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Tuning of quantum interference in top-gated graphene on SiC
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We report on quantum-interference measurements in top-gated Hall bars of monolayer graphene epitaxially
grown on the Si face of SiC, in which the transition from negative to positive magnetoresistance was achieved
varying temperature and charge density. We perform a systematic study of the quantum corrections to the
magnetoresistance due to quantum interference of quasiparticles and electron-electron interaction. We analyze
the contribution of the different scattering mechanisms affecting the magnetotransport in the −2.0 × 1010 cm−2

to 3.75 × 1011 cm−2 density region and find a significant influence of the charge density on the intravalley
scattering time. Furthermore, we observe a modulation of the electron-electron interaction with charge density
not accounted for by present theory. Our results clarify the role of quantum transport in SiC-based devices, which
will be relevant in the development of a graphene-based technology for coherent electronics.
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I. INTRODUCTION

In the past decade, graphene emerged as a promising
material for a variety of technological applications1 largely
thanks to its intrinsic two dimensionality. In microelectronics,
for instance, progress was recently made in high-frequency2,3

and metrology4 based applications. From a fundamental point
of view, graphene is an exciting material for its unique
electronic properties, notably its linear energy spectrum and
the chiral nature of its charge carriers. In particular, chirality
manifests at quantizing fields with the characteristic half-
integer quantum Hall effect, a clear signature of monolayer
graphene.

At low temperatures, the low-field magnetoresistance of
two-dimensional (2D) conductors can be affected by quantum
interference.5 This phenomenon originates from the dynamics
of counterpropagating quasiparticles along autointersecting
orbits, when phase coherence is retained. In conventional
conductors, owing to the time-reversal symmetry of this
process, quasiparticles interfere constructively at the origin.
This leads to an enhanced backscattering probability, which
in turn produces an increased zero-field resistance. This
effect is called weak localization (WL).6–9 Conversely, when
destructive interference occurs, backscattering is suppressed;
thus zero-field resistance decreases, and weak antilocalization
(WAL) is observed. In conventional conductors, WAL is due
to spin-orbit interaction or scattering at magnetic impurities.7,9

The peculiar electronic properties of graphene give rise to
unusual quantum-interference effects. Owing to the chirality
of graphene carriers, a quasiparticle propagating along an
autointersecting path acquires an additional (Berry) phase of
π ,10 which leads to destructive interference. Since spin-orbit
interaction is weak in graphene,11 WAL provides therefore
reliable evidence of charge-carrier chirality.

Quantum-interference phenomenology in graphene is
therefore driven by the interplay between chirality and dif-
ferent types of elastic-scattering events: their relative weight
determines the regime of localization observed (WL or WAL).
Trigonal warping of the energy dispersion is known to suppress
chirality, thus strongly suppressing WAL.12 The presence of

smooth potential variations (as produced, e.g., by ripples or
remote impurities in the substrate) is also known to reduce
quantum interference.13,14 The cumulative effect of these
intravalley chirality-breaking mechanisms on the transport
properties is accounted for by a characteristic elastic scattering
time τ∗.

On the other hand, interaction of quasiparticles with
atomically sharp defects (such as missing atoms or device
edges) was recently linked to intervalley scattering, which
causes carriers to change abruptly the Dirac valley. While
phase coherence can be preserved in this process, the memory
of the chirality is lost, with the final result of restoring WL. The
strength of intervalley scattering can be quantified in terms of
the intervalley elastic-scattering time τiv . Localization effects
are observed as long as quasiparticles maintain their phase
coherence, i.e., within the time scale of the inelastic dephasing
time τϕ and as long as τϕ > τiv,τ∗.

A finite magnetic field breaks time reversal symmetry by
adding an extra phase to quasiparticles that propagate along
closed paths. When a large number of different paths is present,
the effect of interference is averaged to zero, and resistance
recovers its classical value R0. This confines interference ef-
fects to a narrow field range around B = 0, where both WL and
WAL can contribute to the magnetoresistance. The suppression
of interference by a magnetic field is rather dramatic, and
leads to a sharp peak (dip) in the magnetoresistance that is the
signature of WL (WAL).

