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Long-range ballistic motion and coherent flow of long-lifetime polaritons
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Exciton polaritons can be created in semiconductor microcavities. These quasiparticles act as weakly interacting
bosons with very light mass, of the order of 10−4 times the vacuum electron mass. Many experiments have shown
effects which can be viewed as due to a Bose-Einstein condensate, or quasicondensate, of these particles. The
lifetime of the particles in most of those experiments has been of the order of a few picoseconds, leading to
significant nonequilibrium effects. By increasing the cavity quality, we have made samples with longer polariton
lifetimes. With a photon lifetime on the order of 100–200 ps, polaritons in these structures can not only come
closer to reaching true thermal equilibrium, a desired feature for many researchers working in this field, but they
can also travel much longer distances. We observe the polaritons to ballistically travel on the order of 1 mm, and
at higher densities we see transport of a coherent condensate, or quasicondensate, over comparable distances. In
this paper we report a quantitative analysis of the flow of the polaritons both in a low-density, classical regime,
and in the coherent regime at higher density. Our analysis gives us a measure of the intrinsic lifetime for photon
decay from the microcavity and a measure of the strength of interactions of the polaritons.
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I. INTRODUCTION

When a photon in a cavity is energetically resonant or
nearly resonant with an exciton state, a mixed state known
as an exciton polariton arises.1–3 This new quasiparticle has a
light mass, of the order of 10−4 times the vacuum electron
mass, which it inherits from the cavity photon dispersion,
but has particle-particle interactions comparable in magnitude
to exciton-exciton interactions, which are much stronger
than standard photon-photon nonlinear interactions.4 Exciton
polaritons provide an appealing system for the study of bosonic
statistics as well as a platform for quantum or optical circuit
components. The very light mass of the polaritons means that
bosonic effects can be relevant at much higher temperatures
than those required for atomic condensates, typically tens of K
up to room temperature. The particles can be created with an
incoherent or coherent source and can be subjected to optically
or mechanically generated potential barriers or traps controlled
by the researcher, allowing for great flexibility.5–7 Patterning
of the samples also allows for arbitrary lattice structures of the
polaritons,8 and nanostructures can be etched into the sample
to make waveguides and circuits to control the propagation
and confinement of polaritons.9–11

In a typical structure, such as used for these studies, a
GaAs-based microcavity is designed to include GaAs quantum
wells (QWs) located at the antinodes of a planar optical cavity
with end mirrors which are distributed Bragg reflectors (DBRs)
made from AlxGa1−xAs and AlAs layers. The strong coupling
of the exciton to the photon through the exciton’s radiative
dipole matrix element leads to the formation of new states
called the upper and lower polaritons (UP and LP). Our sample
is a 3λ/2 microcavity containing four GaAs/AlAs QWs at each
of the three antinodes. The DBRs confining the cavity are

made of alternating planar λ/4 layers of Al0.2Ga0.8As/AlAs.
This sample is similar to one used in previous work,12 but
the number of layers in both the front and back DBRs were
doubled, effectively increasing the designed Q factor by more
than two orders of magnitude and the designed photon lifetime
from 2 to 400 ps. This is the same sample as studied in Ref. 13.

For polariton experiments, the pumping method has im-
portant implications. Polaritons can be pumped resonantly
with a laser matched in energy and angle with the polariton
dispersion relation, or they can be pumped nonresonantly at
much higher energy where the stop band of the DBRs becomes
transparent. Resonant excitation of polaritons can potentially
seed a condensate to form in user-selected states or impart
initial coherence to a population, since the polaritons generated
will initially have the same coherence characteristics as the
exciting photons.14 However, nonresonant excitation can serve
as a more concrete demonstration of Bose-Einstein condensa-
tion and related effects, since the initially generated carriers
lose the coherence of the pump source while relaxing to a
thermal quasiequilibrium in the polariton states. If coherence is
observed to increase with increasing density or a macroscopic
occupation of one state forms out of the thermal background,
then this suggests a spontaneous symmetry breaking which is
not present in resonant excitation experiments.

Additionally, the hot carriers and excitons generated during
nonresonant excitation can lead to other interesting physics.
The repulsive exciton-exciton interaction increases the exciton
energy, and phase-space filling leads to a reduction of the
exciton-photon coupling. Both of these features serve to
increase the energy of the LP, so that at moderate and high
pump power the LP sees a modified energy potential at the
excitation spot. This optically generated barrier has been used
to modulate the polariton profile and dynamics.6,15–18
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Another crucial choice in the experiments is the detuning,
that is, the energy difference between the bare photon and
exciton. The detuning determines the relative fraction of
photon and exciton in the polaritons. In typical GaAs and other
semiconductor wafers grown with molecular beam epitaxy, the
thickness of the layers varies across the wafer. Since the photon
energy and the exciton energy have different dependencies on
the layer thickness, this allows a design in which the exciton
and photon energies cross at some place on the wafer. On
one side of this resonant region where the energies cross,
the photon energy is lower than the exciton energy, and the
LP will have a mostly photonic character. On the other side,
the photon energy is higher than the exciton energy, and the
character of the LP is mostly excitonic. On the excitonic
side, the interactions are stronger, and the mass is heavier
leading to greater thermalization18,19 but shorter distances
for transport of the polaritons. On the photonic side, the
interactions are smaller, allowing less thermalization, but much
longer transport distances. For the experiments discussed in
this paper, we chose a location on the wafer where the LP
was mostly photonic, allowing long-distance transport. The
polaritons still interact with each other and with the excitons
at the generation spot, as we will show below.

