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General theory of feedback control of a nuclear spin ensemble in quantum dots
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We present a microscopic theory of the nonequilibrium nuclear spin dynamics driven by the electron and/or
hole under continuous-wave pumping in a quantum dot. We show the correlated dynamics of the nuclear spin
ensemble and the electron and/or hole under optical excitation as a quantum feedback loop and investigate the
dynamics of the many nuclear spins as a nonlinear collective motion. This gives rise to three observable effects:
(i) hysteresis, (ii) locking (avoidance) of the pump absorption strength to (from) the natural resonance, and (iii)
suppression (amplification) of the fluctuation of weakly polarized nuclear spins, leading to prolonged (shortened)
electron-spin coherence time. A single nonlinear feedback function is constructed which determines the different
outcomes of the three effects listed above depending on the feedback being negative or positive. The general
theory also helps to put in perspective the wide range of existing theories on the problem of a single electron spin
in a nuclear spin bath.
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I. INTRODUCTION

The nonequilibrium dynamics of nuclear spins has a long
history in spin resonance spectroscopy.1 The recently revived
interest in this topic is mostly due to the decoherence issue
of the electron-spin qubit in semiconductor quantum dots
(QDs) for quantum computation.2–4 Nuclear spins, abundant
in popular III-V semiconductor QDs, produce a randomly
fluctuating nuclear field [straight arrow in Fig. 1(a)] that
rapidly deprives the electron spin of its phase coherence,5–17

the wellspring of various advantages of quantum computation
over its classical counterpart. Suitable control of the nuclear
spin dynamics can suppress the fluctuation of the nuclear field
(and hence mitigate the detrimental effect of the electron-spin
decoherence) and even turn the nuclear spins into a resource
to store long-lived quantum information.18–21

In this introduction, we introduce the most widely explored
control of nuclear spin dynamics: the flip of the nuclear spins
by an electron and/or a hole (i.e., the removal of an electron
from the fully occupied valence band of a semiconductor)
combined with the back action of nuclear spins on the electron
and/or hole, which forms different feedback loops responsible
for a variety of experimental observations, especially the
suppression of nuclear spin fluctuation. First, in Sec. I A,
we introduce the electron- or hole-induced nuclear spin flip,
the feedback loops, and relevant experimental observations.
Then, in Sec. I B, we briefly survey the electron-nuclear
and hole-nuclear interactions and a general feedback loop
constructed from these interactions. Next, in Sec. I C, we
summarize the existing theoretical treatments of different
feedback loops (especially the back-action part). Finally, in
Sec. I D, we introduce our systematic, microscopic theory of
the general feedback loop and summarize the main results.

A. Electron- or hole-induced nuclear spin flip and feedback

The simplest control of the nuclear spins is to induce a
nonequilibrium steady-state nuclear spin polarization s so
that the nuclear field acting on the electron spin [straight

arrow in Fig. 1(a)] acquires a nonzero average value. In the
absence of interspin correlation, the nuclear field fluctuation
is also expected22 to be suppressed to (1 − s2)1/2 of its
thermal equilibrium fluctuation, e.g., a ∼99% nuclear spin
polarization can suppress the nuclear field fluctuation by an
order of magnitude and hence prolong the coherence time of
the electron spin in the QD by the same factor. This prospect
has stimulated intensive interest in polarizing the nuclear spins
in QDs. The most widely explored scenario is to transfer the
spin angular momentum from the conduction band electron to
the nuclear spins [wavy arrow in Fig. 1(a)]23–29 through the
isotropic electron-nuclear contact hyperfine interaction ∝Ŝe ·
Î. This scenario has been demonstrated via different processes
in various experimental setups, including the two-electron
singlet-triplet transition in transport experiments in lateral and
vertical double QDs,30–42 electron-spin resonance in lateral
double QDs43–45 and, in particular, interband optical pumping
in fluctuation QDs and self-assembled QDs,46–68 where the
highest degree of steady-state nuclear spin polarization (up
to ∼65%) has been achieved.48,49,67 The nonzero average
nuclear field produced by the polarized nuclear spins is then
detected as an average energy shift of the electron [straight
arrow in Fig. 1(a)]. In many experiments, the average energy
shift exhibits hysteretic behaviors, indicating the bistability or
multistability of the average nuclear field due to the nonlinear
feedback loop [Fig. 1(a)] between the electron and the nuclear
spins. Note that the nuclear spin flip [e.g., denoted by the
wavy arrow in Fig. 1(a)] may or may not have a preferential
direction.

Recently, several experimental groups reported significant
suppression of the nuclear field fluctuation for weakly or
moderately polarized nuclear spins in QD ensembles,69,70

two coupled quantum dots71–74 and, in particular, single
quantum dots,75–77 an important configuration for quantum
computation. In single quantum dots,75–78 the key experimental
observation is the maintenance (i.e., locking) of resonant
absorption over a range of pump frequencies around the
natural resonance. This locking behavior arises from the
shift of the electron energy level from off resonance to
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FIG. 1. (Color online) (a) Feedback loop between the electron
spin Ŝe and the nuclear spins {Îj } through the contact hyperfine
interaction ∝Ŝe · Î = (Ŝe,+Î− + Ŝe,−Î+)/2 + Ŝe,zÎz: the electron flips
the nuclear spins (with or without a preferential direction) through
Ŝe,+Î− + Ŝe,−Î+ (wavy arrow) and changes the nuclear field, which
in turn acts back on the electron through Ŝe,zÎz (straight arrow). (b)
A specific feedback loop between the electron spin Ŝe, the hole spin
Ŝh, and the nuclear spins {Îj }. First, the hole flips the nuclear spins
through the noncollinear dipolar hyperfine interaction ∝Ŝh,z(Î+ + Î−)
(wavy arrow) and changes the nuclear field. Second, the nuclear field
acts on the electron through the diagonal part Ŝe,zÎz of the contact
hyperfine interaction (straight arrow). Third, the electron is coupled
to the hole through interband optical pumping.

resonance by the average nuclear field. A striking observation
by both Xu et al.75 and Latta et al.76 is that the locking
occurs nearly symmetrically on both sides of the resonance.
This symmetric locking reveals that the steady-state nuclear
field is antisymmetric across the resonance, a prominent
feature beyond the framework of the electron-nuclear contact
hyperfine interaction [Fig. 1(a)]. In order to explain this
feature, Xu et al.75 (followed by Ladd et al.64,79 in a different
context) introduced a new feedback loop [Fig. 1(b)] consisting
of a nuclear spin flip with no preferential direction induced
by a valence-band hole inside a trion (which consists of two
inert conduction-band electrons in the spin singlet state and an
unpaired valence-band hole) and the back action of the nuclear
field on the conduction-band electron, which is then coupled
to the hole by interband optical pumping. Very recently, the
mechanism for the hole-induced nuclear spin flip with a pref-
erential direction through the noncollinear dipolar hyperfine
interaction was also established80 and generalized81,82 to the
noncollinear electron-nuclear hyperfine interaction to explain
the experimentally observed locking and avoidance of the
pump absorption strength from resonance.

B. General feedback processes between electron,
hole, and nuclear spins

To date, the following interactions between the electron,
the hole, and the nuclear spins have been considered:

(i) The isotropic electron-nuclear contact hyperfine inter-
action ∝Ŝe · Î, which consists of the diagonal part ∝Ŝe,zÎz and
the off-diagonal part ∝Ŝe,+Î− + Ŝe,−Î+.

(ii) The anisotropic hole-nuclear dipolar hyperfine
interaction,66,68,75,80,83–85 whose dominant part is diagonal
∝Ŝh,zÎz. Heavy-light hole mixing86–88 introduces a smaller
off-diagonal part ∝Ŝh,+Î− + Ŝh,−Î+ and an even smaller
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FIG. 2. (Color online) (a) Feedback processes between the
electron spin Ŝe, the hole spin Ŝh, and the nuclear spins {Îj }. The
electron flips the nuclear spins through the off-diagonal contact
hyperfine interaction ∝Ŝe,+Î− + Ŝe,−Î+ and the noncollinear inter-
action ∝Ŝe,z(Î+ + Î−). The hole flips the nuclear spins through
the off-diagonal dipolar hyperfine interaction ∝Ŝh,+Î− + Ŝh,−Î+ and
the noncollinear dipolar hyperfine interaction ∝Ŝh,z(Î+ + Î−). The
nuclear spins act back on the electron through the diagonal contact
hyperfine interaction ∝Ŝe,zÎz, and on the hole through the diagonal
dipolar hyperfine interaction ∝Ŝh,zÎz. (b) A general feedback loop
between the nuclear spins and externally controlled electron and/or
hole (hereafter referred to as e-h system for brevity). Here ĥ+ =
ĥ
†
− = ∑

j aj,+Îj,+ induces nuclear spin flips and ĥz = ∑
j aj,zÎj,z is

the nuclear field acting back on the e-h system, where Îj is the j th
nuclear spin. Note that F̂z and F̂+ (=F̂

†
−) are arbitrary electron or hole

operators: F̂z does not necessarily refer to Ŝe,z or Ŝh,z and F̂+ does
not necessarily refer to Ŝe,+ or Ŝh,+.

noncollinear part ∝Ŝh,z(Î+ + Î−). This interaction becomes
relevant when the valence-band hole is excited by interband
optical pumping.

(iii) The noncollinear electron-nuclear hyperfine interaction
∝Ŝe,z(Î+ + Î−), which exists between the electron of the
phosphorus donor in silicon and the 29Si isotope nuclear
spins.89,90 It may also arise in optically excited III-V QDs
when the quadrupolar axes of the nuclear spins are not parallel
to the external field.91

These interactions enable a variety of feedback processes
between the electron, the hole, and the nuclear spins [Fig. 2(a)].
In the general scenario, the nuclear spins can be flipped by both
the electron and the hole, through both the pair-wise flip-flop
(Ŝe,+Î− + Ŝe,−Î+ or Ŝh,+Î− + Ŝh,−Î+) and the noncollinear
interaction [Ŝe,z(Î+ + Î−) or Ŝh,z(Î+ + Î−)]. The nuclear spins
act back on both the electron and the hole through the diagonal
interaction (Ŝe,zÎz or Ŝh,zÎz). Such feedback processes correlate
the dynamics of different nuclear spins and play a critical
role in suppressing the nuclear field fluctuation and hence
prolonging the electron-spin coherence time. In particular, all
experimentally reported69–73,75–77 suppressions of the nuclear
field fluctuation occur in weakly or moderately polarized
systems and are attributed to feedback processes [Fig. 2(a)]
instead of a strong nuclear spin polarization. They demonstrate
that to suppress the nuclear field fluctuation significantly,
constructing a proper feedback loop is more feasible than
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achieving a strong nuclear spin polarization s ∼ 99%, which
remains an experimentally demanding goal.

A general feedback loop [Fig. 2(b)] between the electron
and the hole (hereafter referred to as e-h system for brevity)
and the nuclear spins consists of two steps. First, through
the coupling of the e-h operator F̂± to the nuclear spin-flip
operator ĥ∓ [wavy arrow in Fig. 2(b)], the e-h system flips
the nuclear spins and hence changes the nuclear field. Second,
through the coupling of the nuclear field ĥz to the e-h operator
F̂z [straight arrow in Fig. 2(b)], the nuclear field ĥz acts back
on the e-h system. For the first step, perturbation theory is
usually sufficient since the hyperfine interaction between the
e-h system and the nuclear spins is weak. For the second step,
however, the nuclear field ĥz acting back on the e-h system
must be treated nonperturbatively since it may be comparable
with the characteristic energy scale of the electron or hole spin.

