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Interlayer excitonic superfluidity in graphene
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We discuss the conditions under which the predicted (but not yet observed) zero-field inter-layer excitonic
condensation in double layer graphene has a critical temperature high enough to allow detection. Crucially,
disorder arising from charged impurities and corrugation in the lattice structure—invariably present in all real
samples—affects the formation of the condensate via the induced charge inhomogeneity. In the former case,
we use a numerical Thomas-Fermi-Dirac theory to describe the local fluctuations in the electronic density in
double layer graphene devices and estimate the effect these realistic fluctuations have on the formation of the
condensate. To make this estimate, we calculate the critical temperature for the interlayer excitonic superfluid
transition within the mean-field BCS theory for both optimistic (unscreened) and conservative (statically screened)
approximations for the screening of the interlayer Coulomb interaction. We also estimate the effect of allowing
dynamic contributions to the interlayer screening. We then conduct similar calculations for double quadratic
bilayer graphene, showing that the quadratic nature of the low-energy bands produces pairing with critical
temperature of the same order of magnitude as the linear bands of double monolayer graphene.
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I. INTRODUCTION

The prediction of an interlayer direct Coulomb interac-
tion driven room-temperature excitonic condensate at zero
magnetic field in double monolayer graphene1,2 (DMG),
double quadratic bilayer graphene3 (DQBG), and hybrid
monolayer-bilayer graphene systems4 has captured much
attention both for the fundamental interest in the existence
of a zero-field condensate and for possible applications in
devices, including ultrafast switches and dispersionless field-
effect transitors.5 However, despite considerable experimental
effort, the condensate has yet to be observed in Coulomb
drag experiments in zero magnetic field.6,7 There are two
possible reasons why this is so. First, the critical temperature
(Tc) may simply be too small (i.e., much lower than the
optimistic mean-field theoretic predictions for ideal systems)
and therefore the condensate is destroyed by simple thermal
fluctuations. Second, it is possible that disorder in the form of
electron-impurity scattering,8,9 scattering from vacancy sites
in the lattice,10 or from the presence of inhomogeneity in
the charge density distribution11 is suppressing formation of
the condensate. In this work, we examine the last of these
possibilities. In order to avoid any confusion, we emphasize
right at the beginning that we are considering here only the case
of interlayer superfluidity in double-layer graphene systems
and not the question of superconductivity in individual (i.e.,
single layer) monolayer graphene and bilayer graphene, which
is also an interesting problem and is attracting a lot of attention.
These two problems, i.e., the interlayer superfluidity of our
interest and superconductivity in individual graphene layers,
are completely distinct physical and mathematical problems.
In the case of interlayer superfluidity, the individual layers
of graphene are not superconducting, only the interlayer
Coulomb correlations between the two layers drive the system
into an interlayer neutral superfluid. Similar physics, often also
referred to as “excitonic condensation,” could, in principle,
occur in any two-component (double-layer or two bands)
electron-hole system if the intercomponent interaction is
strong enough.

To address the issue of the critical temperature in the clean
limit, it is known that the size of the predicted excitonic gap in
DMG depends very strongly on the choice of screening of the
interlayer Coulomb interaction.1,2,12–15 For DMG embedded
in a dielectric medium such as hBN or SiO2, in the situation
where the two layers have equal chemical potential in opposite
bands, and where kF d = 0 (where kF is the Fermi wave
vector and d is the interlayer separation), it is known that the
prediction of room-temperature superfluidity is only valid for
the unscreened Coulomb interaction approximation.12 Using
static screening in the analysis (replacing the unscreened
Coulomb interaction) exponentially suppresses the predicted
excitonic gap to a regime where it is unmeasurable.14,15

A dynamic screening approximation12 gives a gap that is
intermediate between these two. If self-consistent screening of
the Coulomb interaction including the gap at the Fermi surface
caused by the existence of the condensate is considered with
dynamic screening,12 the superfluid gap sharply increases if
the effective interaction parameter α = e2/(εh̄vF ) � 1.5 (or
equivalently ε < 1.45, where ε is the dielectric constant of
the medium and vF is the Dirac band velocity of monolayer
graphene). This self-consistent screening mechanism is also
applied in the static screening case13 where the enhancement
in the gap size is found at α ≈ 2.2, corresponding to ε = 0.9,
implying all physical values of ε are above the threshold.
The impact of vertex corrections has also been studied13 and
is claimed to be weak, although they may slightly increase
the pairing strength. Interband processes12,16 have also been
shown to slightly increase the critical temperature. In the
context of quadratically dispersing bands, room-temperature
superfluidity was predicted for electron-hole systems with
ordinary parabolic dispersion as early as 1976 by Lozovik
and Yudson.17 The self-consistent screening method was also
applied to DQBG3 where a similar enhancement of the pairing
was found at low carrier density (or, equivalently, small values
of kF d). However, we believe there are some technical issues
with the method of the self-consistent screening calcula-
tion, which we explain and discuss in the Appendix—these
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technical issues, although important in their own right, are not
particularly germane to the issue of charge inhomogeneity,
which is the main topic studied in our work.