II. LOW DENSITY: BALLISTIC PROPAGATION

The first observation of polariton photoluminescence (PL)
in these samples was initially perplexing. Luminescence data
in Fig. 1(b) show polaritons on the LP branch propagating a
long distance on the sample from the excitation spot. Looking
only at this figure, it appears that the polaritons gain energy to
travel uphill.

If we compare this to Fig. 1(c), however, we can make
more sense of the data. Figure 1(b) was taken with small
numerical aperture (NA), while Fig. 1(c) was taken with large
NA. The NA matters because a polariton with wave vector k‖
is a coupling of an exciton and a cavity photon both with the
same k‖; when the polariton decays, it emits a photon external
to the cavity with the same wave vector. This gives a one-to-one
mapping of the angle of the photon emission in the far field to
the in-plane k‖ of the polaritons before they decay into external
photons. Therefore opening up the numerical aperture of the
imaging system collects light from polaritons at higher k‖.
For the data of Fig. 1(b), the low NA restricted the polaritons
observed to those with k‖ ∼ 0. We see in this figure the gradient
of the k‖ = 0 energy, i.e., the potential energy of the polaritons,
due to the wedge in the wafer thickness discussed above. This
spatial gradient of the ground-state energy is the same as a
force on the polaritons, since F = −∇U .

The data of 1(c) were taken with a lens system with a
0.4 NA, much larger than the NA used for Fig. 1(b). This
larger acceptance angle corresponds to imaging polaritons
with a much wider range of momenta. Figure 1(c) shows that
there is a significant population of polaritons at k‖ > 0; The
broad distribution of high-momentum polaritons exists at the
point of creation due to the many random scattering processes
which occur after nonresonant excitation. Some of the high-k‖
polaritons flow uphill and eventually reach k‖ = 0 where they
can be observed with low NA, while others flow downhill until
they exit the 0.4-NA collection angle.
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FIG. 1. (Color online) Intensity of the PL emitted from the LP,
as a function of energy E and position x, recorded with an imaging
spectrometer. The intensity data are presented on a log scale to
highlight motion. These data are taken at a k‖ = 0 polariton detuning
of −21 meV with a pump power of 500 μW at 705 nm focused to
a 15-μm-diameter spot size (0.28 × 106 mW/cm2). (a) Hot-carrier
luminescence seen through the reflectivity minima of the DBR stop
band. The size of this spot indicates the size of the pump spot and
the exciton cloud. (b) Lower polariton PL, spatially resolved but only
collected near k|| = 0. The bright spot is the point of creation of the
polaritons; the PL at further distances gives the k|| = 0 energy of
polaritons which have moved to that point on the sample. (c) The
same data taken with a larger NA, i.e., a larger range of k‖. The
polaritons flow outward from the creation spot to fill all space within
our field of view. The polaritons are generated over a broad range
of k‖ at the pump spot and ballistically travel outward at constant
energy. The sharp cutoff in energy on the downhill side indicates that
the polaritons do not scatter once they are spatially distant from the
excitation spot. The horizontal/angled cutoff at high energy is the
accepted NA of the microscope objective. The cutoffs at ±0.2 mm
are due to clipping in the optics and spectrometer.

One critical feature to notice in these data is the sharp
minimum-energy cutoff on the left side of Fig. 1(c). The
polaritons at the excitation spot partially thermalize according
to the relaxation dynamics of hot carriers and excitons.20,21

Upon reaching polariton states with very light mass and low
scattering rates, the polaritons are able to travel ballistically.
This explains the minimum energy observed on the right—
polaritons are streaming ballistically away from the excitation
spot after initially scattering into LP states. The polaritons
flowing downhill immediately leave the high density excitation
region and never scatter to lower energy. The polaritons
flowing uphill stream until they hit a point on the sample
where the k‖ = 0 state has the same energy, at which point
they can no longer flow to the right, and are reflected back to
the left.

Because of the one-to-one mapping of polariton momentum
to photon emission angle in the decay process, we can image
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FIG. 2. (Color online) Intensity of the PL emitted from the LP,
as a function of energy E and in-plane momentum k‖, recorded using
an imaging spectrometer focused on the far-field emission (Fourier
plane). These data were taken under the same pumping conditions
as Fig. 1. (a) Spatial filtering is applied to an intermediate image
to isolate the dispersion relation of the LP at the pump spot. Due to
nonresonant excitation, polaritons are observed filling the momentum
states. (b) With no spatial filtering, the excitation spot polaritons
are smeared in the downhill (−k‖) direction. Polaritons at k‖ = 0
correspond to the polaritons observed in Fig. 1(b). Again we observe
an energy minimum coinciding with the vertex of the pump spot
dispersion curve, as the polaritons scatter very little after leaving the
creation region.

the far-field PL to directly resolve the momentum space
distribution of the polaritons, just as we image the near
field to observe the real-space profile. Normally, the k-space
image integrates over the entire real space observed, so we
must use spatial filtering to measure the dispersion relation
from a single point of a spatially extended distribution. In
Fig. 2(a) we present the far-field PL of the emission spot after
spatial filtering, which was accomplished using a pinhole in a
secondary real image plane. The spatial filter selects a region
on the sample of approximately 40 μm diameter, which is
slightly larger than the pump spot. The PL profile at this
spot indicates the initial population before propagating away.
Figure 2(b) shows the same data without the spatial filter.