C. Theoretical treatment of nuclear field back action

In treating the nuclear field back action, many existing
theories take into account the average nuclear field but
neglect its fluctuation. This approach is capable of reproducing
the average nuclear field responsible for the experimentally
observed hysteretic or locking behaviors but provides no
information about the nuclear field fluctuation. In addition
to numerical simulation,76,92 different approaches have been
utilized to incorporate the nuclear field fluctuation:

(i) For the electron-nuclei feedback loop [Fig. 1(a)],
Rudner and Levitov36,93 and subsequently Danon and
Nazarov29,45,77 introduced the stochastic approach for nuclear
spin 1/2 by assuming that the nuclear field experiences a
random walk described by a single-variable Fokker–Planck
equation. The analytical solution of the Fokker–Planck equa-
tion quantifies the nuclear field fluctuation and shows that
the competition between the electron-induced nuclear spin
polarization and nuclear spin depolarization gives rise to a
restoring force that can suppress the nuclear field fluctuation
well below the thermal equilibrium value.

(ii) For the electron-nuclei feedback loop [Fig. 1(a)] involv-
ing nuclear spin flip with no preferential direction, Greilich
et al.69 derived a slightly different Fokker–Planck equation by
assuming a semiclassical rate equation for the nuclear field
distribution for nuclear spin 1/2.94 The solution shows that
even if the nuclear spin flip has no preferential direction, a
strong feedback suppressing the nuclear field fluctuation can
still exist in steady state, in contrast to the stochastic approach,
which gives a vanishing feedback in this case.

(iii) For the electron-hole-nuclei feedback loop [Fig. 1(b)],
Xu et al.75 argued that the dependence of the average nuclear
field on the optical detuning (which in turn depends on the
fluctuating nuclear field) provides a feedback channel that
can significantly suppress the nuclear field fluctuation. This
provide an intuitive, qualitative picture for suppressing the
nuclear field fluctuation by the feedback loop.

(iv) For the electron-hole-nuclei feedback loop [Fig. 1(b)],
our previous study80 established the mechanism of hole-
induced nuclear spin flip with a preferential direction through
the noncollinear dipolar hyperfine interaction [wavy arrow
in Fig. 1(b)]. There, motivated by the stochastic29,36,45,77,93

and rate-equation69 approaches, we outlined a microscopic

derivation of the Fokker–Planck equation for this specific
mechanism without any stochastic or semiclassical assump-
tions. The analytical solution quantifies the intuitive picture
by Xu et al.75 and establishes a connection to different
approaches.22,29,36,45,69,77,93

The above approaches provide an excellent understanding
for certain feedback processes, but still have the drawback that
they are constructed for nuclear spin 1/2 (while the widely
explored GaAs and InAs quantum dots all contain nuclei with
spins higher than 1/2) or for specific feedback loops [Figs. 1(a)
and 1(b)] with specific nuclear spin-flip mechanism (while
the identified electron-nuclear and hole-nuclear interactions
enable more general feedback processes) and/or they involve
certain (stochastic or semiclassical) assumptions. To maximize
the control over the nuclear field and its fluctuation by flexible
construction of the feedback loop, it is desirable to develop a
comprehensive understanding for a general feedback loop and
nuclear spin-flip mechanism, such as that shown in Fig. 2(b).

D. Systematic, microscopic theory for general feedback loop

In this paper, we present a systematic, microscopic theory
for such a feedback loop [Fig. 2(b)], with the e-h system
subjected to continuous-wave pumping—an important experi-
mental situation. In particular, we study how this feedback loop
controls both the average nuclear field and its fluctuation. This
is achieved by decoupling the slow nuclear field dynamics
from the fast motion of other dynamical variables (e.g., the
off-diagonal nuclear spin coherences and the e-h variables)
through the adiabatic approximation, which enables us to in-
corporate nonperturbatively the back action from the fluctuat-
ing nuclear field [straight arrow in Fig. 2(b)]. Our microscopic
theory justifies and unifies the stochastic approach29,36,45,77,93

and the rate-equation approach69 and generalizes them to
include nuclei with spins higher than 1/2. It identifies two
different kinds of steady-state feedback. The “drift” feedback
(as considered by the stochastic approach29,36,45,77,93 and Xu
et al.75) originates from the nonlinear drift of the nuclear
field, thus its existence requires nuclear spin flip with a
preferential direction. By contrast, the “diffusion” feedback
(as considered by Greilich et al.69 and Barnes and Economou94

in the rate-equation approach and Issler et al.76,92 by numerical
simulation) originates from the nonlinear diffusion of the
nuclear field, so it remains efficient even when the nuclear
spin flip has no preferential direction.

In this paper we focus on the more popular “drift” feedback
followed by a brief discussion about the “diffusion” feedback.
In the general feedback loop as sketched in Fig. 2(b), the
control of the nuclear field through the “drift” feedback loop
can be understood from three successive steps: (i) When the
feedback loop is viewed in a particular cycle starting with a
constant nuclear field h acting on the e-h system through the
back-action term F̂zh [straight arrow in Fig. 2(b)], each nuclear
spin is flipped by the e-h system independently. At the end
of this cycle, a steady-state nuclear field H(h) is established
after the nuclear spin relaxation is complete. We refer to this
nonlinear function H(h) as the nuclear field feedback function.
We emphasize that the nuclear field feedback function H(h),
defined for a single cycle in the feedback loop, is the key
quantity to describe the closed feedback loop. (ii) When the
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feedback from the time-dependent average nuclear field h(t) ≡
〈ĥz〉 is included by replacing ĥz with h(t) in the back-action
term F̂zĥz, the average nuclear field h(t) becomes coupled to
the dynamics of different nuclear spins and its motion becomes
nonlinear or even multistable. This is responsible for the
experimentally observed hysteresis and absorption-strength
locking or avoidance.75–77,81 (iii) When the back action from
the fluctuating nuclear field ĥz is fully taken into account, the
fluctuating nuclear field ĥz becomes coupled to the dynamics
of different nuclear spins, which enables the feedback loop
to further control (e.g., suppress or amplify) the nuclear
field fluctuation. This is responsible for the experimentally
observed suppression of the nuclear field fluctuation and hence
prolonged electron-spin coherence time.69–73,75–77

Our key finding is that all the above controls can be
quantified concisely by the nonlinear nuclear field feedback
function H(h), which is defined for a single cycle of the
feedback loop. Physically, this nonlinear feedback function
encapsulates the mutual response between the nuclear field and
the e-h system. It provides a unified, quantitative description
to three observable effects in the steady state:

(i) Hysteresis, which originates from multiple stable aver-
age nuclear fields. The average nuclear field h(ss) is determined
by the self-consistent equation h = H(h) which, due to the
strong nonlinearity ofH(h), may have multiple solutions {h(ss)

α }
(α = 1,2, . . .). Each solution h(ss)

α is associated with a nuclear
field feedback strength

H′(h(ss)
α

) ≡
(

dH(h)

dh

)
h=h

(ss)
α

, (1)

which quantifies the sensitivity of the average “output” nuclear
field to the “input” nuclear field. If H′(h(ss)

α ) < 1, then h(ss)
α is a

stable average nuclear field associated with a stable feedback
and a macroscopic nuclear spin state.

(ii) Locking (avoidance) of the pump absorption strength to
(from) a certain value.75–77 Suppose that the nuclear spins are
in a macroscopic state h(ss)

α with a feedback strength H′(h(ss)
α ).

When the pump frequency ω changes by δω, the nuclear field
will shift the electron or hole excitation energy ωeh by δωeh, in
such a way that the detuning � ≡ ωeh − ω (which determines
the pump absorption strength) changes by

δ� = δωeh − δω = −δω

1 − H′(h(ss)
α

) .
(ii-a) For a strong negative feedback H′(h(ss)

α ) 	 −1, we have
|δ�| 	 |δω|, i.e., the detuning and hence the pump
absorption strength remains nearly constant over a wide
range of the pump frequency, corresponding to the
locking of the pump absorption strength to a plateau
value.

(ii-b) For a strong positive feedback H′(h(ss)
α ) > 1, the value

h(ss)
α becomes unstable, leading to the avoidance of the

corresponding absorption strength.
(ii-c) For a weak positive feedback H′(h(ss)

α ) � 1, we have
|δ�| 
 |δω|, i.e., the detuning and hence the pump
absorption strength changes drastically upon a slight
change of the pump frequency, corresponding to the
avoidance of the pump absorption strength from a
certain value.

(iii) The suppression or amplification of the nuclear field
fluctuation of weakly polarized nuclear spins. In a weakly
polarized macroscopic nuclear spin state h(ss)

α with a feedback
strength H′(h(ss)

α ), the feedback loop changes the nuclear field
fluctuation from the thermal equilibrium value σeq to σeq[1 −
H′(h(ss)

α )]−1/2. Thus negative (positive) feedback suppresses
(amplifies) the nuclear field fluctuation. Combination of (ii)
and (iii) gives a positive correlation between the absorption
strength locking (avoidance) and the suppression (amplifica-
tion) of the nuclear field fluctuation: the stronger the locking
(avoidance), the stronger the suppression (amplification).

By estimating the efficiency of the “drift” feedback and the
diffusion feedback, we conclude that the feedback approach is
capable of suppressing the nuclear field fluctuation to recover
the intrinsic electron-spin coherence time.

To exemplify our general theory, especially the quan-
tification of the drift feedback by the nonlinear feedback
function, we consider the feedback loop in Fig. 2(b), initially
proposed by Xu et al.75 and subsequently explored by our
previous study,80 that established the mechanism of hole-
induced nuclear spin flip with a preferential direction through
the noncollinear dipolar hyperfine interaction. This feedback
loop serves as an excellent example for our general theory
because it can realize all the interesting regimes discussed
above. In particular, we find a highly nonlinear feedback
function that gives rise to bistable macroscopic nuclear spin
states. For negative nuclear Zeeman frequency, one state has a
strong negative feedback H′(h(ss)

α ) 	 −1, leading to strong
locking of the pump absorption strength to the resonance
and significantly suppressed nuclear field fluctuation. When
the nuclear Zeeman frequency is reversed, one state has a
positive feedback, leading to strong avoidance of the pump
absorption strength from resonance and enhanced nuclear field
fluctuation.

II. THEORY

We consider many nuclear spins coupled to a generic
e-h system under continuous-wave pumping in a single QD
subjected to an external magnetic field B along the z growth
axis. The total Hamiltonian is

Ĥ (t) = ĤN + Ĥeh(t) + V̂ (t). (2)

The nuclear spin Hamiltonian is

ĤN ≡
∑

j

ωj,N Î z
j , (3)

where ωj,N ≡ −γj,NB is the nuclear Zeeman frequency and
the summation

∑
j runs over all nuclear spins in the QD.