The role of disorder has also been studied, and it was
shown in Refs. 8–10 that intralayer momentum scattering by
short-range disorder typically does not reduce Tc substan-
tially. However, long-range disorder in the form of charge
inhomogeneity does play a key role11 because in this case
the energy scale to which the disorder must be compared
is the excitonic gap, which may be small depending on
the choice of screening in the interlayer interaction. The
carrier density inhomogeneities induced by the presence
of long-range disorder lead to differences in the chemical
potential in the two layers that remove the perfect nesting
of the Fermi surfaces and therefore strongly suppress Tc.
This effect is analogous to the Clogston-Chandrasekhar limit
of BCS superconductivity and the associated destruction
of the pairing. It must be emphasized that although the
usual momentum scattering by disorder does not affect the
excitonic condensation by virtue of Anderson’s theorem,
any density or chemical potential fluctuations between the
two layers would act as a random magnetic field for the
s-wave superconductor, strongly suppressing the superfluidity.
Random charged impurities in the environment invariably
lead to interlayer chemical potential fluctuations because
of their long-range Coulombic nature. One must therefore
carefully distinguish between the disorder-induced momentum
scattering (which may not be particularly detrimental to the
predicted interlayer superfluidity) and the disorder-induced
density inhomogeneity (which is extremely detrimental to
the superfluidity). The effects of density imbalance in the
BCS-BEC crossover region have also been investigated,18 but
since the interlayer interaction in graphene double layers is
relatively weak, our results are located firmly in the BCS
regime and the added complexity of the phase diagram near
the crossover is not of immediate practical concern.

In this article, in Sec. II, we give a comprehensive de-
scription of the conditions under which the condensate should
be observable in DMG. To do this, we accomplish two main
tasks. First, we describe how Tc behaves in the presence of a
finite imbalance in the chemical potentials of the two layers, a
calculation which was not previously reported. We estimate
Tc for both unscreened and statically screened interlayer
interactions as a function of the overall chemical potential
(μ̄) and asymmetry in the chemical potential in the two layers
(δμ), and provide estimates for the dynamic screening case.
Our reason for carrying out calculations using both unscreened
and statically screened Coulomb interactions is the fact that
they respectively represent the most optimistic and the most
pessimistic scenarios for the excitonic condensation to occur
with the respective Tc estimates for the two approximations
differing by several orders of magnitude. Our theory thus
provides upper and lower bounds on the expected Tc in the
system without getting into the complications of attempting
a dynamical screening calculation of Tc in the presence of
disorder, which is challenging and beyond the scope of the
current work and remains a problem for the future. The
main aim is to describe the role of charge inhomogeneity,
which we can do within these two well-defined theoretical
approximations. We find that any finite δμ has the effect of

reducing Tc, and that when δμ is comparable to the size of
the excitonic gap (�), Tc becomes zero consistent with the
Clogston-Chandrasekhar limit in metallic superconductors.
The second task is to provide a comprehensive description
of the nature of the charge inhomogeneity in DMG devices.
We use Thomas-Fermi-Dirac theory (TFDT)19 to estimate
the spatial fluctuation in δμ induced by randomly placed
charged impurities. This is a completely new application of
TFDT and nothing similar has previously been attempted
to describe double layer graphene systems. In this way, we
gain a full understanding of the nature of the correlations
in the disorder of the two layers, and obtain quantitatively
accurate estimates of the spatial size and magnitude of
the charge fluctuations for realistic experimental parameters.
We then link the two calculations by assuming that the variance
of the disorder-induced potential fluctuations represents the
typical mismatch or imbalance of the Fermi energies in the
two layers. We find that when charged impurities are located
close to the DMG, the fluctuations in δμ have a length scale of
the order of 10 nm, and that δμ ∼ μ̄ � � indicating that the
excitonic condensate will not be able to form in this regime,
as it is suppressed totally by the disorder induced interlayer
chemical potential fluctuations. However, when a clean spacer
layer is used to separate the DMG from the SiO2 where the
impurities reside, the fluctuations in δμ reduce by an order of
magnitude for comparable impurity densities. In this regime,
when the impurity density is low, we find that it is possible for
the excitonic condensate to form for reasonable Tc estimates
as given by dynamic screening.

In Sec. III, we present the condensate analysis of the DQBG
system at the same level of approximation as that of the
DMG. This analysis has also not been reported previously.
We find that the alteration in the single-particle band structure
and chirality properties of the underlying layers in going
from DMG to DQBG causes some qualitative change in the
evolution of Tc with μ̄ for the unscreened interaction, but
that the gap size is quantitatively similar for experimentally
pertinent parameters. Crucially, the behavior of Tc with δμ

is unchanged. As mentioned above, we believe that there are
certain technical issues with the method of the self-consistent
screening calculations presented in other works3,12,13 and we
discuss this in the Appendix.