There are several features of Fig. 2(b) which are comple-
mentary to the real-space data of Fig. 1(c). The polaritons
initially at +k‖ move uphill at constant energy while losing
momentum, i.e., shifting to lower k‖. The polaritons at −k‖
flow downhill at constant energy and gain momentum in that
direction, eventually leaving the numerical aperture of our
microscope objective. There is again a clear cutoff in energy
at the vertex of the excitation spot momentum dispersion
parabola. The polaritons starting at k‖ = 0 are the lowest
energy polaritons possible at the pump spot where the density
is high enough to scatter. These polaritons stream downhill
ballistically, giving rise to this energy minimum.
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FIG. 3. (Color online) Time-resolved k‖ � 0 PL from the lower
polartion at three sample distances from the pump spot. These data
were collected following a 2-ps, 2-mW pump laser with wavelength of
725 nm focused to a 50-μm-diameter pump spot (0.1 × 106 mW/cm2

or 1.3 μJ/cm2 per pulse) where the k‖ = 0 polariton detuning was
−15 meV. Blue lines are intensity data of photoluminescence from
propagating polaritons. Each frame is taken at a different distance
from the pump spot. Black lines indicate the emission of the hot
carriers above the stop band which occurs very soon after the
picosecond pump. Red lines are the Gaussian-exponential decay
convolution fits to the data with the parameters given above each
frame. t0 is the central time of the Gaussian following the hot PL, σ

is the standard deviation, and τ is the exponential decay time. Note
that t0 is an indicator of the travel time—we know that this value
must include both the time of flight as well as the time to cool down
from hot carriers to the lower polariton. As an aid to the reader, the
unconvolved Gaussian is presented as the dashed green line to see
how the t0 parameter compares to the peak of the intensity data. The
convolution with a decay pushes the peak of the fit to significantly
later time than the Gaussian fit alone.

III. TIME-RESOLVED PROPAGATION

To verify that the extended polariton cloud is propagating
from the point of excitation, we used a Hamamatsu streak cam-
era to time resolve the spatial arrival of polaritons at various
points on the wafer following a pump pulse with picosecond
duration. Due to the many scattering processes following the
nonresonant generation, all the temporal dynamics of the cool
polaritons are broadened and delayed relative to the excitation
pulse. Nevertheless, by measuring the arrival times of the
polaritons moving uphill, we see clearly that there is a time
delay for the propagation of the polaritons as they travel across
the wafer. As discussed below, this time delay is consistent with
the theory for the time of flight across the sample, using the
known polariton dispersion.

Figure 3 shows the time-resolved PL for the polaritons
(solid blue line) for different distances x from the generation
spot, following the hot PL emission (black line), which
indicates the duration of the pump laser pulse. The polaritons
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were generated nonresonantly on the photonic side of the
wafer with a 2-ps pulsed Ti:sapphire laser, and k‖ ∼ 0 emission
from individual spatial points was spectrally and temporally
resolved. The polariton PL is fit with a Gaussian convolved
with an exponential decay as shown with the solid red line.
The details of this fit are discussed in the Appendix.

The convolution of a Gaussian and decay is an empirical
fit which is sufficient for assigning an arrival time to the
polaritons. Additionally, this convolution can be written in
a closed form, which makes it computationally convenient to
fit the data. Aside from background and overall amplitude,
the fit has three parameters: the arrival time t0, the Gaussian
broadening σ , and the decay time τ . We interpret the arrival
time as the sum of two major contributions: (1) first, the hot
excitations cool down to fill the polariton states at the pump
spot. This cool-down time depends on the phonon emission
rates. (2) The remainder of the arrival time is due to the
actual time of flight (TOF) of the ballistic polaritons to reach
a point on the sample where their momentum has slowed to
k‖ � 0, where they are observed. The decay time τ cannot
simply be interpreted as the lifetime of the polaritons, since
the dynamics of the hot carriers fills these states over a finite
time. For example, if the time to cool down into polariton states
is comparable to or longer than the lifetime of the polaritons,
then the decay time will measure the lifetime of this excited
population rather than that of the polaritons.

The green dashed line in each case of Fig. 3 is the Gaussian
portion of the convolution. As seen in this figure, the peak of
each PL curve is not at the fitted t0 value, which is located at
the peak of this pure Gaussian, but is shifted to a later time by
the convolution with an exponential decay.

What is clear from the raw data and from the fits is that the
more distant points take longer to be populated with polaritons.
If the motion is ballistic in nature, then we should expect the
dynamics to be explained by semiclassical particle dynamics.
In Fig. 4 we present the time-of-flight value TOF = t0 − tcool

from the fits as a function of the distance from the excitation
spot. The cooldown time tcool is the time for the hot excitations
[as observed in Fig. 1(a)] to fall down into the LP states
from which they can begin to propagate. Note that tcool

was determined by fitting the data to theoretical models of
propagation, since the data immediately at the excitation point
show unreliable t0 values. The simplest approach to explain
the data is to assume that the polariton mass is constant and
the potential gradient felt by the polaritons due to the wafer
thickness variation is constant, i.e., that the polaritons feel a
constant force. We can envision the polaritons as starting with
an initial momentum uphill and we observe them when they
reach k‖ = 0. This yields the relationship that the time of flight
is proportional to x1/2, which is shown as the blue dash-dotted
curve in Fig. 4. This works well for short distances, but the
data beyond x = 0.4 mm show a clear upturn which deviates
from this simple fit.