The e-h Hamiltonian Ĥeh(t) includes the continuous pumping
and the coupling of the e-h system to the environment (e.g.,
vacuum electromagnetic fluctuation95 or neighboring electron
or hole reservoirs96), which introduces damping into the e-h
system. The general coupling between the e-h system and the
nuclear spins can be written as

V̂ (t) ≡ F̂z(t)ĥz + F̂+(t)ĥ− + F̂−(t)ĥ+, (4)

where F̂z(t) = F̂
†
z (t) and F̂−(t) = F̂

†
+(t) are arbitrary dimen-

sionless operators (not necessarily spin operators) for the
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electron or the hole. In particular, F̂z does not necessarily
refers to Ŝe,z or Ŝh,z and F̂+ does not necessarily refer to Ŝe,+
or Ŝh,+. These operators are coupled to different components

ĥz ≡ ∑
j aj,zÎj,z,

ĥ+ ≡ ∑
j aj,+Îj,+,

and ĥ− = ĥ
†
+ of the nuclear field, where Îj,± ≡ Îj,x ± iÎj,y .

The feedback loop in this model corresponds to Fig. 2(b).
Through the off-diagonal coupling

V̂nd(t) ≡ F̂+(t)ĥ− + F̂−(t)ĥ+, (5)

the e-h system flips the nuclear spins [wavy arrow in Fig. 2(b)]
and changes the nuclear field, which in turn acts back on the e-h
system through the diagonal coupling F̂z(t)ĥz [straight arrow
in Fig. 2(b)]. To incorporate nonperturbatively the back action
by the diagonal coupling, we divide the total Hamiltonian Ĥ (t)
into the diagonal, unperturbed part

Ĥ0(t) ≡ ĤN + Ĥeh(t) + F̂z(t)ĥz, (6)

to be treated nonperturbatively, and the off-diagonal part
V̂nd(t), to be treated perturbatively.

We are interested in the control of the feedback loop over the
nuclear field dynamics, which is associated with the diagonal
part P̂ (t) of the nuclear spin density matrix. Therefore, we
need to single out the motion of P̂ (t) from the exact equation
of motion

d

dt
ρ̂(t) = −i[Ĥ0(t) + V̂nd(t),ρ̂(t)]

for the density matrix ρ̂(t) of the coupled system. This can
be achieved by the following time-scale analysis for three
essential processes, two being driven by the unperturbed
Hamiltonian Ĥ0(t) and one being driven by the perturbation
V̂nd(t):

1. Dissipative dynamics of the e-h system driven by Ĥ0(t).
Here ĥz may be regarded as a classical parameter since it
commutes with every term in Ĥ0(t). Through the diagonal
coupling F̂z(t)ĥz in Ĥ0(t), the back action of the nuclear field
ĥz on the e-h system [straight arrow in Fig. 2(b)] changes the
free e-h evolution

Ûeh(t) = T e−i
∫ t

0 Ĥeh(t ′)dt ′ (7)

to a ĥz-dependent evolution

Ûeh(ĥz,t) = T e−i
∫ t

0 [Ĥeh(t ′)+F̂z(t ′)ĥz]dt ′ (8)

(T is the time-ordering operator) that establishes
a ĥz-dependent steady e-h state ρ̂

(ss)
eh (ĥz,t) =

Ûeh(ĥz,t)ρ̂eh(0)Û †
eh(ĥz,t) within the e-h relaxation time

Teh ∼ 1 ns75 [recall that Ĥeh(t) includes the e-h relaxation].
2. Nuclear spin dephasing driven by Ĥ0(t). Through the

diagonal coupling in Ĥ0(t), the e-h fluctuation eliminates
the off-diagonal nuclear spin coherences (see Appendix A
for details) within the nuclear spin dephasing time T2,N ∼
0.01–1 ms. Although interspin coherences could still persist
between nuclei with equal diagonal hyperfine interaction
strengths ai,z, here to focus on the nuclear spin feedback

effect, we assume that persistent interspin coherences have
been removed, e.g., by e-h wave-function modulation.28,97

Additional nuclear spin dephasing on the time scale ∼0.1 ms
comes from the nuclear-nuclear dipolar interaction.1,21 This
process transforms an arbitrary nuclear spin density matrix
ρ̂N (t) to a diagonal one P̂ (t) with vanishing nuclear spin
coherences.

3. Nuclear spin relaxation driven by V̂nd(t). Through
the off-diagonal coupling, the e-h fluctuation flips the nu-
clear spins [wavy arrow in Fig. 2(b)] and changes the
nuclear field within the nuclear spin relaxation time T1,N ∼
1–100 s.30,43,51,55,67,69 The decay of the nuclear field due to, e.g.,
the nonsecular part of the nuclear-nuclear dipolar interaction,
occurs on the same time scale.35,57,69,71

To summarize, the unperturbed evolution driven by Ĥ0(t)
rapidly establish a classically correlated state ρ̂

(ss)
eh (ĥz,t)P̂ (t) on

a short time scale ∼Teh,T2,N , while the off-diagonal coupling
V̂nd(t) slowly flips the nuclear spins and changes the nuclear
field ĥz on a much longer time scale ∼T1,N 
 Teh,T2,N .
This fact enables us to use the adiabatic approximation to
separate the unperturbed evolution from the nuclear spin flip by
assuming that the classically correlated state is instantaneously
established after each nuclear spin flip. In this case, on the
time scale of T1,N , we can use the classically correlated
state ρ̂

(ss)
eh (ĥz,t)P̂ (t) as the zeroth-order approximation to the

state of the whole system and incorporate the off-diagonal
coupling [wavy arrow in Fig. 2(b)] through second-order
perturbation theory in the density matrix formalism. Through
straightforward algebra (see Appendix B for details), we arrive
at the following rate equation for P̂ (t) up to second order of
V̂nd on the time scale of T1,N under the condition that the e-h
fluctuation is invariant under temporal translation:

d

dt
P̂ (t) = −

∑
j

[Îj,−,Îj,+Wj,+(ĥz)P̂ (t)]

−
∑

j

[Îj,+,Îj,−Wj,−(ĥz)P̂ (t)], (9)

where

Wj,±(ĥz)

= |aj,+|2
∫ ∞

−∞
e∓iωj,N t dt Treh F̂ I

±(ĥz,t)F̂
I
∓(ĥz,0)ρ̂(ss)

eh (ĥz,0)

(10)

is the rate of the transition of the j th nuclear spin that increases
[for Wj,+(ĥz)] or decreases [for Wj,−(ĥz)] the quantum number
of Îj,z by one [Fig. 3(b)] and

ÔI(ĥz,t) ≡ Û
†
eh(ĥz,t)Ô(t)Ûeh(ĥz,t) (11)

for an arbitrary e-h operator Ô(t). The e-h fluctuation
Treh F̂ I

±(ĥz,t)F̂ I
∓(ĥz,0)ρ̂(ss)

eh (ĥz,0) and hence the transition rates
Wj,±(ĥz) can be evaluated through the quantum regression
theorem.95 We emphasize that Eq. (9) can only describe
the nuclear spin relaxation dynamics on the coarse-grained
time scale t 
 Teh,T2,N . To describe the coherent nuclear
spin rotation, squeezing,98 or dephasing on a shorter time
scale Teh 	 t � T2,N , our adiabatic approximation needs to
be generalized.
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e-h system Nuclear spins
(a) (ss) ˆˆ ( , )eh zh t ˆ( )P t

1
j

m

j
m

1
j

m

,
ˆ( )j zW h

,
ˆ( )j zW h

,
ˆ( )j zW h

,
ˆ( )j zW h

(b)

ˆ
zh

ˆ( )zW h

FIG. 3. (Color online) (a) The back action of the nuclear field ĥz

(straight arrow) instantaneously establish a ĥz-dependent e-h steady
state ρ̂

(ss)
eh (ĥz,t), whose fluctuation in turn flips the nuclear spin (wavy

arrow) and changes the nuclear field. (b) The spin-flip transition rates
Wj,±(ĥz) of the j th nuclear spin between adjacent eigenstates {|m〉j }
of Î z

j are dependent on the nuclear field ĥz.

Equation (9) describes the dynamics of the diagonal part of
the nuclear spin density matrix (i.e., the population flow of the
nuclear spins) driven by the general feedback loop. Equation
(10) is the nonequilibrium version99 of the fluctuation-
dissipation theorem:100 the fluctuation of the nonequilibrium
e-h system [driven by the ĥz-dependent evolution Ûeh(ĥz,t)]
induces irreversible population flow of the nuclear spins to-
wards a nonequilibrium steady state. Now the entire feedback
loop reduces from Fig. 2(b) to Fig. 3(a). First, the “input”
nuclear field ĥz acting on the e-h system [straight arrow in
Fig. 3(a)] changes the free e-h evolution Ûeh(t) [Eq. (7)] to a ĥz-
dependent evolution Ûeh(ĥz,t) [Eq. (8)] that instantaneously
establishes the ĥz-dependent e-h steady state ρ̂

(ss)
eh (ĥz,t)

and hence e-h fluctuation Treh F̂ I
±(ĥz,t)F̂ I

∓(ĥz,0)ρ̂(ss)
eh (ĥz,0).

Second, through the off-diagonal coupling [wavy arrow in
Fig. 3(a)], the ĥz-dependent e-h fluctuation induces an ĥz-
dependent irreversible population flow of the nuclear spins
[Fig. 3(b)]. Then the “output” nuclear field generated by
this population flow depends on the “input” nuclear field ĥz.
Finally, the back action of this “output” nuclear field on the
e-h system [straight arrow in Fig. 3(a)] closes the feedback
loop. Our previous solution80 for a specific feedback loop
[Fig. 1(b)] is designed for a specific Hamiltonian. By contrast,
Eqs. (9)–(11), which are derived by the standard density matrix
perturbation theory (Appendix B), yield the general solution
of a feedback loop governed by any Hamiltonian of the form
of Eqs. (2)–(4).

Up to now we have neglected the nuclear spin depolariza-
tion, e.g., by the nuclear-nuclear dipolar interactions. If these
processes do not interfere with the e-h mechanism considered
here, then they can be characterized by phenomenological
decay rates {	j,1} and incorporated into Eq. (9) by replacing
the transition rates Wj,±(ĥz) by Wj,±(ĥz) + 	j,1/2. Hereafter
it is understood that Wj,±(ĥz) already includes the nuclear spin
depolarization.

Our solution of Eq. (9) consists in the control of the average
nuclear field and the nuclear field fluctuation by the feedback
loop. For simplicity we consider uniform couplings aj,+ =
a+,aj,z = az (generalization to nonuniform couplings can be
achieved by coarse graining97) of the e-h system to identical

nuclear spin I with ωj,N = ωN in the QD (complete nuclear
spin dephasing due to wave-function modulation assumed), so
that Wj,±(ĥz) = W±(ĥz) is independent of j . The nuclear field

ĥz = (NIaz)

⎛
⎝ 1

NI

N∑
j=1

Î z
j

⎞
⎠ ≡ hmaxŝ,

where N is the total number of nuclear spins in the QD, hmax ≡
NIaz is the nuclear field from fully polarized nuclear spins,
and ŝ ≡ ĥz/hmax is the polarization per unit nuclear spin or
the normalized nuclear field. Hereafter, we will refer to ŝ as
the nuclear field in cases of no confusion.