The interference phenomena described so far are ul-
timately single-particle effects and involve noninteracting
quasiparticles. Electron-electron interaction (EEI) between
carriers can lead to an additional quantum correction to
magnetoresistance,15 which can in principle be observed
even in the presence of magnetic-field intensities that would
suppress quantum interference. This contribution stems from
Coulomb scattering between quasiparticles, which is strongly
enhanced in the presence of disorder owing to longer interac-
tion times. The effects of EEI were extensively studied over
the past decades in conventional 2D systems,16–18 and only
recently in graphene.19–22
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Detailed investigations on quantum interference and EEI
were reported on mechanically exfoliated23,24 and quasi-free-
standing22 graphene. On the other hand, results on these effects
with epitaxial graphene on SiC are limited. In particular, the
interplay between localization and chirality is still largely
unexplored for this type of graphene and only positive
magnetoresistance was observed so far.21,25 Carrier-density
changes are expected to modulate EEI strength, but their
effect on quantum interference is not trivial. Experimental
investigations on exfoliated graphene showed the carrier-
density dependence of the scattering mechanisms affecting
localization in graphene, which can also be used to drive
the crossover from WL to WAL regime.23,24 The difficulty
to realize conventional backgating delayed the investigation
of quantum interference in epitaxial graphene at different
density regimes, and only photochemical-gated devices could
be investigated so far.25

The purpose of this paper is a detailed investigation of
quantum interference and EEI contributions to the low-field
magnetoresistance in top-gated epitaxial graphene. We per-
formed a systematic characterization of the transport properties
as a function of temperature and carrier density. For the
measurements, we made use of a top-gate electrode to change
the charge density in our device and were able to tune
both the quantum interference and EEI effects in the low-
field magnetoresistance. In particular, we report an evolution
from negative to positive magnetoresistance as temperature
is increased and density is lowered. We shall show that our
results are well described by the current theory of localization
in graphene12,14 and EEI in 2D conductors,15,26 and that
the degree of disorder in our epitaxial graphene device is
comparable to that in high-quality exfoliated graphene.

II. EXPERIMENTAL DETAILS

Devices analyzed in this work are large-area graphene
Hall bars (length × width = 300 μm × 50 μm) fabricated by
standard optical lithography from an epitaxial graphene layer
grown on a SiC(0001) wafer. Hall bars were further processed
to pattern Cr/Au (5/250 nm) metallic contacts and to deposit
a bilayer dielectric.27 The dielectric consists of 140 nm of
hydrogen silsequioxane (HSQ) and 40 nm of SiO2, spin-
coated and sputtered onto the substrate, respectively. Finally,
a large area Cr/Au (10/180 nm) top gate was defined by
e-beam lithography. Figure 1(a) shows a sketch of our
device. Magnetotransport measurements were performed by
standard lock-in technique in a Heliox He3 cryostat with a
base temperature of 250 mK. The longitudinal and transversal
resistances R23

xx = V 23
xx /ISD and R36

xy = V 36
xy /ISD , respectively,

were measured in a four-point configuration. A bias current
ISD = 10 nA was used to avoid overheating of the device, and
voltages up to VT G = −45 V were applied to the top gate to
tune the charge density. Thanks to the large dimension of the
Hall bar, WL and WAL features are easily recognizable since
they are not masked by universal conductance fluctuations
that can affect μm-sized bars.24 In particular, averaging of
the measured resistance over large ranges of VT G was not
necessary.