To go beyond this simple model, we can recognize that
the effective-mass approximation breaks down for polaritons
at high momentum. Due to the coupling of the very light
mass photon and the heavy mass exciton, the dispersion of the
polaritons at high momenta deviates from the effective mass
measured at k‖ = 0. This is particularly true on the photonic
side where the region near k‖ = 0 may have a mass on the order
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FIG. 4. (Color online) Time of flight for polaritons with different
initial momenta to reach k‖ = 0 for the same pumping conditions as
Fig. 3. Black crosses with error bars: the time of flight as determined
from the time-resolved data. Blue solid line: fit of the data assuming a
constant mass and constant gradient of potential energy (i.e., constant
force) felt by the polariton. This model clearly fails to describe the
later time arrivals. Green curve: fit of the data assuming a constant
force on the polaritons but allowing for the full dispersion relation
E(k) of the polaritons, which has effective mass that changes at higher
k‖. Accounting for this changing mass improves the fit only slightly.
Red curve: fit calculated by numerically propagating x(t) and k(t)
according to the full semiclassical Hamiltonian of the LP.

of 10−4 times the electron mass, while larger k values at the
same spatial point have a mass on the order of half the electron
mass. By using the known polariton parameters (including the
coupling strength between the exciton and photon, the cavity
gradient and resonance position), we can relate the distance
traveled to the initial energy and therefore the wave vector
of the polariton. If the gradient of the polariton energy is
approximately constant, then the force on the polaritons will
be constant and the time of flight will depend linearly on the
initial wave vector according to �∂k/∂t = F . Including the
effect of the nonparabolic dispersion relation (green dashed
line in Fig. 4) gives a slight upturn in the time of flight at farther
distances. The effect of the increasing mass is to slow the
deceleration. However, this model does not yet fully fit the data.

To accurately fit the data we must take into account the
fact that the polariton energy in the strong-coupling region
near resonance quickly transitions from the rapidly changing
photonic energy to the slowly changing exciton energy, and its
mass changes by orders of magnitude. Thus we should not be
surprised that naive models assuming constant mass and force
will fail. However, the complicated energy of the polariton
E(x,k) prohibits a simple analytical solution to the time of
flight as a function of the initial x and k. The most adequate
solution to such a problem is directly deriving the equations of
motion from the Hamiltonian, H (x,k), based on the known
polariton parameters.

Here we express the time change in x and k via the
relationships ẋ = ∂H /∂�k and �k̇ = −∂H /∂x. Starting
from the initial position and energy (which is assumed to
be conserved) we can propagate these values until the final
wave vector is zero, which is the emission that we observe
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in data like that of Fig. 3. Accounting for both the nontrivial
dispersion relation and spatial potential yields the red curve in
Fig. 4, which follows the data within the uncertainty, even far
from the excitation spot.

IV. ESTIMATION OF THE POLARITON LIFETIME

The long-range motion of polaritons in these samples
suggests a significantly longer lifetime than has been observed
in older samples. One might look for a direct measurement
of the lifetime, but for various reasons this is difficult. We
expect a lifetime on the order of 100 ps, so one might
imagine that we can measure the decay of the cavity emission
with a streak camera. However, as discussed above, if we
generate the polaritons nonresonantly, this decay will mostly
be detecting the thermalization time of hot carriers as they cool
and become polaritons. On the other hand, resonant excitation
of the polaritons is also problematic. For a measurement of
the lifetime we could imagine resonantly exciting a polariton
state and measuring the PL emitted from that state. There are
several problems with this. First, there will be a large amount of
reflected laser light, which can be reduced but not completely
eliminated. Second, the lifetime of this state will mostly be
affected by the dynamics of scattering into different polariton
states. Third, with resonant excitation a coherent polariton
state is produced which can have superradiant emission.

Another approach would be to measure the linewidth of
the cavity photon mode, which will directly give a lower
limit to the lifetime. The spectral resolution of our equipment,
however, is not small enough to measure a 100-ps lifetime,
which corresponds to a full width at half maximum (FWHM)
of less than 7 μeV. We measure a linewidth at the limit of our
spectrometer resolution of 0.05 nm (100 μeV), which implies
a lifetime of at least 7 ps.

A. Lifetime from time-resolved intensity versus position

Due to the difficulty of applying these more direct methods
of measuring lifetime, we present here our best estimate of the
lifetime from two different methods based on understanding
the ballistic motion of these long-lived polaritons. Note that
the lifetime of the polaritons is inversely proportional to
their photonic fraction for photonic detunings. The lifetime
is always longer in the excitonic region of the wafer, or in
high-k states which have greater excitonic fraction. We are
primarily interested in the intrinsic cavity lifetime, which is
half the polariton lifetime at the resonant detuning point where
the polaritons have 50% photon fraction.

The transport results discussed in the previous sections
demonstrate the persistence of polaritons for hundreds of
ps following nonresonant excitation—as seen in Fig. 4, the
offset time for the arrival of polaritons reaches 400 ps. In
addition to measuring the TOF in the above data, we also
have measured the overall intensity reaching k‖ = 0 at various
positions across the sample. Each final point corresponds to
the number of polaritons that have survived the time of flight.
We expect an exponential decay due to leakage of the photon
mode through the mirrors, so the final population should be
n(t0) = n(0) exp(−t0/τi) where t0 is the time of flight for that
data point and τi is the lifetime of that state.
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FIG. 5. (Color online) Lifetime of the polaritons based on the
normalized intensity vs a time of flight. The time values for the red
crosses (data points) are the time-of-flight data presented in Fig. 4.
The intensity values of these data points are the intensity detected
at the point and time of measurement, normalized by the intensity
at the same polariton energy taken from k-resolved data under the
same conditions as Fig. 2(a) except that the pump spot detuning was
the same as the time-resolved conditions. Since the emission at each
spatial point corresponds to a single initial k‖ state at the pump spot,
this ratio gives the loss during the spatial propagation due to radiative
emission and other scattering processes. The solid black line is a fit
of a single exponential decay with lifetime of 200 ps.