The feedback control is explained by making different
approximations to Eq. (9). (A) To begin with, we start a
particular cycle of the feedback loop by replacing the nuclear
field operator ĥz in the nuclear spin flip rates W±(ĥz) with
a constant parameter h and define the nuclear field feedback
function H(h) as the end product of this cycle. (B) We close
the cycle of the feedback loop on the mean-field level by
replacing ĥz in the nuclear spin-flip rates W±(ĥz) with the
time-dependent average nuclear field h(t) ≡ Tr P̂ (t)ĥz. Then
we discuss the multistability of the nuclear field and use
the nuclear field feedback strength H′(h) ≡ dH(h)/dh to
quantify the locking (or avoidance) of the pump absorption
strength to (or from) a certain value. (C) We close the cycle
of the feedback loop by fully taking into account the back
action from the fluctuating nuclear field ĥz without making
any approximation to W±(ĥz). In this case, we identify two
different kinds of steady-state feedback: the drift feedback
originating from the nonlinear drift of the nuclear field and the
diffusion feedback originating from the nonlinear diffusion of
the nuclear field. We show that the nuclear field fluctuation
controlled by the drift feedback is quantified by the nuclear
spin polarization22 (negligible for weakly polarized system)
and the feedback strength H′(h). By estimating the efficiency
of the drift feedback and diffusion feedback, we conclude
that the feedback approach is capable of suppressing the
nuclear field fluctuation to recover the intrinsic electron-spin
coherence time.

A. A particular cycle in the loop: nuclear field
feedback function

In this section, we replace the nuclear field operator ĥz in
the nuclear spin-flip rate W±(ĥz) with a constant parameter
h, which amounts to replacing the back-action term F̂zĥz

[straight arrow in Fig. 2(b) or Fig. 3(a)] with F̂zh. This starts
a particular cycle of the feedback loop, with the dynamics of
different nuclear spins being decoupled: the density matrix for
all the nuclear spins is the product of the density matrices of
individual nuclear spins. The average polarization 〈Î z

j 〉/I of

each nuclear spin is equal to s(t) ≡ Tr ŝP̂ (t). Therefore, as
long as s(t) is concerned, we need only consider one nuclear
spin in this case.

For nuclear spin 1/2, Eq. (9) gives

d

dt
s = −	tot(h)

[
s − s

(1/2)
0 (h)

]
, (12)
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where

s
(1/2)
0 (h) = W+(h) − W−(h)

W+(h) + W−(h)
(13)

is the steady-state nuclear spin polarization, established within
the nuclear spin relaxation time T1,N (h) = 1/	tot(h), where
	tot(h) ≡ W+(h) + W−(h).

For nuclei with a general spin I , the steady-state nuclear
spin polarization becomes

s0(h) ≡ BI

(
I ln

1 + s
(1/2)
0 (h)

1 − s
(1/2)
0 (h)

)
≈ 2(I + 1)

3
s

(1/2)
0 (h), (14)

where BI (x) ≡ (2I + 1)/(2I ) coth[(2I + 1)x/(2I )] −
1/(2I ) coth[x/(2I )] is the Brillouin function. The real-time
motion of s(t) is given by

d

dt
s = −	tot(h)

(
s −

〈
Î 2
j,x

〉+ 〈
Î 2
j,y

〉
I

s
(1/2)
0 (h)

)

≈ −	tot(h)[s − s0(h)]. (15)

The last step of Eqs. (14) and (15) is valid if I = 1/2
or |s0(h)| 	 1. Below, unless explicitly stated, we always
consider this situation. Equation (14) shows that, for weak
polarization |s0(h)| 	 1, the polarization of nuclear spin I

is enhanced by a factor ∼2(I + 1)/3 compared with that of
nuclear spin 1/2.

The steady-state value of the average nuclear field Tr ĥzP̂ (t)
as a function of the parameter h is given by a nonlinear function

H(h) ≡ hmaxs0(h). (16)

Since the function H(h) connects the “input” nuclear field
h (of a feedback cycle) acting on the e-h system [straight
arrow in Fig. 3(a)] and the average “output” nuclear field (of
this feedback cycle) produced by the nuclear spins driven by
the e-h fluctuation [wavy arrow in Fig. 3(a)], we call H(h)
the nuclear field feedback function. It encapsulates (i) the
nonlinear response of the e-h fluctuation to the nuclear field
acting on the e-h system [straight arrow in Fig. 3(a)] and
(ii) the response of the nuclear field to the e-h fluctuation [wavy
arrow in Fig. 3(b)] in a particular cycle. Equation (16) also
shows that s0(h) = H(h)/hmax is just the normalized nuclear
field feedback function.

In this section, we have focused on a single cycle of the
feedback loop by replacing W±(ĥz) with W±(h), so that all
the physical quantities are functions of the parameter h, e.g.,
the steady-state nuclear polarization s0(h), s

(1/2)
0 (h), and the

nuclear field feedback function H(h). In the next two sections,
we show that these functions, which are defined for a single
cycle of the feedback loop, plays a crucial role in the realistic,
closed feedback loop.

B. Back action from average nuclear field: absorption strength
locking or avoidance

Here we take into account the average nuclear field h(t) ≡
Tr P̂ (t)ĥz acting on the e-h system, i.e., W±(ĥz) → W±(h(t)).
In this case, the dynamics of different nuclear spins are coupled
to the average nuclear field h(t). This enables the feedback loop
to control the average nuclear field. As a result, the motion of

h(t) = hmaxs(t), as obtained from Eq. (15) by replacing h with
h(t), becomes nonlinear:

d

dt
h(t) ≈ −	tot(h(t))[h(t) − H(h(t))]. (17)

The average nuclear field h(ss) in the steady state is
determined by the self-consistent equation h = H(h) which,
due to the nonlinearity of H(h), may have multiple solutions
{h(ss)

α } (distinguished by the subscript α = 1,2, . . .). Each
solution h(ss)

α is associated with a nuclear field feedback
strength H′(h(ss)

α ), as defined in Eq. (1). A positive (negative)
feedback corresponds to H′(h(ss)

α ) > 0 [H′(h(ss)
α ) < 0]. The

equation of motion for the deviation δhα(t) ≡ h(t) − h(ss)
α of

the average nuclear field h(t) from the αth steady-state value
h(ss)

α follows from Eq. (17) as

d

dt
δhα ≈ −	tot

(
h(ss)

α

)[
1 − H′(h(ss)

α

)]
δhα + O[(δhα)2].

(18)

For h(ss)
α to be stable, the corresponding feedback strength

must satisfy H′(h(ss)
α ) < 1, so that any deviation of the average

nuclear field away from its steady-state value h(ss)
α would decay

to zero within the nuclear spin relaxation time T1,N (h(ss)
α ) =

1/	tot(h(ss)
α ). In this case, h(ss)

α corresponds to a macroscopic
nuclear spin state. For weak nuclear spin polarization, since
s0 ≈ 2(I + 1)s(1/2)

0 /3 and H = hmaxs0 = NazIs0, we have
H′(h(ss)

α ) ∝ I (I + 1), i.e., nuclei with higher spin have stronger
feedback strength.

Recently, under continuous-wave pumping, several
groups75–77 observed the locking of the pump absorption
strength to the resonance: when gradually sweeping the pump
frequency ω away from the resonance with the electron or hole
excitation, the nuclear field tends to compensate this change
and shift the electron or hole excitation energy to restore the
resonance. Very recently, the opposite behavior (i.e., pushing
the pump absorption strength away from the natural resonance)
was predicted80 and observed.81 These behaviors originate
from the feedback of the average nuclear field. Below we
use the nuclear field feedback function to quantify these (and
more general) behaviors.

In a typical continuous-pumping experiment, the back
action of an average nuclear field h on the e-h system shifts
the electron or hole excitation energy from ω0

eh to ωeh ≡
ω0

eh + h or ωeh ≡ ω0
eh − h. For specificity we first consider

the former case ωeh = ω0
eh + h. The detuning between the

electron or hole excitation energy and the pump frequency
is � ≡ ωeh − ω = ω0

eh + h − ω. Typically the nuclear spin
transition rates W± (due to e-h fluctuation) are nonlinear
functions of � and this is the only source for the dependence
of the nuclear field feedback function on h. In this case, the
feedback function can be written as H(h) = H(ω0

eh + h − ω).
Suppose that, at an initial pump frequency ω, the nuclear spins
are in the αth macroscopic state with an average nuclear field
h(ss)

α determined by

h(ss)
α = H

(
ω0

eh + h(ss)
α − ω

)
, (19)

the electron or hole excitation energy is ωeh = ω0
eh + h(ss)

α , and
the detuning is � = ω0

eh + h(ss)
α − ω. Now the pump frequency

changes by δω (which is not necessarily small), then the

235304-7



WEN YANG AND L. J. SHAM PHYSICAL REVIEW B 88, 235304 (2013)

nuclear field changes by δh(ss)
α determined by

h(ss)
α + δh(ss)

α = H
(
ω0

eh + h(ss)
α + δh(ss)

α − ω − δω
)
, (20)

the electron or hole excitation energy changes by δωeh =
δh(ss)

α , and the detuning changes by δ� = δωeh − δω. If the
detuning change δ� is small, then we can make a first-
order Taylor expansion toH(ω0

eh + h(ss)
α + δh(ss)

α − ω − δω) =
H(ω0

eh + h(ss)
α − ω + δ�) and obtain

δωeh = − H′(h(ss)
α

)
1 − H′(h(ss)

α

)δω, (21)

δ� = −δω

1 − H′(h(ss)
α

) . (22)

For the nuclear field shifting the electron or hole excitation
energy from ω0

eh to ωeh ≡ ω0
eh − h, Eqs. (21) and (22) still

hold.
Equation (22) shows that the feedback loop controls the

sensitivity of the pump detuning � [and hence the pump
absorption strength χ (�)] to the change of the pump frequency
(for clarity we assume that the nuclear field shifts the
electron or hole excitation energy from ω0

eh to ωeh ≡ ω0
eh + h

although the same conclusions apply to the opposite case
ωeh ≡ ω0

eh − h):
(i) If h(ss)

α is associated with a strong negative feedback
H′(h(ss)

α ) 	 −1, then the nuclear-field-induced shift of the
electron or hole excitation energy δωeh ≈ δω [Eq. (21)] largely
compensates the change of the pump frequency, so that the
change of the detuning |δ�| = |δωeh − δω| 	 |δω| [Eq. (22)]
is very small, which in turn justifies the first-order Taylor ex-
pansion to H(ω0

eh + h(ss)
α − ω + δ�) [used to derive Eqs. (21)

and (22)] even when δω is not small. As a result, the absorption
strength becomes insensitive to the change of the pump
frequency. Therefore, the feedback loop with a strong negative
feedback serves as a “trap” of the absorption strength: once a
strong negative feedback H′(h(ss)

α ) 	 −1 is formed at a certain
pump frequency ω, further change of the pump frequency over
a wide range does not appreciably change the detuning from
the value ω0

eh + h(ss)
α − ω and hence does not change the pump

absorption strength from the value χ (ω0
eh + h(ss)

α − ω). The
experimentally observed75–77 locking of the pump absorption
strength to the resonance corresponds to the occurrence of
such a trap around the resonance point: ω0

eh + h(ss)
α − ω = 0

(see Sec. III B1 for an example).
(ii) If h(ss)

α is associated with a strong positive feedback
H′(h(ss)

α ) > 1, then h(ss)
α is unstable, thus the corresponding

pump absorption value χ (ω0
eh + h(ss)

α − ω) will not be observed
experimentally in steady state, i.e., the pump absorption value
χ (ω0

eh + h(ss)
α − ω) is avoided. The experimentally observed81

avoidance of the pump absorption strength from the resonance
corresponds to the occurrence of such a unstable feedback on
the resonance point: ω0

eh + h(ss)
α − ω = 0 (see Sec. III B2 for

an example).
(iii) If h(ss)

α is associated with a stable, positive feedback
0 < H′(h(ss)

α ) < 1, then the nuclear-spin-induced shift of the
electron or hole excitation energy δωeh has an opposite sign
to the pump frequency change δω, so that |δ�| > |δω|.
Therefore, if a stable, positive feedbackH′(h(ss)

α ) ≈ 1 is formed
at a certain pump frequency ω, then even a small change
of the pump frequency will lead to drastic change of the

nuclear field, which in turn shifts the detuning far away from
the expected value ω0

eh + h(ss)
α − ω, corresponding to rapid

pushing of the pump absorption strength away from the value
χ (ω0

eh + h(ss)
α − ω) (see Sec. III B3 for an example).