Magnetic fields in the 0–11 T range were used to character-
ize the device in the quantum Hall (QH) regime. The device

FIG. 1. (Color online) (a) Schematic of our device and measure-
ment setup. Gray: graphene; blue: top gate; yellow: ohmic contacts.
The longitudinal and transversal resistances, R23

xx = V 23
xx /ISD and

R36
xy = V 36

xy /ISD , respectively, are recorded while the charge density in
the device is independently set by the application of a top-gate voltage
VT G. (b) Half-integer quantum Hall effect measured at T = 250 mK
and B = 1.6 T, clearly showing plateaus in R36

xy at filling factor
ν = ±2 and a change of carrier polarity at VT G = VCNP ≈ −27 V.

displayed the half-integer QH effect as shown in Fig. 1(b).
This is a fingerprint of monolayer graphene, since multilayer
graphitic systems are known to produce a QH effect with
plateaus in Hall resistance at standard integer positions.10,28

The change of sign of R36
xy reflects the change of the carrier

polarity occurring at the charge neutrality point (CNP), as
determined by applying a top-gate voltage VT G = VCNP ≈
−27 V. The position of the CNP determined by the maximum
in R23

xx is shifted towards more negative values of VT G because
of a slight anisotropy in the carrier concentration. This feature,
discussed in the next paragraph, was already observed in
epitaxially grown devices.29 The onset of the 2e2/h quantized
plateau in R36

xy was reached at different magnetic field values
depending on VT G, occurring at |B| > 5 T for VT G = 0 V.

In order to compensate for the small charge-density
inhomogeneity observed, in the following we shall show
Rxx = 1

2 (R23
xx + R56

xx). This inhomogeneity stems from the
fabrication technology chosen to form the dielectric layer:
spin-coating deposition, required for HSQ, results in thickness
variations of 1%–3% over a 10–100 μm length scale, as
estimated by AFM measurements. This variation leads to a
charge density gradient in the graphene layer, which is known
to affect the experimental data curves.30 For linear density
variations in the longitudinal direction, the best resistance
estimate is obtained by averaging the values measured at
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FIG. 2. (Color online) Dependence of mobility μ on carrier
density n obtained in the temperature range 0.25–45 K with the
procedure described in the text. μ − n points obtained from Rxx(0)
and Rxy(B) are shown as empty squares. Inset: zero-field longitudinal
resistance Rxx as a function of VT G measured at T = 250 mK.
The four values of VT G selected to study the magnetoresistance are
indicated by symbols. The corresponding carrier density values are
I (3.75 × 1011 cm−2), II (1.43 × 1011 cm−2), III (2.02 × 1010 cm−2),
and IV (−2.03 × 1010 cm−2).

opposite sides of the device.31 The residual small tilt in the
data of Fig. 3, observed at all temperatures and for all VT G,
is due to the nonlinear part of the density gradient, and was
corrected by processing our data as described in detail in the
Appendix.

Before extracting the individual contributions of quantum
interference and EEI to the magnetoresistance, we estimate
the mobility μ as a function of charge density n following
Ref. 29. For this purpose, the charge density was obtained from
measurements of Rxy as a function of VT G at B = ±0.2 T,
while the mobility was calculated from the resistivity ρ as
μ = 1/neρ. By cross-correlating the two results, we obtain
the μ − n diagrams shown in Fig. 2 for different temperatures
in the 0.25–45 K range. As a comparison, the values of n and
μ estimated from fits of Rxy and from Rxx(0) are also shown
in the same figure. The results obtained with the two methods
are in good agreement.

The longitudinal resistance Rxx is shown in the inset of
Fig. 2 for B = 0 T and T = 250 mK and displays a peak at
the CNP. The resistance maximum occurs at VT G ≈ −27 V, in
agreement with the value obtained from the QH measurement
of R36

xy in Fig. 1(b). In the following sections, we investigate
the low-field corrections to magnetoresistance measured at
different top-gate voltages VT G. The selected values corre-
spond to significant variations of charge density across the
CNP, with four values ranging from 3.75 × 1011 cm−2 to
−2.0 × 1010 cm−2, where the negative sign stands for the
change of the carrier polarity occurring at the CNP. The density
values chosen in this work are displayed in the inset of Fig. 2.