Figure 5 was determined by the following process: (1) the
intensity I (x) at k‖ = 0 was found for a range of distances x

from the generation spot. Because of the gradient of polariton
energy, each of these positions had a different energy. (2)
The initial intensity I0(E) as a function of energy was found
at the generation spot, from k-space data such as shown in
Fig. 2(a). The higher energies correspond to higher momenta;
these momenta drop to k‖ = 0 as the polaritons travel uphill.
(3) The ratio I (x)/I0[E(x)] was plotted as a function of the
time-of-flight value t0 found for each value of x. If we assume
that the lifetime is approximately constant for polaritons in a
certain energy range, then fitting this plot to an exponential
decay gives the lifetime. The result of this lifetime fit gives a
polariton lifetime of 200 ps, as shown in Fig. 5. We note that
this lifetime includes all processes which remove particles
from a ballistic path, including scattering from disorder. In
addition to showing that the cavity lifetime is long, this
measurement also shows that the disorder is very low.

Of course, the polariton lifetime is not constant, but depends
on the energy of the polaritons due to the dependence of the
photon fraction on the detuning. Over the range of energies
used in Fig. 5, we estimate that the photon fraction changed
from about 90% to 75%. The fit value for the polariton lifetime
of 200 ps therefore represents a cavity lifetime of about 150–
180 ps.

B. Lifetime from CW intensity

An alternative way to measure the lifetime of the polaritons
is to track the intensity change in k space. The fit of the
Hamilton’s method theory in Fig. 4 gives k(t) for each polariton
energy. Therefore we can convert I (k) to I (t) for a given
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FIG. 6. (Color online) Lifetime measurement based on the steady
state k-resolved PL intensity data. (a) The same data as presented in
Fig. 2(b), with a highlight showing a selected detuning to generate an
intensity profile. (b) The intensity profile for the selected detuning.
Dashed line: fit to a single exponential decay in time. Note that the
polaritons travel uphill and come back down. We therefore restrict
the fits to times before the polaritons have returned back to the same
place, which corresponds to k‖ equal but opposite the initial k‖. The
polaritons moving downhill from the generation point are ignored
due to noise in the data and the fact that they are observed for a short
period of time which renders the fits unreliable. The time calibration
in this plot is generated using the k(t) prediction at each energy based
on the initial conditions and applying Hamilton’s method, as used for
the fit of Fig. 4.

energy in data like that of Fig. 2 and extract a lifetime for each
polariton energy from a fit to an exponential decay. This is
shown in Fig. 6. Here the photon fraction ranges from about
95% at lowest energy to 85% at highest energy.

Over the range of detunings with reliable fits, these results
show a lifetime of 200 ± 120 ps in a region where the polariton
is mostly photonic. While we are unable to extract a trend of
lifetime vs initial wave vector that clearly matches up with
detuning dependent lifetime or scattering trends, it is clear
that these data support the conclusion that the cavity mode has
a lifetime on the order of 100 ps.

It should be noted that, while this lifetime measurement
is not directly a time-dependent measurement, it is in some
ways a more satisfactory means of observing the lifetime
than resonant or nonresonant time-resolved observations. The
continuous wave (CW) density is lower than would be achieved
in pulsed experiments, which circumvents superradiant effects
that could affect resonant pumping or saturation and renormal-
ization that could arise from resonant or nonresonant pulsed
pumping. Also, since these polaritons propagate over such
large distances, care would have to be taken in time resolving
the motion of a single shot to keep the entire population within
the imaging window, especially since gaining time resolution
requires sacrificing a spatial, momentum, or spectral axis.

Since the polariton is moving at low density under the
influence of a constant force, we can reason that the calibration
of time of flight from lost k‖ is deterministic according to

the method introduced in Sec. III. Thus, careful calibration
of momentum-space data and knowledge of the polariton
parameters, such as coupling strength and energy gradients,
yields a sufficient calibration of time of flight.

Furthermore, by recognizing that we are measuring mo-
mentum along the gradient (say ky) with a finite window in
momentum in the perpendicular direction (kx) determined by
the spectrometer slit, we can be confident that we are properly
tracking all the polaritons as they move away from the point
of generation. This is in contrast to similar measurements in
real space where we must recognize that the polaritons are
not moving in one dimension along the spectrometer slit, but
instead spreading out into 2π . In k space, we know that kx is
conserved, and so those polaritons that initially fall into our
collection will still be collected after being accelerated by the
gradient in the y direction. This argument is valid as long as
the cavity gradient is properly aligned with the spectrometer
slit.