C. Back action from fluctuating nuclear field: suppression or
amplification of nuclear field fluctuation

Here we close the cycle of the feedback loop by fully
incorporating the back action of the fluctuating nuclear field ĥz.
In this case, the dynamics of different nuclear spins are coupled
to ĥz through the ĥz-dependent transition rates W±(ĥz). This
enables the feedback loop to control the nuclear field, both its
average value and its fluctuation. For the paradigmatic central
spin model consisting of a confined electron spin coupled to
the nuclear spins through the contact hyperfine interaction

V̂eN =
∑

j

aj,eŜe · Îj , (23)

we identify F̂z ≡ Ŝe,z and the nuclear field ĥz ≡ ∑
j aj,eÎj,z,

whose strong fluctuation leads to the detrimental effect of rapid
electron-spin decoherence.5–17 Suppressing the nuclear field
fluctuation is a major direction of recent research in spin-based
quantum computation.

The diagonal nuclear spin density matrix P̂ (t) contains
the information for the population of every nuclear spin, but
it is difficult to obtain such microscopic details by solving
Eq. (9), even in the steady state, because different nuclear spins
are coupled to the fluctuating nuclear field ĥz. Fortunately,
the quantity of importance is the nuclear field ĥz = hmaxŝ.
Therefore, the key is to single out the dynamics of the nuclear
field from Eq. (9), as motivated by the stochastic29,36,45,77,93

and rate-equation69 approaches. For this purpose, we define
the probability distribution function p(s,t) ≡ Tr δŝ,s P̂ (t) of ŝ,
i.e., the probability for the nuclear field ŝ to be equal to s

at time t . From Eq. (9), we can approximately derive (see
Appendix C for details) a closed equation of motion, i.e., the
Fokker–Planck equation for p(s,t):

∂

∂t
p(s,t) = ∂

∂s

[
∂

∂s
D(s)p(s,t) − v(s)p(s,t)

]
, (24)

where

D(s) ≈ 1

2NI
	tot(hmaxs)

(
2(I + 1)

3
− ss

(1/2)
0 (hmaxs)

)
(25)

is the diffusion coefficient and

v(s) ≈ −	tot(hmaxs)[s − s0(hmaxs)] (26)

is the drift coefficient. The steady-state solution is given by

p(ss)(s) = D(s∗)

D(s)
p(ss)(s∗) exp

(∫ s

s∗

v(s ′)
D(s ′)

ds ′
)

, (27)

where s∗ is an arbitrary constant. The steady-state distribution
function p(ss)(s) contains all the information for the nuclear
field. Each peak of p(ss)(s) corresponds to a macroscopic
nuclear spin state (distinguished by subscript α): the position
s(ss)
α of the αth peak gives the average nuclear field s(ss)

α , while
the width σα of the αth peak quantifies the fluctuation of the
nuclear field ŝ around its average value s(ss)

α . We note that a
sharp peak of p(ss)(s) may result from its exponent or from
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the factor D(s∗)/D(s). For clarity, hereafter we use {s(ss)
α } to

denote those from the exponent and use {s̄(ss)
α } to denote those

from the factor D(s∗)/D(s).
Equations (24)–(27) and their detailed derivations in

Appendix C justify and unify the stochastic
approach29,36,45,77,93 and the rate-equation approach69 and
generalize them to include nuclei with spins higher than 1/2.
For nuclear spin 1/2, the drift coefficient v(s), the diffusion
coefficient D(s), and the exponent in Eq. (27) coincide with the
stochastic approach,29,36,45,77,93 while the factor D(s∗)/D(s)
coincides with the rate-equation approach.69 The exponent is
associated with the nonlinear drift v(s)/D(s) of the nuclear
field, while the factor D(s∗)/D(s) is associated with the
nonlinear diffusion of the nuclear field. They correspond to
two distinct feedback processes controlling the nuclear field.
As shown below, the feedback originating from the nonlinear
drift (hereafter referred to as drift feedback) vanishes when
the nuclear spin flip has no preferential direction (i.e.,
W+ = W−). By contrast, the feedback originating from
the nonlinear diffusion (hereafter referred to as diffusion
feedback) remains efficient even for nuclear spin flip with no
preferential direction. The steady states of the drift feedback
are associated with the peaks {s(ss)

α }, while the steady states of
the diffusion feedback are associated with the peaks {s̄(ss)

α }.
The rest of this section is organized as follows: First, we

focus on quantifying the drift feedback by the nuclear field
feedback function. Second, we briefly discuss the diffusion
feedback. Finally, with the estimate of the efficiency of the
drift feedback and diffusion feedback, we conclude that the
feedback is capable of recovering the intrinsic electron spin
coherence time.

1. Drift feedback

The drift feedback associated with the exponent of p(ss)(s)
has been discussed by the stochastic approach29,36,45,77,93 for
nuclear spin 1/2. Here we focus on quantifying the control
over the nuclear field ĥz = hmaxŝ by the drift feedback with
our nuclear field feedback function for nuclei with a general
spin.

Without the factor D(s∗)/D(s), the extremum of p(ss)(s)
is determined by v(s) = 0 as s = s0(hmaxs), equivalent to the
self-consistent equation h = hmaxs0(h) = H(h) for the average
nuclear field since h = hmaxs. Furthermore, the condition
v′(s(ss)

α ) ≡ [dv(s)/ds]
s=s

(ss)
α

< 0 for an extremum at s(ss)
α to

be a peak gives [ds0(hmaxs)/ds]
s=s

(ss)
α

< 1, equivalent to
the stability condition H′(h(ss)

α ) < 1 since h(ss)
α = hmaxs

(ss)
α .

Therefore, the conditions determining the average nuclear
field and its stability are exactly the same as the mean-field
treatment discussed in Sec. II B, where the nuclear field
feedback function provides a complete description. According
to the analysis there, h = H(h) may have multiple stable
solutions {h(ss)

α }, corresponding to multiple peaks of p(ss)(s) at
{s(ss)

α ≡ h(ss)
α /hmax} and hence multiple macroscopic nuclear

spin states.
The key quantity of interest is the fluctuation of the nuclear

field ŝ = ĥz/hmax in each macroscopic state, as quantified by
the width of the probability distribution p(ss)(s) around each
peak. For the fluctuation of the nuclear field around its average
value s(ss)

α in the αth macroscopic state, we follow the stochastic

approach29,36,45,77,93 and expand v(s) around s(ss)
α to the first

order v(s) ≈ v′(s(ss)
α )(s − s(ss)

α ). Then the exponential factor
becomes a Gaussian peak exp[−(s − s(ss)

α )2/(2σ 2
α )] centered

at s(ss)
α . The width of this peak is σα = [D(s(ss)

α )/|v′(s(ss)
α )|]1/2,

which, for nuclear spin 1/2, coincides with the stochastic
approach. By substituting Eqs. (25) and (26) into σα , we obtain

σα = σeq

√√√√1 − [
s

(1/2)
0

(
h

(ss)
α

)]2
1 − H′(h(ss)

α

) , (28)

where σeq ≡ [(I + 1)/(3NI )]1/2 is the thermal equilibrium
fluctuation of the nuclear field ŝ. Note that the normalization
|s(1/2)

0 | � 1 and the stability condition H′(h(ss)
α ) < 1 ensures

that the quantity inside the square root of Eq. (28) is always
finite and nonnegative.

Equation (28) shows that in the αth macroscopic nuclear
spin state, the nuclear field fluctuation is controlled by the
nuclear spin polarization and the feedback:

(1) In the absence of the e-h system, we have s
(1/2)
0 (h) =

H(h) = H′(h) = 0 and hence a unique, vanishing nuclear field
s(ss) = 0 in steady state. The fluctuation of the nuclear field
ŝ is given by Eq. (28) as σeq, i.e., the thermal equilibrium
fluctuation.

(2) If we take into account the e-h-induced nuclear spin flip
[wavy arrow in Fig. 2(b)] but neglect the back action of the
nuclear field on the e-h system [straight arrow in Fig. 2(b)],
then the dynamics of different nuclear spins is decoupled.
In steady state, each individual nuclear spin acquires a finite
polarization s

(1/2)
0 (0) that suppresses its own fluctuation by a

factor {1 − [s(1/2)
0 (0)]2}1/2. The fluctuation of the collective

nuclear field is suppressed by the same factor.
(3) Inclusion of the back action of the average nuclear field

(Sec. II B) leads to multiple stable nuclear fields {s(ss)
α }, so that

the suppression of the nuclear field fluctuation around s(ss)
α

becomes {1 − [s(1/2)
0 (h(ss)

α )]2}1/2. Points (2) and (3) describe
the suppression of the nuclear field fluctuation by nuclear spin
polarization.22

(4) If we fully take into account the back action of
the fluctuating nuclear field, then in addition to the fac-
tor {1 − [s(1/2)

0 (h(ss)
α )]2}1/2 associated with the polarization

s
(1/2)
0 (h(ss)

α ) of each individual nuclear spin, the nuclear field
fluctuation is further controlled by the feedback, as quantified
by the factor [1 − H′(h(ss)

α )]−1/2 in Eq. (28). It can either
suppress [for negative feedback H′(h(ss)

α ) < 0] or amplify
[for positive feedback 0 < H′(h(ss)

α ) < 1] the nuclear field
fluctuation without changing the fluctuation of each indi-
vidual nuclear spin. This quantifies a previous qualitative
argument75 of feedback induced suppression of the nuclear
field fluctuation: when the fluctuation increases (decreases) the
nuclear field above (below) its macroscopic value, the negative
feedback decreases (increases) the nuclear field and tends to
restore its macroscopic value.