III. RESULTS AND DISCUSSION

The qualitative features of quantum interference and EEI
are illustrated by means of Fig. 3 where we plot the
magnetoresistance measured for VT G = 0 V and for VT G =
−27 V at different temperatures. In Fig. 3(a), a positive
magnetoresistance peak, centered at B = 0 T and extending in
a narrow range, |B| < 0.3 T, is clearly visible. Its amplitude
decreases with temperature and reaches almost complete
suppression at T = 45 K. At larger magnetic fields, the
magnetoresistance is dominated by EEI, which gives a broad
parabolic background,20,22 discussed in detail in Sec. III A, and
an inversion of concavity when the temperature is increased.
Unlike interference corrections (both WL and WAL) that
are quickly suppressed as B is increased, the EEI correction
survives up to higher magnetic fields and is limited only by the
onset of Landau quantization. In the data set shown in Fig. 3(a),
for low temperatures a kink is observed at |B| ≈ 1.5 T, where
the first Shubnikov–de Haas (SdH) minima start to develop.

The data set shown in Fig. 3(b) was measured at a top-
gate voltage VT G = −27 V. At this bias the Fermi level is
approximately located at the CNP [see Figs. 1(b) and 2] and

FIG. 3. (Color online) Longitudinal magnetoresistance at differ-
ent temperatures measured for (a) point I (VT G = 0 V) and (b) at
the CNP (VT G = −27 V). The range of magnetic field in which
the different contributions to the magnetoresistance are dominant is
highlighted in (a).
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the charge density is at its minimum. According to Ref. 23,
the most favorable condition to observe WAL is when the
carrier density is decreased and the temperature increased. In
fact, Fig. 3(b) shows that the low field magnetoresistance peak
evolves into a dip as the temperature is increased, consistent
with the passage from WL to WAL interference regimes.12

Close to the CNP, the difficulty in estimating the carrier
density prevented the application of the analysis reported in
the following sections. As a result, for this gate voltage, a
contribution of EEI to the evolution of negative to positive
magnetoresistance cannot be completely excluded. Another
consequence of the lower charge density occurring in Fig. 3(b)
with respect to Fig. 3(a) is the widening of the magnetic field
range in which QH effects dominate, which greatly narrows the
field window available for the analysis of quantum interference
and EEI.

A. Electron-electron interaction

EEIs can induce an appreciable contribution to the re-
sistance of 2D materials that extends in the range of
nonquantizing magnetic fields beyond the narrow window
in which localization effects are observed. For all studied
temperatures and carrier densities here, the thermal length
�th = h̄vF /kBT in our samples was much larger than the
momentum relaxation length �0 = vF τ0, i.e., kBT τ0/h̄ � 1,
where vF = 1.1 × 106 m/s is the quasiparticle Fermi velocity
and τ0 the momentum relaxation time, obtained from the
zero-field classic (Drude) resistance R0,32,33 which yielded
τ0 ≈ 0.01–0.02 ps. In this diffusive limit, EEIs are known to
cause a correction to the longitudinal conductivity which is
logarithmic in T and independent of magnetic field.15 Upon
tensor inversion this leads to a resistivity correction parabolic
in B15,19,22 (and logarithmic in T ):

�Rxx

R2
0

≈ [(ωcτ0)2 − 1]
e2

2π2h̄

[
Keeln

(
kBT τ0

h̄

)]
, (1)

where �Rxx = Rxx − R0. The charge carrier density n enters
the EEI correction through the cyclotron frequency ωc =
(vF e/h̄

√
πn)B, which also includes the B dependence. The

dimensionless quantity Kee is a measure of the strength of
the interaction and depends on several instrinsic and extrinsic
parameters such as the spin and valley degeneracy and the
dielectric environment of the two-dimensional conductor.

Following Ref. 22, the magnetoresistance curves were first
normalized by calculating (Rxx − R0)/R2

0, where the value of
R0 was recursively adjusted to find a best fit to the data. The
fits to Eq. (1) were performed by grouping the dependence on
temperature and on the EEI coupling term into the quantity
A = Keeln(kBT τ0/h̄) (i.e., essentially the curvature of the
parabolic magnetoresistance) which was then used as fitting
parameter. n was set to the experimental values obtained in
Fig. 2.