V. HIGHER DENSITY: COHERENT FLOW

As the density is turned up, the polaritons experience a
blueshift of their k‖ = 0 energy. This comes about due to
exciton-polariton repulsion and possibly also to some degree
due to a shift of the lower polariton branch due to phase-space
filling, which reduces the oscillator strength that gives the
Rabi splitting between the upper and lower polariton branches.
The excitons are produced by the same off-resonant pumping
process that generates the polaritons—hot free carriers first
form into excitons, and then some fraction of the excitons
scatter down into exciton-polariton states. In many cases
the exciton population can be 20 times greater than the
polariton population.21 The exciton population does not move
long distances like the polaritons in these samples, however,
because the exciton mass is about 104 times larger than
the lower polariton mass. The exciton cloud diffuses at
most a few microns from the laser excitation spot. This has
been used18,22 to create user-controlled potential barriers for
polaritons. In many works with short-lifetime polaritons, the
exciton cloud is assumed to be everywhere that the polaritons
are, and is called the “exciton reservoir,” but in our long-
lifetime samples, the polaritons can move very far from the
exciton cloud.

In the experiments reported here, the polaritons are in
an unbounded geometry—they can flow away from the
excitation spot in the two-dimensional plane of the micro-
cavity. It is therefore problematic to define Bose-Einstein
condensation exactly. In a two-dimensional unbounded sys-
tem, there is no “true” condensation.23,24 Rather, the frac-
tion in low-energy states near the ground state increases
rapidly as the density increases, for a constant temperature,
until a large fraction of the particles are in states with
kinetic energy much less than kBT . This is often called
the “quasicondensate”25 The quasicondensate has many of
the properties of a “true” condensate but has imperfect
phase coherence.

In the case of a steady-state system with generation, decay,
and flow away from the point of creation, the ground state of the
system is not localized to just the region where the particles
are created. As we have seen in the previous sections, the
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FIG. 7. (Color online) Panels (a)–(d) show k-resolved PL from
the polariton population at pump powers of 0.25, 21, 30, and 35 mW,
respectively (pump densities of 0.14 × 106, 12 × 106, 17 × 106, and
20 × 106 mW/cm2). These data were collected using a pump laser
with wavelength of 705 nm focused to a 15-μm-diameter pump spot
where the LP detuning was −8 meV. Panels (e)–(h) show k‖ ∼ 0
real-space-resolved emission at the same densities. Note that at the
lowest density [(a) and (e)], all of k space is occupied at the emission
spot and the polaritons roll uphill and downhill as discussed above.
However, as the pump power increases and renormalization occurs
at the pump spot, a larger occupation builds up in the k‖ = 0 state on
top of the potential-energy hill at the pump spot. The high occupation
of a single state is seen as a monoenergetic line in k space and two
spots in the low-NA, real-space data, corresponding to the excitation
spot and the turnaround point 200 μm away. In real space only two
spots are observed because the polaritons in between, as well as those
traveling downhill, are outside the angle of emission being imaged.

polaritons can travel ballistically hundreds of microns away
from the creation spot. We therefore expect that the ground
state will be a state that extends far from the creation point
even while having a single energy.26

Figure 7 shows the real-space and k-space energy distri-
bution of the polaritons under similar conditions as Figs. 1
and 2, namely off-resonant excitation on the photonic side
of the wafer, but with increasing excitation density. Two
changes are notable as the density increases. One is that
the energy of the polaritons shifts upward. This energy shift

corresponds to the shift of the ground state of the polaritons
at the point of creation due to their repulsion from the exciton
cloud, discussed above. The second notable feature is that
the energy distribution of the polaritons changes from a broad
range of energies [cf. Fig. 2(b)] to a single energy. This is due to
the interactions of the polaritons in the excitation region, which
allow them to thermalize. Even though they never perfectly
thermalize when they are mostly photonic in character, as is
the case here, they still have enough interactions to redistribute
their energy distribution strongly toward the ground state. As
seen in Fig. 7(h), they move at the same energy several hundred
microns away from the laser excitation spot. Although the
polaritons far from the exciton cloud probably have very weak
interaction with each other, they still maintain the same energy.
This extended, monoenergetic state is the effective ground
state of the steady-state system, as discussed above. The two
bright spots at k‖ ∼ ±1 × 104 cm−1 in Fig. 7(d) correspond
to the velocity which the polaritons have after accelerating
away from the exciton cloud, trading all of their potential
energy for kinetic energy (cf. Ref. 26). The polaritons moving
uphill, with initially positive k‖, slow down and eventually
pass through k‖ = 0, which corresponds to the turnaround
point seen in Fig. 7(h). After passing through k‖ = 0, they
have turned around and are moving in the opposite direction.

This monoenergetic quasicondensate acts as coherent wave.
One way to see that the state is coherent is to simply note the
spectral narrowing, to a peak with width about 0.2 meV. This
width is actually broadened somewhat by the time averaging
in our experiments. Fluctuations of the laser power lead to
fluctuations of the exciton cloud potential energy height, which
determines the polariton ground-state energy. Another way to
see the degree of coherence is by an interference measurement.
Figure 8(a) shows the spatial pattern which is the result of
interfering the k‖ = 0 emission from the creation spot with
the k‖ = 0 emission from the turnaround spot 200 μm away.
Figure 8(b) shows the fringe contrast as a function of delay
time. This shows that the coherence time of the propagating
ground state is approximately 40 ps, with an offset given by the
propagation time tprop = 140 ps from the creation spot to the
turnaround spot. We believe that this interference measurement
is also somewhat degraded by fluctuations of the pump laser
power, which cause not only fluctuation of the energy of the
polaritons due to the change of the potential energy of the
polaritons due to the exciton cloud density, but also fluctuations
of the spatial position of the turnaround point, i.e., the point
with k‖ = 0 energy equal to that at the creation point.