II. DOUBLE MONOLAYER GRAPHENE

A. Tc for asymmetrically doped layers

We begin by describing the role of a finite chemical
potential difference between the two layers in reducing Tc.
A rigorous estimate of Tc in the nondisordered case is already
an intractable calculation since the inclusion of dynamic
screening effects in the interlayer interaction demands that
the vertex corrections be included in the theory. In fact, there
is no Migdal’s theorem when considering superconductivity
(or fermionic superfluidity) induced by electron-electron
interactions, and thus vertex corrections must, in principle, be
included in the theory even for the unscreened interaction. As
such, all mean-field BCS type theories of interlayer excitonic
superfluidity are somewhat suspect strictly from a theoretical
viewpoint since vertex corrections are uncritically neglected.
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However, in the presence of dynamic screening, the theory
becomes particularly suspect if vertex corrections from the
ladder diagrams, which contribute to Migdal’s theorem, are
left out since the interaction itself now is calculated in
an approximation including infinite number of electron-hole
loops. The role of vertex corrections and other processes
which go beyond Migdal’s theorem have been discussed
in Ref. 20. Therefore, since all analytically approachable
calculations will either overestimate (i.e., the unscreened case)
or underestimate (i.e., the statically screened case), the actual
Tc, we shall show how the chemical potential imbalance
will affect the formation of the excitonic condensate for
two distinct model calculations. We consider our calculation
not to give a quantitative estimate of the real Tc, but to
provide a comprehensive survey of the role of disorder in
the form of charge inhomogeneity. Using the unscreened
interlayer interaction (which will systematically overestimate
Tc), and the statically screened interlayer interaction (which
will underestimate Tc), we show that when δμ > 0 is less
than the excitonic gap (which we label �), Tc is reduced but
remains finite. When δμ ∼ �, Tc becomes zero. Thus the
disorder-induced chemical potential imbalance or asymmetry
is a key parameter determining the existence or absence of the
excitonic condensation, which needs to be taken into account
in the experimental search for interlayer superfluidity.

It is convenient to assume that the upper layer is doped
with electrons, the lower layer with holes, and to perform a
particle-hole transformation in the lower layer such that both
layers are described by a chemical potential with positive sign.
We then characterize the system by their average chemical
potential μ̄ = (μu + μl)/2 and difference δμ = μu − μl . This
implies that, for a given μ̄, the maximum value of δμ possible
is 2μ̄. Note that in other works relating to the excitonic con-
densate in DMG, it was assumed that μu = μl giving perfect
nesting of the Fermi surfaces in the two layers.1–3,8–10,12–17

Within the mean-field theory and the BCS approximation, the
temperature-dependent gap function is given by11

�k(T ) =
∑

k′
V (k′ − k)

�k′(T )f (k,k′)N (k′,T )

Ek′
. (1)

In this equation, V (q) = V (q,0) is the static limit of the
random phase approximation (RPA) for the interlayer poten-
tial, f (k,k′) = [1 + cos(θk − θk′)]/2 comes from the chirality
of electrons in monolayer graphene, N (k′,T ) = nβ(k′,T ) −
nα(k′,T ) is the finite temperature occupation factor of the
excitonic bands labeled by α and β, which contain δμ and
Ek′ = [(vF k′ − μ̄)2 + �2

k′ ]1/2, where vF is the monolayer
graphene Fermi velocity. We identify the excitonic gap �

as the peak value of this function, which, in the BCS limit,
is found at k = kF . We define Tc as the lowest value of T

for which the gap function is zero for all k. We find this
condition numerically, and it gives a value which is of the
same order of the standard prediction � = 1.76Tc from the
textbook constant gap approximation to mean-field theory.
Our value for Tc is a little smaller due to the nonconstant
gap function and full momentum-dependent interaction, which
we retain in the calculation. We note as an aside that in the
presence of the Fermi surface mismatch in the two layers
(i.e., a chemical potential or density imbalance between the
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FIG. 1. (Color online) Tc for the unscreened interaction in
dielectric environment ε = 3.9 (a) and (b) show color plots as a
function of μ̄ and δμ for d = 1 and 5 nm, respectively. (c) Tc as a
function of μ̄ for various δμ and d = 1 nm. (d) Tc as a function of
δμ for various μ̄ and d = 1 nm.

layers), there can, in principle, be inhomogeneous FFLO type
solutions for the ground-state superfluidity in the system, but
our general calculations allowing for the possibility of such
inhomogeneous FFLO states fail to find any FFLO solutions
for either the DMG or the DQBG systems, and we consistently
find either purely homogeneous superfluid condensate or no
condensate.

The interlayer screened interaction potential is calculated
within the RPA, which is justfied for double layer graphene
because the fermion number N = 8 is large, as

V (q,ω) = vqe
−qd

1 + 2vq (	u + 	l) + v2
q	u	l(1 − e−2qd )

, (2)

where vq = 2πe2/(εq), 	u and 	l are the polarization
functions for the upper and lower layers, respectively, and are
functions of q and ω. The polarization functions are given for
both the static (ω = 0) limit and dynamic approximations in
Ref. 21. The unscreened and static screening cases represent
the two limits for the size of the gap in a real system: the
unscreened interaction tends to overestimate the pairing and
hence gives a large Tc, while the static screening tends to
overestimate the screening efficiency and therefore yields a
small Tc. In this article, we consider both these cases making
the reasonable assumption that the reality of the situation is
somewhere in-between.12

In the optimistic case of the unscreened interlayer Coulomb
interaction, close layer separation (d = 1 nm), and a flat hBN
substrate with ε = 3.9, we find that Tc can be of the order
of 100 K for realistic doping and moderate layer imbalance
[see Fig. 1(a)]. As clarified in Fig. 1(c), Tc is a monotonically
increasing function of μ̄, and larger δμ reduces Tc. Figure 1(d)
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FIG. 2. (Color online) Static interlayer screening for DMG with
�k = �kF