Figure 4 shows the normalized curves and the results of the
best fits for the density points I and III defined in the inset
of Fig. 2. Our data are well described by the EEI correction
given by Eq. (1) and show a quadratic B dependence and an
increasing amplitude both in the low and high temperature
limits.

FIG. 4. (Color online) Extraction of the EEI contribution to
the magnetoresistance for density points (a) I and (b) III. For all
temperatures, the magnetoresistance is normalized to (Rxx − R0)/R2

0 ,
and then fit parabolas according to Eq. (1). Note the different B range
displayed in (a) and (b).

The limits of the fitting procedure were set by the
occurrence of the QH effect. As the carrier density was
lowered, the QH correction to magnetoresistance became more
important because the two symmetric SdH minima approached
the B = 0 T limit. This resulted in the narrowing of the
B range available to fit our data, and is clearly visible by
comparing Figs. 4(a) and 4(b). Since the range �B between
two symmetric SdH minima is proportional to �n, this effect
is rather severe, and prevented the extraction of the EEI
correction for some temperatures of data set IV, for which
the parabolic background merged with the WL peak.

An insight into the EEI is obtained by considering the plot
of the fitted curvature A as a function of kBT τ0/h̄ shown in
the inset of Fig. 5. By using a logarithmic scale, we confirm
that the data follow the logarithmic behavior predicted by
Eq. (1) in a broad temperature range spanning more than two
orders of magnitude. This is in agreement with what was found
in epitaxial and quasi-free-standing graphene,21,22 and further
indicates that electrons in disordered graphene behave as a
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FIG. 5. (Color online) Dependence of the interaction parameter
Kee on carrier density n, obtained from the linear fits (dashed lines)
of the curvatures A shown in the inset. The error bars are the standard
deviations of the fits. In the electron region (n > 0), the error bars are
smaller than the square symbols.

Fermi liquid. From Fig. 5, we first note that the slope for
each density, and thus the interaction parameter Kee, remains
constant in the whole temperature range investigated.

The second information is provided by the dependence of
the interaction parameter Kee on the carrier density n obtained
from the linear fits of A, and shown in the main graph of Fig. 5.
A strong variation of Kee is visible, with an overall decreasing
trend as n is increased. This variation is much larger than
the experimental error for most of the data. For density point
IV, the increased scattering of the A values and the smaller
number of points, both arising from the difficulty in fitting the
EEI parabola at low carrier density, resulted in a larger error
bar. This uncertainty, however, does not affect the observation
that Kee is strongly sensitive to changes in carrier density.

This behavior of Kee is surprising, since the interaction
parameter is expected to follow the relation Kee = 1 + c[1 −
log(1 + Fσ

0 )/F σ
0 ],19 where Fσ

0 is the Fermi-liquid constant,
and c is linked to the number of multiplets participating
in the electron-electron scattering. Peculiar functional forms
are expected for Kee in materials such as bilayer graphene,
Si(100)-, and GaAs-based 2DEGs (with Kee generally increas-
ing for decreasing n), but Fσ

0 is predicted to be independent
of n in monolayer graphene.34 On the other hand, our results
demonstrate clear n-dependent EEI signatures but the resulting
Kee parameter displays an evolution in the low-n regime
which is not straightforward to fit within the existing theory
and deserves more experimental and theoretical investigation.
Possible reasons for the behavior observed here might be
linked to the complex dielectric environment of our gated
graphene on SiC and to charge inhomogeneities, whose effect
becomes particularly strong near the CNP.

B. Quantum interference

For the analysis of our data, we refer to the theory of
quantum interference in graphene developed in Ref. 12, where

FIG. 6. (Color online) Fit of the quantum interference contri-
bution to the magnetoresistance, at different temperatures, for the
density points (a) I and (b) III. The fits are shown as dashed lines.
Note the different B range displayed in (a) and (b).

the correction to the magnetoresistance is found to be

�Rxx

R2
0

= − e2

πh

[
F

(
τ−1
B

τ−1
ϕ

)
− F

(
τ−1
B

τ−1
ϕ + 2τ−1

iv

)

