = 1350 μm.
We measured the absolute transmission amplitude |tDouble|
of the double-cavity device while changing VSG1 and fixing
VSG2 = −0.3 V.

When QPCB is open (Tdc,B
∼= 0.8) at VLB = −0.3 V, EMP

transport through QPCB is almost conductive (|tB| ∼= Tdc,B), as
shown in Fig. 7(a). Figure 11(a) shows typical resonant spectra
of the double cavity in this conductive-coupling regime, taken
at several VSG1 values. Figure 11(c) displays the image plot of
|tDouble| as a function of VSG1 (x axis) and the measurement
frequency (y axis). To highlight the effect of intercavity
coupling, the intrinsic resonant frequencies fRES1 of cavity 1
and fRES2 of cavity 2 are indicated by the dashed and dotted
lines, respectively, superposed on the image plot: fRES1 is
measured in the absence of cavity 2 with VLC = 0 V, and
vice versa. As expected, fRES1 varies with VSG1 in a manner
similar to that seen in Fig. 9(c), whereas fRES2 is independent
of VSG1. Consequently, fRES1 and fRES2 cross each other as
a function of VSG1. The spectra shown in Fig. 11(a) were
taken near the crossing point, which is indicated by the
arrows in Fig. 11(c). As seen in Figs. 11(a) and 11(c), in
the conductive-coupling regime, only a single resonant peak
is observed, whose resonant frequency roughly lies between
fRES1 and fRES2.

On the other hand, when QPCB is pinched off (Tdc,B = 0)
at VLB =−1.2 V, the coupling between the two cavities is
purely capacitive and is mediated by interedge Coulomb
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interaction. Figures 11(b) and 11(d) show similar measure-
ments in this capacitive-coupling regime. The spectra taken
near the crossing of fRES1 and fRES2, shown in Fig. 11(b),
reveal a double-peak structure, which is pronounced when
fRES1 	=fRES2 [highlighted by the black and blue arrows in
Fig. 11(b)]. Even at fRES1

∼= fRES2, an additional shoulder peak
structure is visible (shown by the red arrows), suggesting a
splitting of the resonant frequency [Figs. 5(e) and 5(f)].

We simulated the resonance characteristics of the double
cavities using Eq. (11) and compared these with the experi-
mental results. Figure 12 shows the results of this calculation,
where we assumed the lumped interedge capacitances Cp

across QPCp to be CA = CC = 18 fF, CB = 10 fF, and the
EMP dissipation to be gch = 260 �−1 m−1. These calculations
match the measured results well; at Tdc,B

∼= 0.8, a single
resonant peak appears between fRES1 and fRES2, whereas at
Tdc,B = 0, double-peak structures are seen in the spectra. At
fRES1 = fRES2 (VSG1 = −0.31 V) and Tdc,B = 0, a shoulder
peak is also reproduced in the simulation.

This excellent agreement between the experiment and the
simulation demonstrates the validity of our CDE model. It
also provides evidence for the crossover from conductive to
capacitive intercavity coupling controlled by VLB. At fRES1 =
fRES2, the single resonant peak observed for the conductive
coupling corresponds to the in-phase mode, while the double
peak (or shoulder peak) observed for the capacitive coupling
indicates both the in-phase and antiphase modes. Although the
size of the mode splitting in the capacitively coupled cavities
cannot be quantified in the present device, clear anticrossing
of two resonant frequencies [Fig. 5(f)] will be observed by
optimizing the cavity structures. Furthermore, we can expect
to realize plasmonic crystals14,15 using capacitively coupled
multiple cavities. Our CDE model would assist in the design
of such an integrated plasmonic device.
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FIG. 12. (Color online) (a), (b) Calculated transmission spectra
and (c), (d) image plots of |tDouble| of the coupled cavities under the
same conditions as in Fig. 11.

IV. DISCUSSION

In our CDE model, Coulomb interactions are represented
as distributed electrochemical capacitances. As discussed in
detail in Sec. II, the transport characteristics of plasmonic
devices can be calculated by considering capacitive cou-
plings between the edge channel and the other conductors
present in the surroundings. This approximation allows us to
compute the EMP transport conveniently even in integrated
circuits comprising multiple plasmonic devices. However, the
screening effect in low-dimensional electronic systems is not
sufficient to fully screen the long-range Coulomb interactions.
Therefore, in real devices, essentially all parts of the QH device
can be coupled to each other.19 In an integrated system, the
complicated networks of edge channels may make it unfeasible
to evaluate the S matrices for individual sections. Partial
screening of the edge channels by appropriately designed metal
structures would solve this problem. The striking sensitivity
of the EMP velocity to the presence of nearby metals12

indicates that such screening of edge channels is indeed active;
this suggests the possibility of limiting the spatial range of
Coulomb coupling by using metals.