. (a) For various δμ as a function of μ̄ and (b) for various
μ̄ as a function of δμ. Note that the scale on the vertical axis is
micro-Kelvin.

shows that as the chemical potential asymmetry increases,
Tc decreases monotonically with a characteristic “S” shape.
Note that our theory neglects the possibility of direct tunneling
between the layers, but this may become a significant factor
and could even enhance the formation of the condensate16 as
the interlayer spacing becomes this small. Taking d = 5 nm,
which is thick enough to fully suppress interlayer tunelling
[see Fig. 1(b)], gives Tc ≈ 50 K. We show our results in terms
of μ̄ and δμ because these are the intuitive variables in the
theory and allow for straightforward comparison with the
results of the inhomogeneous case in Sec. II B. However, for
experimental comparison, it is more convenient to parametrize
in terms of carrier density than chemical potential. Straightfor-
wardly, in the single-particle case, we have n̄ = μ̄2/(πh̄2v2

F ),
but δn depends nonlinearly on the fluctuation and the chemical
potential as δn = δμ(2μ̄ + δμ)/(πh̄2v2

F ).
We have repeated these calculations using the statically

screened interlayer interaction finding that the gap is so small
that our numerical procedure for Tc cannot resolve it within
acceptable error bars. Therefore we suggest that the gap in
this case is essentially zero even for d = 1 nm and ε = 1. This
happens because Tc is so small that the occupation factors,
which appear in the self-consistent gap equation are very steep
functions near the Fermi energy. Therefore, in order to produce
a nonzero numerical result for � in this case, we approximated
the gap as momentum independent. This is a reasonable
approximation, also used, for example, in Ref. 14. Doing this
yields the results shown in Fig. 2, which can be taken as a
reliable upper bound on Tc with static screening. Figure 2(a)
shows Tc as a function of μ̄ for several different values of δμ,
ε = 3.9, and d = 1 nm. The behavior of Tc is qualitatively
different from the unscreened case in that there is a maximal
value of Tc, which depends sensitively on both ε and d. This is
because as the carrier density increases, the screening becomes
more effective and the interlayer interaction is reduced. To
illustrate the dependence of Tc on δμ, in Fig. 2(b) we show
this for a few different values of μ̄. Notice that the scale on
the horizontal axis is 10−9 eV, indicating that a tiny layer
imbalance is enough to kill the condensate. However, the
qualitative behavior of Tc with δμ is identical to the unscreened
case.

To demonstrate why the statically screened interaction
gives a Tc that is so low, in Fig. 3(a) we show as a
function of momentum q the statically screened interaction
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FIG. 3. Comparison of (a) the statically screened and (b) the real
part of the dynamically screened interlayer interaction potentials to
the unscreened interaction Vq = 2π 2e−qd/(εq) for DMG with ε =
3.9. The inset to (b) shows the imaginary part of the interaction.

normalized by the unscreened potential Vq = vqe
−qd . The

potential is a universal function of q/kF for d = 0, but is
weakly dependent on kF d for finite d. We show representative
curves for kF d = 0, kF d � 1, and kF d > 1 corresponding
to the strongest interaction limit, the low-density limit, and
the high-density limit, respectively. We see that higher carrier
density reduces the interaction strength since the increased
density of states allows the screening to be more efficient. The
static polarizability is constant up to q = 2kF , but increases
after that,21 causing the noticeable flattening of the interaction
potential as a function of q in Fig. 3(a). The peak of the gap
function is found at k = kF and the most relevant contribution
to the integrand in Eq. (1) comes from k = k′ ≈ kF indicating
that the important range of wave vectors is |q| < kF . In
this regime, the statically screened potential is an order of
magnitude smaller than the unscreened one leading to an
excitonic gap, which is several orders of magnitude smaller
than the unscreened case, consistent with previous analytical
evaluations.14

The dynamically screened form of the interaction has been
used by other authors, so we analyze the potential function (2)
itself to gain some intuitive insight into the effect of this
approximation. In Fig. 3(b), we show the dynamically screened
interaction potential normalized by Vq as a function of wave
vector for various frequencies and kF d = 0. In this limit,
the interaction is a universal function of q/kF . The dynamic
screening is a strong function of the frequency ω, however,
some instructive patterns can be identified. For q/kF < ω/μ̄,
the polarization functions are negative21 and therefore it is
possible for the finite frequency potential to have a divergence
corresponding to the plasmon wave vector kp. The potential
also is negative22 for kp/kF < q/kF < ω/μ̄ indicating an
overall repulsive interaction which could reduce the gap size.
In contrast, we note that for q < kp, the interaction is enhanced
over the unscreened case. This is the well-known antiscreening
effect of dynamic screening, which should to some extent
compensate for the sign change of the interaction in some
regime of the phase space. For q/kF > ω/μ̄, the potential is
very similar to the statically screened case. The most relevant
frequency range is ω ≈ �, which is in general rather small
compared to μ̄ and hence the range of wave vectors where
the potential deviates substantially from the statically screened
case is small, indicating that Tc with dynamic screening will be
closer to that predicted by the static screening calculation than
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the unscreened one. This analysis also shows that a system
with a large bare gap will be more robust against dynamic
screening effects since the relevant frequency will be higher,
implying that within the range of q that contributes strongly
to the integrand in Eq. (1), we have V (q,ω)/Vq > 1.