− 2F

(
τ−1
B

τ−1
ϕ + τ−1∗

)]
, (2)

with F (z) = ln(z) + ψ(0.5 + z−1), ψ(x) is the digamma
function, τ−1

B = 4DeB
h̄

, and D is the diffusion coefficient.
Figure 6 shows the normalized magnetoresistance data

measured for two values of n, after subtracting analytically
the EEI correction obtained in Sec. III A. The dashed lines are
fits to Eq. (2). The fitting procedure, involving three parameters
(τϕ , τiv , τ∗), is rather delicate, but can be performed by noting
that the effect of each scattering time is more evident in
distinct field ranges. In particular, while changing τϕ modifies
the peak amplitude and width around B = 0 T, variations in
τiv determine the width at the base of the peak. Finally, τ∗
mainly affects the slope of the magnetoresistance at the sides of
the peak.
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FIG. 7. (Color online) Temperature dependence of the scattering times obtained from the fits of the WL corrections. A ∝ T −1 curve and
a constant one, shown as dashed lines in (a), are a guide to the eye. The uncertainty in the scattering times, expressed by the error bars, is
estimated as the maximum variation in the values which allow one to retain a satisfactory fit.

The scattering times obtained from the analysis are shown
in Fig. 7 as a function of temperature. The numerical values are
of the order of 1–10 ps for the dephasing time τϕ , ∼10 ps for
the intervalley time τiv , and 0.01–1 ps for the intravalley time
τ∗. These values are consistent with previously reported data
on mechanically exfoliated,24 epitaxial, and CVD graphene
devices25 measured in the ∼10 K temperature range. This
indicates that the presence of the SiC substrate, which is
expected to have a strong interaction with the graphene layer,
actually does not have a dramatic influence on the value of the
scattering times. A deeper understanding of the effect of the
substrate can be gained by comparing the amplitudes of the
elastic scattering times with that of the momentum relaxation
time τ0 calculated in Sec. III A. In our device, τ0 ∼ 0.01
ps, so the relation τ0 ≈ τ∗ � τiv holds, which indicates that
intravalley scattering is the main source of disorder in epitaxial
graphene. This was already pointed out in previous works on
graphene devices on SiC, and it was related to the presence of
donors in the buffer layer.21

Second, while τiv and τ∗ show a rather weak temperature
dependence in the investigated range, the variation of τϕ

is more pronounced, and τϕ decreases with increasing T .
This behavior is expected, since high temperature is known
to enhance the dephasing of quasiparticles.23 In graphene,
inelastic interactions due to electron-electron scattering were
found to be the dominant mechanism limiting the coherence
of quasiparticles at low temperature.20,22,23 In the diffusive
regime, this interaction has a characteristic T −1 dependence.15

Many papers on different graphene samples reported that
a saturation of τϕ

20,22,24,25 starts to develop at temperatures
below T ≈ 10 K, whose origin is still not well understood.
Also our results show a crossover of τϕ between a flat
regime, at low temperature, and the T −1 dependence predicted
for electron-electron scattering, at higher temperature. This
behavior is highlighted in Fig. 7(a) by two dashed lines, which
indicate an approximate crossover temperature of 4 K.

Next, we consider the behavior of the scattering times on
carrier density n. The dephasing time τϕ does not display any
variation with n in the investigated range, and the different

curves almost fall on top of each other. The intervalley
scattering time τiv shows small fluctuations, but no clear
dependence on n. Such scattering of data, whose origin is
not clear, was already observed in mechanically exfoliated
devices with slightly larger (∼1012 cm−2) carrier densities
(see Supplementary Material of Ref. 24), where also values of
τiv ≈ 10 ps were measured.

On the other hand, τ∗ increases appreciably with decreasing
density. This is consistent with our observation of more
pronounced WAL effects in the magnetoresistance curves
measured in proximity to the CNP, where the most favorable
conditions23 to observe WAL effects are reached (cf. Fig. 3).
The stronger variation of intravalley scattering, as compared
to both intervalley scattering and dephasing, appears to be a
general property of graphene devices, as highlighted by the
comprehensive collection of data reported in Ref. 25, where
devices fabricated with different methods were compared. In
particular, a weakening of intravalley scattering is generally
observed with decreasing carrier density, which implies that
the low-density region must be explored in order to improve
the performance of graphene-based devices.