This quasicoherent flow can be easily understood as
the propagation of a macroscopically occupied single
wave function according to the system Hamiltonian. A
simple approximation is to model the evolution of the
quasicondensate using a one-dimensional (1D) Schrödinger
equation. While this involves approximations (for example,
outflow to the sides will give a shorter effective lifetime), it
makes the problem manageable and can recreate the major
features of the observed real-space distribution, and allows us
to make another constraint on the polariton lifetime.

To model this system we work in the effective-mass regime
for the lower polariton and model the spatial potential as a
linear gradient with a Gaussian peak due to exciton cloud at
the excitation spot, as is visible in Figs. 7(f) and 7(g). This
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FIG. 8. (Color online) Interference measurements conducted by
overlapping PL from the pump spot with time-delayed PL from the
turnaround point in the medium density regime. These data were
collected using a 34-mW pump laser with wavelength of 705 nm
focused to a 25-μm-diameter pump spot (7 × 106 mW/cm2) where
the LP detuning was −4.5 meV. Panel (a) shows the real-space
luminescence from the individual points and a sample interference
pattern. Panel (b) plots the visibility of the fringes as a function of
delay time. The fact that the greatest visibility is seen at 140 ps
makes perfect sense as this is the propagation time for the polaritons
to travel 200 μm from the pump spot to the turnaround point. The
high scatter and overall low visibility of the fringes is primarily due
to the instability in the pump laser, which leads to instability of the
blueshift peak on which the polariton quasicondensate is formed and
therefore causes the both the condensate energy and turnaround point
to fluctuate.

gives the general Gross-Pitaevskii equation
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FIG. 9. (Color online) Comparison of simulated state evolution
with observed real-space intensity. The data were collected under the
same conditions as Fig. 8. Note that three simulated lifetimes are
presented for comparison.

where U is the polariton-polariton interaction potential, τ

is the polariton lifetime, and G(x) is the localized polariton
generation term (which can, in general, depend on the local
polariton density, since a condensate of polaritons stimulates
conversion of excitons into polaritons). The slope F is
measured from the observed polariton gradient at low density,
the Gaussian peak height U0 is measured as the condensate
emission energy, and the Gaussian peak width σ is determined
from the pump spot size. The effective mass m can be found
from low density k-space data [i.e., the curvature of the
dispersion seen in Fig. 2(a)], and we can justify using this
effective mass because the mass changes minimally over the
narrow energy range of this matter wave. In the low-density
limit, the polariton-polariton interaction is negligible, and this
equation becomes simply a 1D Schrödinger equation with
generation and decay.

The eigenstates of the system can be generated for
a discretized space by numerically diagonalizing the 1D
Schrödinger equation. Once we have a real-space repre-
sentation of the eigenstates, it is trivial to decompose a
matter wave packet into constituent eigenstates and evolve
it. The finite spatial grid and window leads to quantized
states in the downhill direction where there is really a
continuum, but artifacts created by this can be minimized if
we ensure the space simulated is large enough that the state
spacing is small compared to the energy range occupied by
the condensate.

Using this prescription, we can evolve the motion of
a pulse of matter wave in real space and k space with
any lifetime. We can easily compare the characteristics of
different lifetime particles by simply changing lifetime and
evolving again.

Simulations with three different lifetimes are presented
in Fig. 9 with comparison to an observed intensity profile
with low-NA acceptance. Comparing the simulation results to
k-space data also gives good agreement, indicating a good
confidence in the simulation parameters such as effective
mass and Gaussian peak width. As seen in Fig. 9, changing
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the lifetime has a strong effect on the relative height of the
turnaround intensity peak to that at the generation spot. A very
short lifetime will cause the uphill peak to vanish entirely,
as polaritons decay before reaching that point, while a very
long lifetime can make the uphill peak intensity comparable
to the generation point intensity. The lifetime found here,
113 ps, is an underestimate of the polariton lifetime, because
the effective lifetime for this model will be shorter due to
outflow of the polaritons in the full 2D system, away from the
1D path considered here.

Related effects have been seen before with short-lifetime
exciton polaritons. If the laser generation spot is made very
small, then there can be separation of the polariton motion
and the exciton cloud even if the polariton lifetime is short.
References 15 and 27 show peaks at ±k which corresponded to
acceleration away from the exciton cloud, as here. The group of
Bloch11 has shown monoenergetic propagation of a quasicon-
densate in a 1D quantum-confined wire, and Baumberg’s group
has seen similar behavior22 with single laser spots in a 2D
unbounded system.

Just as the resonant or nonresonant scheme can affect the
polariton condensate formed, Richard et al.15 demonstrated
that the pump spot can also change the features of the
condensate. It has been observed that a small excitation region
can give rise to a condensate at finite k.26 It is typically
the case that polariton condensates form in regions where
there is substantial renormalization, since the high carrier
density that allows the condensate to form also causes a real
blueshift of the polariton. Therefore, it is not surprising that a
condensate of small size which is formed on top of a hill will
flow outward.

VI. HIGH DENSITY: TRAPPED CONDENSATE

While the quasicondensate described in the previous section
does not exhibit a sharp threshold, as expected for a 2D system,
at higher density we observe a much sharper threshold tran-
sition to a trapped condensate with much greater coherence.
This has been reported elsewhere.13 In this case the polaritons
scatter into a much lower energy state and localize at the
energy minimum formed between the renormalized peak and
the uphill gradient.