2. Diffusion feedback

The drift feedback is associated with the peaks {s(ss)
α }

of p(ss)(s) originating from its exponent. One distinguishing
feature of the drift feedback is that it vanishes when the
nuclear spin flip has no preferential direction, i.e., when
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W+(h) = W−(h). This is because W+(h) = W−(h) leads to
vanishing nuclear field feedback function H(h) ∝ s(h) = 0.
Consequently, the self-consistent condition h = H(h) gives
a unique, vanishing steady-state nuclear field and vanishing
control over the nuclear field fluctuation, so that σ = σeq

[Eq. (28)]. Correspondingly, the exponent reduces to the
thermal equilibrium distribution exp[−s2/(2σ 2

eq)].
By contrast, the diffusion feedback is associated a different

set of peaks {s̄(ss)
α } of p(ss)(s) originating from sharp peaks

of D(s∗)/D(s) or equivalently sharp dips of D(s). Therefore,
the diffusion feedback does not vanish even for nuclear spin
flip with no preferential direction. Again, the peak of p(ss)(s)
at s̄(ss)

α corresponds to a macroscopic nuclear spin state with
average nuclear field s̄(ss)

α . The fluctuation σ̄α of the nuclear
field around the average value s̄(ss)

α is determined by the width
of the peak. For example, the nucleus-induced frequency
focusing observed by Greilich et al.69 upon periodic pulsed
excitation of the electron spin originates from such diffusion
feedback. There, D(s) exhibits multiple sharp dips spaced by
2πνrep/hmax as determined by the pulse repetition rate νrep.
Recently, based on the electron-induced nuclear spin flip with
no preferential direction, Issler et al.92 proposed a nuclear
spin cooling scheme with nuclear field selective coherent
population trapping, where the suppression of the nuclear field
fluctuation was analyzed with a Monte Carlo simulation. This
scheme is an excellent example of the diffusion feedback: the
coherent dark-state dip of the electron population introduces
a sharp dip into the electron-induced nuclear spin-flip rates
W±(hmaxs) and hence the diffusion coefficient D(s). Conse-
quently, the distribution function p(ss)(s) exhibits a narrow
peak, corresponding to a finite nuclear field with suppressed
fluctuation.

3. Recovering intrinsic electron-spin coherence time by feedback

First we estimate the efficiency of the drift feedback
and the diffusion feedback. Suppose that the characteristic
scale for the nuclear spin transition rates W±(h) to change
appreciably is δh. For the drift feedback, the maximal feedback
strength is roughly estimated as |H′(h)| ∼ hmax/δh, where
we have assumed that the maximal achievable nuclear spin
polarization ∼O(1). Therefore, according to Eq. (28), the
typical fluctuation of the nuclear field ĥz under the drift
feedback is

hmaxσ ∼
√

azδh.

On the other hand, the typical width σ̄ of a dip of D(s) is
given by the characteristic scale for D(s) to change, i.e., σ̄ ∼
δh/hmax, thus the typical fluctuation of the nuclear field ĥz

under the diffusion feedback is

hmaxσ̄ ∼ δh.

Note that hmaxσ ∝ √
δh and hmaxσ̄ ∝ δh scales differently

with δh.
Second, we compare the efficiency of the drift feedback

with the diffusion feedback. If δh 	 az, i.e., the nuclear spin-
flip rates W±(h) change drastically upon a slight change of
the nuclear field induced by a single nuclear spin-flip event,
then hmaxσ̄ 	 hmaxσ 	 az, i.e., the diffusion feedback is more
efficient. In this case, the rate of the electron-spin decoherence

due to the nuclear field fluctuation is much smaller than az.
In the opposite case δh 
 az, we have hmaxσ̄ 
 hmaxσ 
 az,
i.e., the drift feedback is more efficient. In this case, the rate of
the electron-spin decoherence due to nuclear field fluctuation
is much larger than az.

Since W±(h) are determined by the e-h fluctuation, the
typical scale δh for W±(h) to change appreciably is the relevant
e-h relaxation rate γeh. Typically the orbital relaxation of the
e-h system is much faster than their spin relaxation, thus the
smallest γeh corresponds to the “intrinsic” electron or hole spin
relaxation rate 1/T2,e or 1/T2,h. Therefore, as long as the limit
δh ∼ 1/T2,e is achieved, the diffusion feedback can suppress
the nuclear field fluctuation to hmaxσ̄ ∼ 1/T2,e and hence
recover the intrinsic electron-spin coherence time T2,e. On the
other hand, if az 	 1/T2,e, then achievement of δh ∼ 1/T2,e

also enables the drift feedback to suppress the nuclear field
fluctuation to hmaxσ ∼ √

az/T2,e 	 1/T2,e and hence recover
T2,e.

III. EXAMPLE: NUCLEAR SPIN DYNAMICS THROUGH
NONCOLLINEAR DIPOLAR HYPERFINE

INTERACTION

To exemplify our general theory, we consider the electron-
hole-nuclei feedback loop in Fig. 1(b). It was first proposed by
Xu et al.75 to explain the experimentally observed symmetric
locking of the pump absorption strength and suppressed
nuclear field fluctuation, and the key element of this loop,
i.e., the mechanism of hole-induced nuclear spin flip with
a preferential direction, was established recently.80 While
Ref. 80 introduced the concept of the feedback loop for a
specific case [Fig. 1(b)], the current work differs from it in
the perspective of a general theory providing key insight into
the important consequences. Although the essential idea of the
current work is also based on the classification of different time
scales and hence the adiabatic approximation,80 here, instead
of explicitly classifying the density matrix elements into the
“slow” ones and the “fast” ones (which is rather tedious),
we directly apply the general result Eq. (10) to the electron-
hole-nuclei feedback loop and utilize the quantum regression
theorem for a compact derivation. This feedback loop was
also utilized by Ladd et al.64,79 to explain the experimentally
observed hysteretic sawtooth pattern in the electron-spin free-
induction decay. An advantage of exemplifying our theory with
this feedback loop instead of the more intensively investigated
electron-nuclei feedback loop [Fig. 1(a)], is that this loop can
realize all the interesting regimes discussed in our general
theory, i.e., bistability, strong negative feedback, and positive
feedback.

The essential difference between the electron-hole-nuclei
feedback loop [Fig. 1(b)] and the electron-nuclei feedback
loop [Fig. 1(a)] is that in Fig. 1(b), the nuclear spins are
flipped by the noncollinear interaction ∝Ŝh,z(Î+ + Î−) with
the hole, while in Fig. 1(a), the nuclear spins are flipped
by the contact hyperfine interaction ∝Ŝe,+Î− + Ŝe,−Î+ with
the electron. The former process is not accompanied by the
hole spin flip, so it involves a very small energy mismatch
(∼nuclear Zeeman splitting) and hence is nearly resonant. By
contrast, the latter process is accompanied by the electron-spin
flip, so it involves a much larger energy mismatch (∼electron
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Zeeman splitting) and hence is off resonance. Consequently,
although the hole-nuclear noncollinear interaction is much
weaker than the electron-nuclear contact hyperfine interaction,
the tremendous resonant enhancement originating from a
small energy mismatch could make the strength of the former
process comparable with the latter process.80 Recently, this
mechanism is generalized to the case of noncollinear electron-
nuclear interaction (which arises from nuclear quadrupolar
effect101) to explain the experimentally observed avoidance
of resonant absorption.91 Under optical excitation conditions,
both the electron-nuclear and hole-nuclear noncollinear hy-
perfine interaction may play a role in determining the nuclear
polarization. However, the relative contributions from the
electron and the hole remains an open issue.82

For the realistic physical system corresponding to the
electron-hole-nuclei feedback loop [Fig. 1(b)], we consider
a negatively charged QD subjected to an external magnetic
field B along the QD growth direction (defined as the z axis).
A right circularly polarized continuous-wave laser applied in
the Faraday configuration couples the spin-up electron level
|0〉 to the spin-up trion level |1〉. The spin-up trion consists
of two inert electrons in the spin singlet and one unpaired
spin-up hole. Since the hole is the only active member of the
trion, hereafter we refer to the trion as a hole for brevity. The
electron level |0〉 and the hole level |1〉 form the e-h system
illustrated in Fig. 1(b). The optically pumped e-h system is
described by the Hamiltonian

Ĥeh(t) = −ω0σ̂00 + �R

2
(σ̂10e

−iωt + σ̂01e
iωt ) + Ĥdamp,

where ω0 is the “bare” e-h excitation energy in the absence of
the nuclear spins, σ̂j i ≡ |j 〉〈i|, ω is the laser frequency,Ĥdamp

denotes the coupling to the vacuum electromagnetic fluctua-
tion that leads to spontaneous emission |1〉 → |0〉 with rate γ1

and hole dephasing with total rate γ2 in the Lindblad form,
and �R = −eE0 · 〈1|r|0〉 is the Rabi frequency: the coupling
between the electric dipole −e〈1|r|0〉 and the pump electric
field E(t) = E0 cos ωt . The coupling between the e-h system
and the nuclear spins, after being projected into the relevant
Hilbert space spanned by {|0〉,|1〉}, is

V̂ = 1

2
σ̂00

∑
j

aj,eÎj,z + σ̂11

∑
j

ãj,h(Îj,+ + Îj,−),

where the first term is the diagonal part of the electron-nuclear
contact hyperfine interaction [leading to the nuclear field back
action, as denoted by the straight arrow in Fig. 1(b)] and
the second term is the noncollinear part of the hole-nuclear
dipolar hyperfine interaction [leading to nuclear spin flip, as
denoted by the wavy arrow in Fig. 1(b)]. A brief summary
of the nuclear spin dynamics driven by other parts of the
electron-nuclear and hole-nuclear interactions could be found
elsewhere.80 The total Hamiltonian Ĥ (t) = ĤN + Ĥeh(t) + V̂

assumes the same form as our theory [Eq. (2)], where ĤN is
the nuclear spin Hamiltonian given in Eq. (3).

To apply our theory to this model, we further put the
coupling V̂ into the same form as our theory [Eq. (4)]
by identifying F̂z(t) = σ̂00, F̂±(t) = σ̂11, aj,z = aj,e/2, and
aj,± = ãj,h. Then, according to our theory, after adiabatically
eliminating the e-h dynamics, the diagonal part P̂ (t) of the

TABLE I. Order of magnitude of relevant parameters (units: ns−1,
with the convention h̄ = 1 understood) for a typical self-assembled
QD containing N = 104 nuclear spins under a magnetic field
B ∼ 1 T.

�R γ1 γ2 |ωN | ae |ãh| 	1

1 1 1 0.1 10−2 10−5 10−10

nuclear spin density matrix obeys Eq. (9), where the transition
rate Wj,±(ĥz) is equal to Eq. (10) plus 	1,j /2, which accounts
for the nuclear spin depolarization due to other nuclear spin
relaxation mechanisms.

As in the general theory, we consider identical nuclear spins
(Ij = I , ωj,N = ωN , and 	1,j = 	1) uniformly coupled to the
electron and the hole (aj,e = ae, ãj,h = ãh). For a typical self-
assembled QD containing N = 104 nuclear spins subjected to
an external magnetic field B ∼ 1 T, the order of magnitude of
relevant parameters13,75,76,80 is listed in Table I.

For the present model, the nuclear spin transition rates
W±(h) and hence the diffusion coefficient D(s) do not exhibit
sharp dips, so the diffusion feedback is negligible. In the rest,
we only consider the drift feedback. First we calculate the nu-
clear field feedback function H(h). Then we use it to quantify
the drift feedback (including absorption strength locking or
avoidance and the suppression or amplification of the nuclear
field fluctuation) for three cases: strong negative feedback,
strong positive feedback, and weak positive feedback.

A. Nuclear field feedback function

Following the theory in Sec. II A, to obtain the nuclear field
feedback function H(h), we need the nuclear spin-flip rates
W±(h) = ã2

hC(h, ∓ ωN ) + 	1/2, where ĥz has been replaced
by a constant h and, from Eq. (10),

C(h,ν) ≡
∫ ∞

−∞
eiνtdt Treh σ̂ I

11(h,t)σ̂ I
11(h,0)ρ̂(ss)

eh (h,0).