In Fig. 8, we show τ∗ for the three highest temperatures
in our range as a function of the charge density n. The data
show a clear decreasing trend with increasing density, with a
variation of one order of magnitude in the investigated density
range. A dependence of the intravalley scattering on the carrier
density is expected through the warping term, since trigonal
warping depends on the Fermi energy,12 and becomes stronger
the further away from the CNP. On the other hand, other
chirality-breaking mechanisms based on short-range defects
and device edges are expected to be insensitive to changes in
the charge density.24

To investigate the origin of the behavior of τ∗ shown in
Fig. 8, we refer to the theory developed in Ref. 12, where
a functional dependence ∝n−2 was found for the warping
scattering time. By comparing our data with a ∝n−2 curve,
shown in the same figure, we find that τ∗ has a weaker
dependence. An analog result was observed in Ref. 25 on
the chirality−breaking scattering length L∗ = √

Dτ∗, where
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FIG. 8. (Color online) Dependence of the intravalley time τ∗ on
charge density n (same error bars as in Fig. 7). The data are compared
with the ∝n−2 dependence predicted for the scattering time due to
trigonal warping. A ∝n−1/2 curve is also shown.

a dependence L∗ ∝ n−1/4 was found. In terms of scattering
times, their observation corresponds to a τ∗ ∝ n−1/2 behavior.
From the comparison of our data with a n−1/2 curve, shown
in Fig. 8, we confirm the dependence found in Ref. 25.
This suggests that chirality-breaking scattering due to trigonal
warping, although important, is not the dominant contribution
of intravalley scattering, but also scattering due to sharp
topological defects such as adatoms, vacancies, pentagons,
or heptagons has to be taken into account.

IV. CONCLUSION

In conclusion, we presented a systematic analysis of the
magnetotransport properties in epitaxial graphene grown on
the Si-terminated face of SiC, and we extract the two quan-
tum corrections affecting the low-field magnetoresistance—
quantum interference and EEI. The possibility of tuning the
charge density by means of a top gate enabled us to control the
magnitude of the two quantum contributions, and to investigate
the combined effect of density and temperature.

We successfully describe the main features of EEI in
graphene with the current theory for disordered systems.
However, we find evidence for an unexpected dependence of
the interaction parameter Kee on carrier density, not accounted
for by theory.

From fits of the quantum interference correction, we obtain
the dependence of the scattering times on carrier density. In
particular, we find that while the dephasing and intervalley
scattering times are almost constant, the intravalley scattering
time shows a peculiar dependence in the investigated density
range, which is different from the one arising from the sole
warping term.

Our results stress the role of charge density in determining
the properties of both quantum interference and EEI, and the
necessity of a further investigation of its impact on the low-field
magnetoresistance of graphene.
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APPENDIX

Macroscopic sample inhomogeneities, such as small gra-
dients in the charge density, geometrical effects, and contact
misalignment, are known to introduce artifacts in the measured
magnetotransport quantities. All these macroscopic effects
result in a dependence of the measured transport quantities
on the choice of the particular contact pairs used for the
measurement.

From an experimental point of view, the impact of these
effects can be relevant, and complicates the investigation
of the transport properties. In particular, different values of
longitudinal resistance can be measured at opposite sides of
the Hall bar, and a dependence of the amplitude of the SdH
oscillations on the polarity of magnetic field is often observed.
Most of the studies on these aspects are on 2D semiconductor
devices (see, for instance, Ref. 30 and references therein),
while little discussion is dedicated to graphene. In graphene,
it is common practice20,22 to perform a symmetrization of the
data with respect to magnetic field. This is done by averaging
the measured resistance Rxx(B) with the resistance Rxx(−B)
obtained upon inverting the polarity of B.