Calculations for the unscreened interaction for suspended
DMG with ε = 1 and d = 1 nm show that the excitonic gap
is large with respect to μ̄ and therefore fluctuations of the
order of the chemical potential will not reduce Tc to zero.
When d = 5 nm, we find that Tc drops to room temperature
or a little below. Suspended graphene is also known to form
ripples with size fluctuations of the order of 1 nm in height,23

which may make the precise control of the interlayer spacing
difficult for these proposed devices, and which may introduce
charge inhomogeneity related to the strain field induced by
the corrugations. We shall discuss the effects of ripples in
the next section, after we have described the role of charge
inhomogeneity in DMG.

B. Charge inhomogeneity in DMG

In any experimental sample, some degree of extrinsic
disorder-induced charge inhomogeneity will exist, as has been
demonstrated by many surface measurements of monolayer
graphene.24–26 In a double layer device, the inhomogeneities
in the charge landscapes will not be identical in both layers,
and therefore there will be spatial variation in the asymmetry of
the chemical potentials. In this situation, the local difference in
chemical potential has two contributions. There is a nominally
homogeneous part which is induced by gating and is, in
principle, controllable. This contribution was the subject of
the previous section and we ignore it here. Then there is
a contribution from charged impurities and other disorder
that is inhomogeneous and not controllable. A full analytical
description of the inhomogenous system is clearly intractable
so we employ an accurate numerical method to compute
the charge density of the system when charged impurities
explicitly break translational symmetry. From this charge
landscape, we can assign the local chemical potential μu(r) and
μl(r) in each layer, and characterize the spatial fluctuations by
their root-mean square (rms) value, which is a measure of the
typical fluctuation. Using this measure of the disorder in the
charge landscape, we can discuss the stability of the condensate
against the density and chemical potential inhomogeneity
induced by the charged impurities. In principle, it is possible
that some correlation will exist between charged impurities,
although the nature of these correlations will depend on details
of the system. We wish to avoid introducing extra parameters
to describe this, so we assume uncorrelated disorder for
the purposes of this work. If correlations are shown to be
important, then they can be included within the theory we are
about to describe in the same way as Ref. 27.

To calculate the charge landscape in each layer taking
into account the presence of long-range disorder due to the
charged impurities and nonlinear screening effects we use the
TFDT.19 The TFDT is a generalization to Dirac materials of the
Thomas-Fermi theory.28 TFDT and density-functional-theory
(DFT)29–32 are similar in spirit in the sense that they are
both nonperturbative functional theories and therefore have the
great advantage of being able to take into account nonlinear

screening effects that are dominant in systems like graphene
at low doping. The key difference between TFDT and DFT in
that in the latter, the kinetic energy operator is retained, while
in the former it is replaced with a density functional. As a
consequence, TFDT is computationally much more efficient
than DFT and can be used to study large systems in the
presence of long-range disorder where DFT is completely
impractical. In particular, by using the TFDT, we are able to
obtain disorder-averaged results which would be impossible
with the strict DFT approach because of the heavy numerical
cost. The simplified treatment of the kinetic energy term limits
the validity of TFDT to regimes in which |∇n/n| < kF . We
have verified that this condition is reasonably well satisfied in
single-layer graphene.19,33 Our results show that in graphene
double layers, due to the increased screening of the disorder po-
tential caused by the presence of an additional graphene layer,
the correlation length of the disorder-induced inhomogeneities
is larger than in isolated single-layer graphene and therefore
that the condition |∇n/n| < kF is always well satisfied in these
double layer graphene heterostructures.

The carrier density in the ground state is obtained by
minimizing the TFDT energy functional

E[nu,nl] = Eu[nu(r)] + El[nl(r)]

+ e2

2ε

∫
d2r

∫
d2r′ nu(r)nl(r′)

(|r − r′|2 + d2)1/2
, (3)

where Ei[ni(r)] is the energy functional of the density profile
for the ith graphene layer (as given in Ref. 19) and the
last term is the interlayer Coulomb interaction. Each layer
functional Ei[ni(r)] contains a term due to the disorder
potential VD created by the charged impurities. We also include
intralayer exchange interactions. We assume that charged
impurities located close to the surface of the SiO2 constitute
the dominant source of disorder and we therefore model the
charged impurity distribution as an effective two-dimensional
distribution C(r) placed at a distance dB below the lower
graphene layer. Note that this is the most generous estimate
for the charged impurities that we can take, since we are
neglecting any disorder at the other interfaces which may
be induced by the successive fabrication steps required to
make these devices.34 Denoting disorder-averaged quantities
by angle brackets, without loss of generality, we assume
〈C(r)〉 = 0. We also assume the charged impurities to be
uncorrelated19,27,35 so that 〈C(r)C(r′)〉 = nimpδ(r − r′), where
nimp is the charged impurity density. VD in each layer is the
Coulomb potential created by the random distribution C(r).
The ground-state density distributions nu(r) and nl(r) are
obtained by minimizing E[nu,nl] numerically enforcing the
self-consistency of the distribution in the two layers due to the
interlayer interaction. Then, the local difference in chemical
potential between the two layers δμloc = μu(r) − μl(r) can be
extracted for each point in the system and by performing the
minimization for many (∼600) disorder realizations and we
obtain statistics for the distribution function of δμloc.