To design integrated plasmonic circuits, coherence of EMPs
is a key requirement. In our CDE circuit model, loss of EMPs
is parametrized with the conductance gch between the channel
and the ground. With the damping included, the wave equation
(1) is modified as

∂I (x,t)

∂t
= −σxy

cch

∂I (x,t)

∂x
− gch

cch
I (x,t) .

From this equation, the dispersion relation of EMPs is derived
as

ω (k) = ω′ (k) + iω′′ (k) = vEMPk − i
gch

cch
.

Thus, EMP damping ω′′(k) = Imω(k) is represented by the
circuit parameters gch and cch in our CDE model.
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The advantage of the CDE model for investigating EMP
damping is that we can evaluate ω′′(k) from the measured
resonant spectrum separately from the broadening of resonant
peaks due to the loss of EMPs at the entrance and exit of
a cavity. In this paper, we simulated EMP transport assuming
constant gch and found good agreement between the simulation
and the experimental data. However, it is known that EMP
damping is not always frequency independent. It was experi-
mentally demonstrated that the frequency dependence of EMP
damping varies depending on the electrostatic environment
around the sample.7 In the CDE model, such frequency
dependences can be included into the simulation by assuming
frequency dependence of gch. Once gch is obtained as a function
of frequency from the comparison between the simulation and
the experimental data, we can calculate EMP transport even
in integrated systems including the frequency dependence,
similarly to the case of constant gch.

To understand the mechanism of the damping, we need to
investigate the detailed structure of edge channels.7 The shape
of compressible and incompressible strips, electron dynamics
in the edge channel, and the resultant EMP damping are
sensitive to environmental parameters (such as magnetic field,
electrostatic situation, and temperature). The structure of edge
channels has been theoretically investigated as a function of
these parameters.36–38 On the other hand, the damping of EMPs
has not yet been fully understood. For example, while it was
experimentally demonstrated that the damping of EMPs is
enhanced by the presence of a grounded metal near the edge
channel,7,39 the mechanism of this metal-induced damping
still remains an open question. Not only dissipation of rf
signals inside the metal due to its internal resistance but also
the screening and the resultant change of the shape of edge
channels may enhance EMP damping. The damping of EMPs
along gate-defined edge channels should be an important issue
for future plasmonic circuits.

Another issue for EMP damping is its temperature depen-
dence. We consider two possible origins for the observed
temperature dependence [Fig. 10(c)]. One is the thermal
smearing of the compressible strip structure37,38 in ν = 1 QH
state and the resultant enhancement of the damping in edge
channels. A second possibility is the presence of thermally
excited down-spin electrons in the system, for the energy scale

corresponding to the characteristic temperature Tres of EMP
resonance broadening is close to the Zeeman gap. Although
we have not yet determined the mechanism of EMP damping,
further experiments, such as space- and/or spin-resolved EMP
transport measurements, would provide more insight into EMP
damping.

V. CONCLUSION

A CDE circuit model has been developed to describe the
EMP transport properties in a QH device. A characteristic
impedance and distributed electrochemical capacitances were
introduced as fundamental physical quantities that characterize
the edge channels constituting plasmonic circuits. The EMP
transport characteristics of various gate-defined structures,
such as a QPC and single and coupled cavities were calculated
using this model. Good agreement was found between the
calculations and the experimental results.

The advantages of our CDE model can be summarized as
follows. First, it allows the effect of Coulomb interactions
to be expressed as capacitances, i.e., as circuit parameters.
This provides a simple and powerful means of evaluating the
impact of Coulomb interactions in electronic systems, which
is essential to understanding electron dynamics in QH edge
channels. Because the capacitance between two conductors
can be measured experimentally or simulated using, e.g.,
finite element methods, the EMP transport properties can
be computed using realistic parameters obtained separately.
Second, the circuit representation allows us to analyze EMP
transport in multiple plasmonic devices using the scattering
matrix formalism. This opens a way to establish future
integrated plasmonic circuits.
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