In this work, we make use of an alternative method to
account for the macroscopic inhomogeneities of our device.
We concentrate on gradients of the charge density introduced
by the fabrication technology used for top-gating the Hall
bar, since geometric factors (e.g., contact misalignment or
deviations from the rectangular shape) are secondary in our
device. Small density gradients along the channel direction
of the Hall bar introduce a peculiar B dependence in Rxx ,
resulting in a “tilt” of the magnetoresistance curve, which
is accompanied by characteristic symmetries on B. For linear
density gradients, theory31 predicts an antisymmetric behavior
of the magnetoresistance measured at two opposite sides
of the Hall bar and, in this case, the best estimate of the
longitudinal magnetoresistance Rxx is obtained by averaging
the two quantities. Referring to Fig. 1 for the meaning of
symbols, this results in the symmetry conditions

R23
xx(B) = R56

xx(−B), (A1)

R56
xx(B) = R23

xx(−B), (A2)

and Rxx = 1
2 (R23

xx + R56
xx).

In Fig. 9, we plot the measured magnetoresistances R23
xx(B)

and R56
xx(B), together with the mirrored quantities R56

xx(−B)
and R23

xx(−B) obtained by inverting the B polarity. The data
are displayed as �Rxx/R

2
0 to allow for a comparison with Fig. 4

and with Eqs. (1) and (2). The value of R0 was calculated as
the average of Rxx(B) at B = +0.2 T and B = −0.2 T to
avoid the effect of WL. From the figure, we see that R23

xx(B)
and R56

xx(B) fulfill the symmetry conditions in Eqs. (A1) and
(A2) for most of the magnetic field range, which indicates that
a linear component of the charge density gradient is present in
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FIG. 9. (Color online) Comparison between the magnetoresis-
tances R23

xx(B) and R56
xx(B), shown as solid lines, with R23

xx(−B) and
R56

xx(−B), displayed as dashed line, obtained after the inversion of
polarity of magnetic field.

our device. The nonperfect overlap of the two pairs of curves
causes the residual tilt visible in the magnetoresistance set
in Fig. 3, where the magnetoresistance Rxx is shown. We
attribute this small residual distortion to higher order terms
in the density gradients, as discussed in detail in the following.

In general, nonlinear density gradients give rise to a more
complex problem, and an accurate treatment of it involves the
use of higher order terms. In this case, the best estimate Rnonlin

xx

is31

R23
xx + R56

xx

2
= Rnonlin

xx F (ωcτ ), (A3)

where F (ωcτ ) is a polynomial function of the cyclotron
frequency ωc. As a result, the magnetoresistance correction
due to charge density inhomogeneity can be written in the
general form, up to third order,

�Rxx

R2
0

= CQB2 − CLB − CCB3, (A4)

where the coefficients Ci (i = Q,L,C) are used heuristically
to account for both the linear and nonlinear effect of the density
gradient.

FIG. 10. (Color online) Coefficients of correction to the magne-
toresistance due to nonlinear variation of the charge density. Note the
different scale of the quadratic term CQ (upper panel) compared to
the other terms.

To correct for nonlinear terms in our data, we first calculate
Rxx = 1

2 (R23
xx + R56

xx), and then fit the resulting curves to
Eq. (A4) to obtain the parameters Ci (i = L,Q,C). Figure 10
shows the values of the parameters CQ, CL, and CC obtained
from the fits for all data sets used in this work. Two striking
features are evident from the figure: first, the values of CL

and CC are always much smaller than the quadratic coefficient
CQ; second, while CL and CC maintain their sign in the whole
temperature range and for all carrier densities, CQ changes
sign at high temperatures. These two aspects indicate that the
coefficient CQ obtained from the fit have to be identified, up to
some constants, with the curvature A used for the analysis of
Sec. III A. A quadratic correction to the magnetoresistance due
to nonlinear terms, although present, is instead rather small,
and can be neglected. As a consequence, the effect of charge
density inhomogeneity was removed from our data first by
averaging the magnetoresistance curves measured at opposite
sides of the device, and then by subtracting analytically the
linear and cubic contributions.
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