In Fig. 4, we show the spatial distribution of δμloc for three
different impurity densities and in two experimentally relevant
geometries. In the left column, we show data where the lower
graphene layer is placed directly onto an SiO2 substrate and
the interlayer separation is d = 1 nm. In this case, the charged
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FIG. 4. (Color online) Spatial plots of δμ calculated via the
TFDT. The left column is for d = 1 nm, dB = 1 nm, and μ̄ =
50 meV, which roughly approximates the experimental situation in
Ref. 7. The right column is for d = 5 nm, dB = 20 nm, and μ̄ =
200 meV, which roughly approximates the experimental situation in
Ref. 6. The color bar at the bottom of each column applies to all
three plots in each column. The first row is for nimp = 1011 cm−2, the
second row is nimp = 1010 cm−2, the third row is nimp = 109 cm−2.

impurities at the oxide interface are effectively approximated
by a two-dimensional distribution 1 nm below the lower
graphene layer, so we take dB = 1 nm. This corresponds to the
system used in the experiments in Ref. 7. We set μ̄ = 50 meV
corresponding to an easily achievable carrier density regime.
The right column corresponds to a system where the lower
graphene layer is seperated from the SiO2 substrate by a
20 nm layer of hBN, like that used in the experiments in
Ref. 6. Hence we take dB = 20 nm, and we also set μ̄ =
200 meV corresponding to the high carrier density regime
where we expect the screening of the external impurities
to be the most efficient, resulting in the lowest amount of
charge inhomogeneity. In both situations, we assume that the
gate-induced (homogeneous, controllable) part of the layer
asymmetry to be zero. Therefore we assume that any layer
imbalance is completely defined by the charged impurities.
The rows of Fig. 4 show the data for, from top to bottom, nimp =
1011 cm−2, 1010 cm−2, and 109 cm−2. (We note that the higher
value of nimp is more typical, and nimp = 109 cm−2 is unlikely

to be achieved in laboratory graphene samples on any substrate.
Typically, one can get an estimate of nimp in a particular
sample by looking at the carrier density regime over which
the graphene minimum conductivity “plateau” exists around
the Dirac point.36) All six plots share some similar qualitative
features. In particular, they all show regions where δμ is
positive and regions where it is negative with narrow strips
in between where δμ is small.37 The length scale of the fluctu-
ations is not affected by the impurity density, but the magnitude
of the fluctuations is. By comparing the data in the two
columns, we see that the distance of the impurities from the
DMG makes a substantial difference in the length scale of
the fluctuations in δμloc and in reducing the magnitude of
the fluctuations. The density of impurities also has a strong
effect on the magnitude of the fluctuations in δμloc with
the fluctuations reducing by approximately a factor of three
with each order of magnitude decrease in nimp. In the most
dirty case (it should be noted that graphene on SiO2 can
have an impurity density of up to 5 × 1012 cm−2 as measured
by transport measurements36), shown in Fig. 4(a) then the
fluctutations in δμloc may be of the order of μ̄, indicating that
the condensate has no opportunity to form in this case. For the
cleanest situation shown in Fig. 4(f), the potential imbalance
is on the scale of 1 meV and there is a significant chance that
excitons with a gap of the size predicted by dynamic screening
calculations12 will persist in spite of the disorder if an impurity
density as low as 109 cm−2 can be achieved in double layer
graphene samples.

We take many disorder realizations (∼600) for each
impurity density and collect ensemble-averaged statistics for
the distribution of δμloc. We characterize this distribution by
its root-mean-square value, which we label δμrms. In Fig. 5,
we plot δμrms for the two experimental geometries discussed
above and for different interlayer spacing d. This is shown
in Figs. 5(a) and 5(b) for d = 1 and 5 nm, respectively, for
three impurity densities covering three orders of magnitude.
The fluctuations are strongest at low carrier density, where the
screening of the impurity potential is weakest, and it decreases
monotonically with increasing μ̄. The trend suggested by the
spatial plots is confirmed here, that is, decreasing the impurity
density by a factor of ten generates approximately a factor of
three reduction in the fluctuations. If the impurities are moved
away from the DMG by a spacer layer as in Figs. 5(c) and 5(d),
we find that the fluctuations in δμ are reduced to the order
of 1 meV. This degree of fluctuation may be small enough to
allow the condensate to be detected at a reasonable temperature
scale. For the dB = 1 nm case, a system dimension of 160-unit
cells was chosen. For dB = 20 nm, we increased that to
320 unit cells to ensure that the system was large enough
to accurately capture the size of the typical fluctuations.