Although a first glance at the potential-energy profile
felt by the polaritons would indicate that they are not truly
trapped, since the potential-energy minimum shown in Fig. 7
is only in one dimension, there exists a process by which
the polariton may in fact self-trap, leading to a true 2D
confinement. Two terms in the above Gross-Pitaevskii equation
should be altered to take into account the interaction of the
polaritons and the exciton cloud. First, the generation rate of
polaritons can be written as G(x)[1 + α|ψ(x)|2], where α is
a parameter, to take into account the fact that high polariton
density will stimulate conversion of excitons into polaritons
in regions where both exist. Second, the exciton cloud height
U0 can be written as U0[1 − β|ψ(x)|2], to take into account
the fact that stimulated conversion of excitons will drop the
potential-energy height felt by the polaritons, since polaritons
repel each other more weakly than excitons repel polaritons.

The modified Gross-Pitaevskii equation is then

i�
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2

2m

∂2

∂x2
+ U0(1 − β|ψ |2)e−x2/σ 2 + Fx

+U |ψ |2
)

ψ − i

2τ
ψ + G(x)(1 + α|ψ |2). (2)

This highly nonlinear equation can have self-trapping solutions
near the exciton cloud.

When multiple laser spots are used, an externally generated
trapping potential can be created. Then even when the
polaritons are generated in a region of the wafer where they
are more excitonlike, they can undergo Bose condensation
to a trapped state very much like the one reported in Ref. 13.
The increased lifetime of the polaritons allow for better
thermalization of the polariton gas and truly equilibrium
condensate theory to apply.18

VII. CONCLUSIONS

With increased reflectivity on the mirrors in these new high
Q-factor microcavity structures, the polaritons demonstrate
qualitatively different phenomena. Even in the low-density
regime we observe clear signs of polaritons propagating much
farther than previous samples with or without 1D waveguide
structures which promote long-range motion. At higher density
we observe long-range, monoenergetic outflow which can be
interpreted as a quasicondensate due to the Bose statistics of
the interacting polaritons. The outflow from this condensate
carries its coherence over a long distance.

These phenomena are a direct result of the increased
lifetime of the polariton, and they also give us indirect ways
to estimate the polariton lifetime. More direct methods of
measuring the lifetime are difficult due to the very narrow
linewidth of the cavity photon and high reflectivity of the
cavity. However, by looking at the decay of the polaritons with
distance in real space and k space we can have estimated the
lifetime of the polariton to be greater than 100 ps, about an
order of magnitude longer than previous samples.
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APPENDIX: GAUSSIAN-EXPONENTIAL DECAY
CONVOLUTION AND FITTING

The form of the time-resolved polariton PL can be un-
derstood best as the result of hot excitations relaxing into
the polariton states. The rise time indicates a multiple-path
relaxation from the hot excitations to the LP state, so the
complicated dynamics become difficult to model. Since we
cannot measure the intermediate- or high-energy populations,
the uncertainty in the parameters governing the relaxation
becomes very large. Because of this, we use simple functions
to parametrize the data.
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A convolution of a Gaussian with an exponential decay was
chosen as a natural function to fit the observed time-resolved
PL data with a minimum number of fit parameters. The
data clearly exhibit a long decay time which suggests fitting
the data with an exponential decay, and the rise time fits
a Gaussian broadening reasonably well; the broadening can
be understood as due to the multiple paths for polariton
generation from the initial incoherent hot carriers created by
the pump laser. The central time of the Gaussian peak gives
a convenient parameter to measure the arrival time of the
polariton population. Including the overall intensity of the
data and background, this means that each curve is fit with
five parameters.

The Gaussian-exponential convolution (GEC) is calculated
according to

n(t) =
∫ ∞

0

([
A

σ
√

2π
e(−(t−x−t0)2/2σ 2)

][
1

τ
e(−x/τ )

])
dx.

(A1)

The five parameters of the model are σ , the broadening of the
Gaussian; t0, the peak time of the unconvolved Gaussian; τ ,
the exponential lifetime; A, the time-integrated intensity; and
ultimately a possible background. Performing the convolution
leads to the form

n(t) = A

2τ
e((σ 2−2tτ+2t0τ )/2τ 2)erfc

(
σ 2 + t0τ − tτ√

2στ

)
(A2)

where erfc(t) is the complimentary error function.

Since the GEC model is not derived from a theoretical
basis of the relaxation of excitations to the LP states, it
is dangerous to interpret too much from the parameters
of the fit. For example, the decay time τ is not simply
the lifetime of the LP population; it includes the effect
of the mean lifetime of the reservoir particles to scatter
into the LP state. If the excited states, that is, hot free
carriers and excitons, take a long time to relax but have no
other means to decay quickly, then it is possible to measure
a long lifetime for this decay parameter even if the final
polariton decay process is fast.28 However, we note that the
rise time to populate the polariton states is on the order of
80 ps, which is not substantially longer than the decay time
itself, and the range of decay times measured from these
fits are on the same order as the other lifetime estimates,
so these values are still in agreement with our assessment
that the polaritons themselves have a lifetime on the order of
100–200 ps.

While several parameters of this fit do not directly give
information about the polariton dynamics, the t0 parameter is
useful and indicative of the time of arrival of the polaritons
at the location being observed. Other methods of assigning
this time, such as the peak of the time-intensity tail, the 10%
and 50% turnon times, were investigated as well. While all of
these data clearly have different offsets, the overall trends fall
within their respective uncertainties. These assessments were
included in assigning the uncertainty of the time-of-flight data,
for example in Figs. 4 and 5.
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