We note that for the present model, the h-dependent e-h
evolution Ûeh(h,t) [see Eq. (8)] is obtained from the free
e-h evolution Ûeh(t) [see Eq. (7)] by replacing the bare e-h
excitation energy ω0 with the actual e-h excitation energy
ω0 − h or, equivalently, by replacing the nominal detuning
�0 ≡ ω0 − ω with the actual detuning � ≡ �0 − h. So
C(h,ν) is obtained from C(h = 0,ν) by replacing �0 with
�, i.e., C(h,ν) is a function of � and ν. Therefore, the h

dependence of C(h,ν) and hence other h-dependent quantities
such as s0(h) and H(h) ≡ hmaxs0(h) entirely come from their
dependence on �. To emphasize this dependence, we use
functions of � for functions of h, e.g., C(�,ν) for C(h,ν),
s0(�) for s0(h), and H(�) for H(h), etc.

In the absence of the nuclear spin depolarization (	1 = 0),
Eq. (13) gives the steady-state nuclear spin polarization

s
(1/2)
0 (�) = C(�, − ωN ) − C(�,ωN )

C(�, − ωN ) + C(�,ωN )

for nuclear spin 1/2. For nuclear spin I , the steady-state
nuclear spin polarization s0(�) is obtained from Eq. (14)
or s0(�) ≈ [2(I + 1)/3]s(1/2)

0 (�) for weak polarization
|s0(�)| 	 1. In the presence of nuclear spin depolarization,
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s
(1/2)
0 (�) is reduced by a factor 1 + 	1/	p(�) determined

by the ratio between the hole-induced nuclear spin-flip rate
	p(�) = ã2

h[C(�, − ωN ) + C(�,ωN )] and the nuclear spin
depolarization rate 	1. For 	1 = 0, by evaluating C(�,ν) (see
Appendix D) through the quantum regression theorem,95 we
obtain explicit analytical expressions

	p(�) ≈ 4ã2
hγ1W (�)

[γ1 + 2W (�)]3
c1(�), (29)

s
(1/2)
0 (�) ≈ − �ωN

�2 + γ 2
2

γ1

γ2

c0(�)

c1(�)
, (30)

up to leading order of the small quantity ε ≡ ωN/γ1,2, where
c0(�) = γ2/γ1 + 1/2 + f (�) + W (�)/γ1 and c1(�) = 1 +
[γ1/(2γ2)]f (�) + W (�)/γ1 are non-negative constants (be-
cause γ2 � γ1/2) with f (�) ≡ (γ 2

2 − �2)/(γ 2
2 + �2) and

W (�) = 2π (�R/2)2δ(γ2)(�) is the optical pumping rate from
level |0〉 to level |1〉, with δ(γ2)(�) ≡ (γ2/π )/(�2 + γ 2

2 ) the
energy-conserving δ function broadened by hole dephasing.
Near resonance � = 0, we estimate 	p ∼ ã2

h/γ1 ∼ 0.1 s−1 to
be comparable with the typical nuclear spin depolarization rate
	1 (see Table I).

Equations (29) and (30) are the key results of the recently
established mechanism of hole-induced nuclear spin flip
with a preferential direction by the noncollinear hyperfine
interaction.80 Since the nuclear spin depolarization rate 	1

varies strongly in different experiments and has a relatively
trivial influence on the nuclear spin feedback, below we focus
on the intrinsic feedback effect by setting 	1 = 0.

In addition to the specific results in Fig. 4, we can also
analyze s0(�) and H′(�) more generally. First, s

(1/2)
0 (�),

s0(�), and H′(�) are reversed upon reversal of the Zeeman
frequency ωN . Second, by dropping the O(1) factors of
(γ1/γ2)c0(�)/c1(�) in Eq. (29), we obtain the maximal
magnitude of s

(1/2)
0 (�):

∣∣s(1/2)
0

∣∣
max ∼ |ωN |

γ2
.

The typical magnitude is |s(1/2)
0 |max ∼ 10% (based on Table I).

Third, near the resonance |�| 	 γ2, s(1/2)
0 (�) ∝ � is linear in

FIG. 4. (Color online) s0(�) (solid curves) and H′(�)/500
(dotted curves) vs detuning � for nuclear spin 9/2 (e.g., InAs
QD) for 	1 = 0, (a) ωN = −0.1 ns−1 and (b) ωN = 0.1 ns−1. Other
parameters are from Table I. Dark (black and blue) segments of
the curves correspond to stable feedback H′(�) < 1. Light (orange)
segments correspond to unstable feedback H′(�) > 1. The straight
lines denote (�0 − �)/hmax, whose intersections with s0(�) give the
steady-state nuclear field {s(ss)

α }, including stable (filled circles) and
unstable (empty squares) ones.

� and the feedback strength is maximal:

H′(0) ∼ I (I + 1)
Nae

γ2

ωN

γ2
,

where we have used s0(�) ∼ (I + 1)s(1/2)
0 (�). Based on

Table I, the typical magnitude is |H′(0)| ∼ 10I (I + 1). Thus
the feedback near the resonance is strongly negative (positive)
for negative (positive) nuclear Zeeman frequency ωN . These
results agree with Fig. 4.

B. Back action from nuclear field

We consider three cases: (i) strong negative feedback [ωN =
−0.1, Fig. 4(a)], (ii) strong positive feedback [ωN = 0.1,
Fig. 4(b)], and (iii) weak positive feedback. Case (iii) can
be realized by considering nuclear spin 1/2 (instead of nuclear
spin 9/2) with a larger hole-dephasing rate γ2. The back
action of the nuclear field induces three effects: bistability,
absorption strength locking or avoidance, and suppression or
amplification of the nuclear field fluctuation. In the following,
we illustrate these three effects for each case.

1. Strong negative feedback

Here we consider negative nuclear Zeeman frequency ωN =
−0.1 ns−1 [Fig. 4(a)], corresponding to a strong negative
feedback near the resonance � = 0.

For each nominal detuning �0, the steady-state nuclear
field h(ss) = hmaxs

(ss) is determined by the nonlinear equation
h = H(�0 − h) or equivalently s = s0(�0 − hmaxs), i.e., s(ss)

corresponds to the intersections of s0(�) and (�0 − �)/hmax

[Fig. 4(a)], where � ≡ �0 − h = �0 − hmaxs. For vanishing
hmax and hence vanishing feedback strength H′ = 0, we have
a unique solution s(ss) = s0(�0). For large hmax and hence
strong feedback, (�0 − �)/hmax becomes less steep and has
up to three intersections with s0(�), corresponding to three
steady-state nuclear fields. The stability condition H′ < 1
gives dH(�)/d� > −1, i.e., the slope of s0(�) = H(�)/hmax

should be larger than that of (�0 − �)/hmax. So the three
steady-state nuclear fields consist of two stable ones [filled
circles in Fig. 4(a)] separated by a unstable one [empty square
in Fig. 4(a)].

These steady-state nuclear fields vs the nominal detuning
�0 are shown in Fig. 5(a). A striking feature is that in the
middle segment (crossed by the dashed line), over a wide
range of the nominal detuning �0 ∼ [−60 ns−1,60 ns−1],
the stable nuclear field h(ss) follows �0 as h(ss) ≈ �0, so that the
steady-state detuning �(ss) = �0 − h(ss) is locked to resonance
�(ss) ≈ 0 [Fig. 5(b)]. As discussed in Sec. II B, this behavior
originates from the strong negative feedbackH′(�) 	 −1 that
occurs near � ≈ 0 [Fig. 4(a)].

The strong locking of �(ss) to resonance �(ss) ≈ 0 over
�0 ∼ [−60 ns−1,60 ns−1] in turn keeps the nuclear field
feedback strength H′(�(ss)) ≈ H′(0) strongly negative over
the same range of �0 [Fig. 5(c)], although strong negative
feedback H′(�) 	 −1 only appears over � ∼ [−1 ns−1,

1 ns−1]. This strong negative feedback over a wide range of �0

in turn strongly suppresses the nuclear field fluctuation over
the same range of �0 according to Eq. (28). For example, at
�0 = 10 ns−1 [marked by the straight dashed line in Figs. 5(a)–
5(c)], the detuning is still locked to resonance �(ss) ≈ 0,
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FIG. 5. (Color online) Steady-state (a) nuclear field h(ss), (b)
detuning �(ss) ≡ �0 − h(ss), and (c) feedback strength H′ vs nominal
detuning �0 for ωN = −0.1 ns−1 and I = 9/2. Other parameters are
from Table I. Dark (black and blue) segments of the curves correspond
to stable feedback H′ < 1. Light (orange) segments correspond to
unstable feedback H′ > 1. (d) The blue dotted line is a Gaussian
fit with standard deviation σ = 0.092σeq to the orange (gray) line,
which is the calculated steady-state distribution p(ss)(s) of the nuclear
field ŝ at �0 = 10 ns−1 [marked by dashed straight lines in panels
(a)–(c)]. The thermal equilibrium distribution (black solid curve) is
also shown for comparison. The unit of the nuclear spin polarization
is σeq = [(I + 1)/(3NI )]1/2, the thermal equilibrium fluctuation.

so the feedback is still strongly negative H′(�0) ≈ −119.5.
Correspondingly, the width of the peak of p(ss)(s) [green (gray)
solid curve in Fig. 5(d)], which quantifies the nuclear field
fluctuation under the feedback control, is much narrower than
the width σeq of the thermal distribution [black solid curve
in Fig. 5(d)]. More quantitatively, the peak of p(ss)(s) fits
well with a Gaussian function of standard deviation σ/σeq =
0.092 ≈ 1/

√
1 − H′(�0) [blue dotted line in Fig. 5(d)], which

is ∼10 times narrower than that of the thermal distribution.

2. Strong positive feedback

Here we consider positive nuclear Zeeman frequency ωN =
0.1 ns−1 [Fig. 4(b)], corresponding to a strong positive (and
hence unstable) feedback near the resonance � = 0.

In this case, for each nominal detuning �0, (�0 − �)/hmax

could also have up to three intersections with the curve s0(�)
[Fig. 4(b)], corresponding to three steady-state nuclear fields
{h(ss)

α }, consisting of two stable ones [filled circles in Fig. 4(b)]
separated by an unstable one [empty square in Fig. 4(b)].

These steady-state nuclear fields vs the nominal detuning
�0 are shown in Fig. 6(a). As a result of the strong positive
feedback H′(�) 
 1 near � ≈ 0 [Fig. 4(b)], the two stable
nuclear fields (marked by empty and filled circles) always
push the detuning �(ss) away from resonance, so that resonant
absorption is avoided at the natural resonance �0 = 0.

The feedback associated with these two stable solutions
are weakly negative and hence, according to Eq. (28), do not
appreciably change the nuclear field fluctuation. For example,
at �0 = 10 ns−1 [marked by empty and filled circles in
Figs. 6(a)–6(c)], the widths of the two peaks of p(ss)(s) [solid

FIG. 6. (Color online) The same as Fig. 5, except that ωN =
0.1 ns−1. In panel (d), the two peaks (marked by filled and empty
circles) and the dip (marked by empty square) of p(ss)(s) correspond,
respectively, to the two stable solutions and the unstable solution in
panels (a)–(c) (marked by corresponding symbols).

curve in 6(d)] are not appreciably changed relative to the
peak of the thermal equilibrium distribution [dotted curve in
Fig. 6(d)].