We briefly discuss the role of corrugations and ripples
in the structure of the graphene lattice and describe their
effect on the excitonic condensate. The existence of these
ripples in suspended23 samples and those placed on substrates
of different kinds26 have been demonstrated. In the case of
suspended monolayer graphene, ripples of height of several
angstroms have been observed,23 indicating that a suspended
double layer structure with small interlayer spacing may be
difficult to control since ripple corrugations will then be of
the same size as the layer separation. It has been theoretically
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FIG. 5. (Color online) Root-mean-square of the distribution of
the local δμ as a function of the global chemical potential for two
experimentally relevant geometries. (a) and (b) dB = 1 nm, ε = 3.9
corresponding to double layer graphene placed straight onto a SiO2

substrate per the experiments in Ref. 7. (c) and (d) dB = 20 nm,
ε = 3.9 corresponding to double layer graphene placed onto a 20 nm
slab of hBN per the experiments in Ref. 6.

predicted38–40 that the strain field associated with ripples can
give rise to fluctuations in the local density of the order
of 1012 cm−2. If this is correct, then it shows that lattice
corrugations may be a significant barrier to the existence
of the condensate, since this will give δμ ≈ 40 meV, which
would destroy the condensate even for unscreened Coulomb
interactions.

III. DOUBLE BILAYER GRAPHENE

We now consider the analogous situation for double
quadratic bilayer graphene (DQBG). In this case, two AB-
stacked bilayer graphene sheets41 replace the monolayers
discussed previously. We employ the same approach as we
did for DMG in that we analyze the critical temperature of the
excitonic superfluid for the unscreened and statically screened
interlayer interactions, and then examine the modification
of the interlayer potential with the inclusion of dynamic
screening effects. We model the two bilayer graphene sheets as
having a gapless, quadratic low energy band structure Eνk =
νh̄2k2/(2m∗) where m∗ is the effective mass which we assume
to be the same in both layers, and ν = ±1 denotes the band.
Note that this approximation is only valid at densities n <

3 × 1012 cm−2, which is approximately equivalent to kF =
0.3 nm−1 and μ ≈ 70 meV. The difference in the low-energy
band structure leads to qualitative changes in the behavior
of the condensate as a function of μ̄, but not of δμ, as we
shall demonstrate. The gap equation in Eq. (1) and interlayer
interaction in Eq. (2) are still valid in the double bilayer case,
except for a redefined angular factor f (k,k′) = cos2(θk −
θk′)/4, exciton energy Ek′ = [(h̄2k′2/(2m∗) − μ̄)2 + �2

k′]1/2,
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FIG. 6. (Color online) (a) Tc as a function of μ̄ with δμ = 0 for
double bilayer graphene with the unscreened interlayer interaction.
(b) Tc as a function of δμ with μ̄ = 30 meV. (c) The statically
screened interlayer interaction for DQBG. (d) The dynamically
screened interlayer interaction for DQBG in the high density regime
(kF = 0.2 nm−1).

and the polarization screening function of the quadratic bilayer
obviously needs to be taken into account.42 Note that this
is a similar system to that studied by quantum Monte Carlo
methods recently,43 where continuous transitions between a
one-component fluid phase, an excitonic fluid phase, and a
biexcitonic phase were predicted. However, that publication
did not include any form of disorder.

We first show results for the unscreened interaction, using
V (q) = 2πe2e−qd/(εq). In Fig. 6(a), we show Tc as a function
of μ̄ and find that it is of the same order as for the equiv-
alent case in DMG, i.e., Tc ∼ 100 K for realistic interlayer
separation [see Fig. 1(c)]. However, the nonmonotonicity of
Tc as a function of overall density is unlike the monolayer
case indicating that the interlayer separation and density of
electrons have a more complex relationship than in the linear
spectrum. This is due to the effective interaction parameter
rs being constant for monolayer graphene, but decreasing as
1/

√
n as a function of density for bilayer graphene. Therefore,

as density increases, the reduced strength of the interactions in
DQBG manifests as a smaller excitonic gap, thus reducing Tc.
Figure 6(b) shows Tc as a function of δμ for μ̄ = 30 meV.
This shows qualitatively identical behavior as for DMG,
indicating that within our BCS mean-field theory, the details
of the underlying band structure do not qualitatively affect
the response of the excitonic superfluid to asymmetrical layer
doping. For comparison with experimental data where carrier
density is a more useful variable, we note that for bilayer
graphene in the single-particle limit that n̄ = 2m∗μ̄/(πh̄2) and
so the fluctuations are linear and δn = 2m∗δμ/(πh̄2).

As shown in Ref. 44, the static screening for quadratic
bilayer graphene is somewhat stronger than for monolayer
graphene, not just because the dimensionless polarizability is
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larger, but because the density of states in the prefactor is
also larger at low and moderate doping. This indicates that the
interlayer interaction should be weaker in DQBG compared
with DMG for comparable parameters. We find that the size
of the gap is smaller than the accuracy of the numerical
procedure that we employ. This indicates that, within our
approximations for the statically screened interaction, Tc is
expected to be smaller than a fraction of 1 nK. In contrast to the
DMG case, the interlayer interaction V (q,0) given in Eq. (2)
is not a universal function of q/kF for DQBG in the kF d = 0
limit. Increasing the electronic density decreases the efficiency
of the screening and allows the interlayer interaction to be
stronger. This is a substantial qualitative difference between
the screening in monolayer and bilayer graphene, which is
understandable since quadratic bilayer has a constant density
of states in contrast to the linear-in-energy density of states
of monolayer graphene. The kink at q = 2kF corresponds to
the 2kF anomaly for 	(q).44 Also, increasing d will reduce
the overall interaction strength which allows the screening to
be more efficient, reducing V (q,0) with respect to Vq , as in
DMG.

For dynamic screening, we use previous results42 for the
finite frequency polarizability to determine the interaction
potential. Figure 6(d) shows the dynamically screened inter-
action in the high density regime, where the interaction is the
strongest. The high-q limit is the same as the static screening
case, and we find that the dynamic screening reaches this limit
even faster than in DMG. Therefore the interaction strength is
weaker in DQBG and Tc is suppressed.

We now briefly comment on the role of inhomogeneity in
DQBG. Since it is known that the response of the charge
distribution to charged impurities in bilayer graphene is
qualitatively similar to that in monolayer graphene,19,45 it
is very likely that the presence of charged impurities in the
environment of the DQBG will have a similar detrimental
effect on the stability of the condensate as for DMG. However,
it is also known that bilayer graphene is, in general, somewhat
more robust against ripples and corrogations than monolayer
graphene,46 indicating that charge inhomogeneity generated
by this form of disorder may be slightly less important.

IV. CONCLUSION

In summary, we have presented a comprehensive analysis
of the effect of charge inhomogeneity on Tc for the excitonic
superfluid in double layer graphene systems. We find that the
existence of charge inhomogeneity and ripples is likely to
be the limiting factor for the stability of the condensate, but
that the cleanest samples at low temperature should allow for
the detection of the condensate. If the graphene layers are
suspended, particular care must be taken to ensure minimal
rippling since even in the absence of charged impurties, this
may be a significant source of density inhomogeneity. We
also investigated the equivalent situation in DQBG, showing
that in the unscreened case, the quadratic nature of the low
energy bands does change the qualitative behavior of Tc as
a function of μ̄, but that the maximum achievable Tc is quite
similar in both systems. However, static screening is somewhat
stronger in DQBG but the details of the realistic screening are
still unknown. Our most important conclusion is that the only

(b)

(a)

(c) (d)

= + + + + + + . . .

FIG. 7. (a) The diagram for 	(q,ω) in our calculation. (b) The
diagram for 	(q,ω) in the calculation of Refs. 3 and 13. (c) The first-
order diagram absent from (b). (d) The second-order diagrams absent
from (b). The dashed lines represent interlayer electron-electron
interactions.

hope for achieving excitonic condensation in graphene is to
use very flat, ultrapure graphene with very low density of
charged impurities so that the induced charge inhomogeneity
is minimized. Even then, if the operative interlayer pairing
interaction turns out to be the statically screened Coulomb
interaction, there is very little hope for the observation of the
interlayer superfluid state at any reasonable temperatures.
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APPENDIX: SCREENING

In this Appendix, we clarify certain aspects of the screening
models that are used both in the literature and in our own cal-
culation. In particular, Refs. 3,12, and 13, use what the authors
describe as a “self-consistent screening approximation.” In this
theory, the gap at the Fermi energy generated by the superfluid
pairing is self-consistently included in the screening, with the
result that the interlayer interaction is increased dramatically,
enabling the condensate to be stable at temperatures of the
order of 100 K. The fundamental issue we wish to raise is
that the expansion of the polarization function on which these
works rely does not include all diagrams of any arbitrary order
in the electron-electron interaction. In Fig. 7(a), we show the
zeroeth-order expansion, which we use in our calculation, and
in Fig. 7(b) is the diagram and expansion to second-order used
in Refs. 3 and 13. Figures 7(c) and 7(d) show, respectively,
the first-order and second-order diagrams that are not present
in this expansion. The absence of these diagrams violates
the Ward identity for current conservation. As described in
great detail in Refs. 47 and 48, the theoretical formulation
of the dielectric response of a superconductor in the gapped
symmetry-broken phase is a formidable task, which cannot
be simulated simply by incorporating the self-energy in the
polarization bubble diagram since such an approximation is
not conserving as it leaves out many other diagrams (see Fig. 7
and Refs. 47 and 48) in each order. It is therefore theoretically
more meaningful to use a clearly defined perturbative approach
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where the screened interaction is calculated in the normal state
(as done in the current paper) and then the BCS mean-field
theory is carried out on this normal state interaction function.
Our theory thus corresponds to the leading-order conserving
perturbative approximation where only the bare bubble [see
Fig. 7(a)] is used for the polarizability, thus satisfying the
Ward identities. While this may not be a quantitatively accurate
approximation, it is guaranteed to satisfy conservation laws.
The inclusion of the vertex corrections to the ladder diagrams,
which for the systems studied are not captured by the Migdal
theorem, would be desirable but is well beyond the scope
of this work (and, for that matter, all existing work in this
subject) whose focus is the effect of long-range disorder
on the conditions, in particular, Tc, for the realization of

excitonic superfluid states in DMG and DQBG. The issue of
a better screening approximation going beyond RPA remains
open for the graphene interlayer superfluidity problem since
such a theory must combine the conserving approximation of
Refs. 47 and 48 with the peculiar band structure and chirality
of graphene physics.

In the current paper, we have demonstrated that DMG and
DQBG have Tc of the same order for the equivalent level of
approximation for the interlayer screening. How the consistent
approximation of Refs. 47 and 48 would affect the excitonic
condensation is currently unknown and remains an interesting
open question, but it is not unreasonable to assume that the
DMG and DQBG systems would still have Tc of the same
order in this case.
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