3. Weak positive feedback

For ωN = 0.1 ns−1, to realize weak positive feedback
H′(�) � 1 near the resonance � = 0, we decrease the
magnitude of the feedback strength by considering nuclear spin
1/2 instead of nuclear spin 9/2 and a larger hole dephasing
rate γ2 = 1.8 ns−1.

In this case, since the feedback strength is small, the steady-
state nuclear field h(ss) [Fig. 7(a)] is unique and does not exhibit
bistability. At � = 0 [marked by the empty circle in Figs. 7(a)–
7(c)], the stable steady-state nuclear field h(ss) vanishes, so
the resonance condition �(ss) = �0 − h(ss) and hence resonant

FIG. 7. The same as Fig. 6, except that I = 1/2 and γ2 =
1.8 ns−1. In panel (b), the nominal detuning (dotted straight line)
is also shown for comparison. In panel (d), the peak of p(ss)(s)
correspond to the stable solution at �0 = 0 in panels (a)–(c) (marked
by empty circles).
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absorption is achieved at natural resonance �0 = 0. However,
due to the feedback strength H′(0) ≈ 1, a slight change of
�0 (or equivalently the pump frequency) away from zero will
drastically change the nuclear field [Fig. 7(a)] and hence the
detuning �(ss) [Fig. 7(b)] away from zero, corresponding to
large push away from the natural resonance upon a slight
change of the pump frequency (Sec. II B).

At �0 = 0, the feedback strength H′(0) ≈ 1 [Fig. 7(c)].
According to Eq. (28), the nuclear field fluctuation is strongly
enhanced, as can be seen from the much wider peak of p(ss)(s)
[solid curve in Fig. 7(d)] compared with the peak of the thermal
equilibrium distribution [dotted curve in Fig. 7(d)].

IV. CONCLUSION

We have developed a microscopic theory for the control
of the nuclear field dynamics by a general feedback loop
mediated by the electron and/or the hole (referred to as
e-h system for brevity) under continuous-wave pumping in
a quantum dot. This feedback loop consists of two steps.
First, the nuclear spins produce a quantum magnetic field ĥz

acting on the e-h system [straight arrow in Fig. 3(a)] and
establishes a ĥz-dependent steady e-h state and hence ĥz-
dependent e-h fluctuation. Second, through a nonequilibrium
fluctuation-dissipation relation, the e-h fluctuation induces
an irreversible nuclear spin population flow [wavy arrow in
Fig. 3(a)], which in turn changes the nuclear field ĥz. By
coupling the dynamics of individual nuclear spins to the
collective nuclear field ĥz, this feedback loop gains control
over the average nuclear field and the nuclear field fluctuation.
This control leads to three experimentally observed effects:
(i) hysteresis in the pump absorption strength; (ii) locking
(avoidance) of the pump absorption strength to (from) a certain
value; and (iii) suppression or amplification of the nuclear field
fluctuation, leading to prolonged or shortened electron-spin
coherence time. By adiabatically eliminating the fast e-h
motion in favor of the slow nuclear field dynamics through
the adiabatic approximation, we have found that all these
three effects can be quantified concisely by a single nonlinear
nuclear field feedback function H(h), which encapsulates the
mutual response between the e-h system and the nuclear field.
A negative (positive) feedback leads to locking (avoidance) of
the pump absorption strength and suppresses (amplifies) the
nuclear field fluctuation. This general theory is exemplified by
considering a electron-hole-nuclei feedback loop [Fig. 1(b)]
consisting of the hole-induced nuclear spin flip through the
noncollinear dipolar hyperfine interaction and the back action
of the nuclear field on the electron.

In the present work, we focus on the dynamics of the nuclear
field on the time scale of the nuclear spin relaxation, the longest
time scale of the problem. On a shorter time scale (much
shorter than both the nuclear spin dephasing time and the
nuclear spin relaxation time, but still much longer than the time
scale of the e-h dynamics), we expect that a generalization of
the adiabatic approximation as used here could single out the
dynamics of both the nuclear spin coherence and the nuclear
field, so that coherent nuclear spin dynamics (e.g., nuclear spin
coherent rotation and squeezing98) can be studied.

One limitation of the present treatment is that, although
the back action of the diagonal coupling between the e-h

system and the nuclear spins is treated nonperturbatively, the
off-diagonal coupling is treated by second-order perturbation
theory. This amounts to completely neglecting the back action
of the off-diagonal coupling on the e-h dynamics, e.g., the
electron-spin relaxation due to the dynamic nuclear spin
fluctuation through the off-diagonal part of the electron-
nuclear contact hyperfine interaction.28,97 This effect may be
important when the relaxation of the e-h system is dominated
by the nuclear spins.
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APPENDIX A: NUCLEAR SPIN DEPHASING BY
ELECTRON-HOLE FLUCTUATION

To show the nuclear spin dephasing induced by the e-h
fluctuation through the diagonal coupling F̂zĥz, we divide
the unperturbed Hamiltonian Ĥ0(t) into the uncoupled part
ĤN + Ĥeh(t) and the coupling F̂zĥz and treat the latter by
perturbation theory. It is understood that the mean-field part
ĥz Treh F̂zρ̂

(ss)
eh (t) of the coupling F̂zĥz has been absorbed into

the uncoupled Hamiltonian. We start from the steady state
ρ̂(t) = ρ̂

(ss)
eh (t)ρ̂(ss)

N of the uncoupled evolution

û(t,t0) = e−iĤN (t−t0)T e
−i
∫ t

t0
Ĥeh(t ′)dt ′

,

define the interaction picture ÔI(t) ≡ û†(t,0)Ôû(t,0) and
ρ̂I(t) ≡ û†(t,0)ρ̂(t)û(t,0), and turn on the coupling at t =
0. Treating the e-h system under continuous pumping
as a nonequilibrium bath and using the Born–Markov
approximation100 lead to the equation for the nuclear spin
density matrix ρ̂I

N (t) in the interaction picture:

d

dt
ρ̂I

N (t) = −
∫ t

0
dt ′

[
F̂ I

z (t)ĥz,
[
F̂ I

z (t ′)ĥz,ρ̂
(ss)
eh (0)ρ̂I

N (t)
]]

.

By neglecting the imaginary part (corresponding to second-
order nuclear spin energy shift induced by the diagonal cou-
pling) of the e-h fluctuation function Treh ρ̂

(ss)
eh (0)F̂ I

z (t)F̂ I
z (t ′),

the above equation can be put into the Lindblad form for pure
dephasing:

d

dt
ρ̂I

N (t)= − gz,z(t)

(
ĥzĥzρ̂

I
N (t) + ρ̂I

N (t)ĥzĥz

2
− ĥzρ̂

I
N (t)ĥz

)
.

(A1)

Here the pure dephasing rate

gz,z(t) ≡
∫ t

0
dt ′ Treh ρ̂

(ss)
eh (0)

{
F̂ I

z (t),F̂ I
z (t ′)

} ∼ ||Fz||2Teh,

is determined by the e-h fluctuation, with Teh being its
characteristic decay time. In the product basis |m〉 ≡ ⊗j |mj 〉j
of the eigenstates |mj 〉j of individual nuclear spin, Eq. (A1)
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becomes

d

dt
ρI

m,n(t) = −1

2
gz,z(t)(〈m|ĥz|m〉 − 〈n|ĥz|n〉)2ρI

m,n(t),

which shows that the coherence between two nuclear
spin states |m〉 and |n〉 decays with rate ∼(〈m|ĥz|m〉 −
〈n|ĥz|n〉)2Teh. For example, the coherence 〈Î±

j 〉 of the j th
nuclear spin decays with rate ∼a2

j,zTeh. The interspin coher-

ences 〈Î±
i Î±

j 〉 and 〈Î±
i Î∓

j 〉 decay with rates ∼(ai,z + aj,z)2Teh

and ∼(ai,z − aj,z)2Teh, respectively. Note that the interspin
coherence 〈Î±

i Î∓
j 〉 does not decay if ai,z = aj,z. For the nuclear

spin dynamics driven by an electron through the contact hyper-
fine interaction [Eq. (23)], we have aj,z = aj,e ∼ 1–10 μs−1

for a quantum dot with N = 104–106 nuclear spins (see
Table I). Using Teh ∼ 1/γ1,2 ∼ 1 ns, the single nuclear spin
dephasing rate ∼a2

j,eTeh ∼ 0.01–1ms. The persistent interspin
coherences for ai,e = aj,e are manifested as nuclear spin
dark states, which limit the efficiency of electron- or hole-
induced nuclear spin polarization.26,28,97 Here to focus on
the nuclear spin feedback effect, we assume that persistent
interspin coherences have been removed, e.g., through e-h
wave-function modulation.28,97

APPENDIX B: DECOUPLING NUCLEAR FIELD
DYNAMICS FROM e-h DYNAMICS THROUGH

ADIABATIC APPROXIMATION

The essential assumption of the adiabatic approximation is
that on the time scale T1,N of the nuclear spin flip driven by the
off-diagonal coupling V̂nd(t) [Eq. (5)], a classically correlated
steady state ρ̂

(ss)
eh (ĥz,t)P̂ (t) is instantaneously established by

the unperturbed evolution driven by Ĥ0(t) [Eq. (6)]. To incor-
porate the influence of the nuclear spin flip on the evolution of
the diagonal part P̂ (t) of the nuclear spin density matrix, we
start from the classically correlated state ρ̂

(ss)
eh (ĥz,0)P̂ (0) and

turn on the off-diagonal coupling at t = 0. The density matrix
ρ̂I(t) ≡ Û

†
0 (t,0)ρ̂(t)Û0(t,0) in the interaction picture obeys

d

dt
ρ̂I(t) = −i

[
V̂ I

nd(t),ρ̂I(t)
]
, (B1)

where

Û0(t,t0) ≡ T e
−i
∫ t

t0
Ĥ0(t ′)dt ′

is the unperturbed evolution and

V̂ I
nd(t) = Û

†
0 (t,0)V̂nd(t)Û0(t,0) ≡ F̂ I

+(t)ĥI
+(t) + F̂ I

−(t)ĥI
−(t)

is the operator in the interaction picture. For |ωN | 
 |aj,α|, we
can neglect the shift of nuclear Zeeman frequency induced by
the diagonal coupling, so that ĥI

+(t) ≈ ∑
j aj,+Îj,+eiωj,N t . Iter-

ating Eq. (B1) once and transforming back to the Schrödinger
picture yields the exact equation

d

dt
ρ̂(t) = −i[Ĥ0(t),ρ̂(t)] − i

[
V̂nd(t),ρ̂(ss)

eh (ĥz,t)P̂ (0)
]

−
∫ t

0
dt ′[V̂nd,Û0(t,t ′)[V̂nd,ρ̂(t ′)]Û †

0 (t,t ′)]. (B2)

Then, using the adiabatic approximation, we replace ρ̂(t ′) by
ρ̂

(ss)
eh (ĥz,t

′)P̂ (t ′) on the right-hand side. Since the decay of the

e-h fluctuation functions

Ca,b(ĥz,t,t
′) ≡ Treh F̂ I

a(t)F̂ I
b(t ′)ρ̂(ss)

eh (ĥz,0)

is much faster than the motion of P̂ (t ′), we further replace
ρ̂

(ss)
eh (ĥz,t

′)P̂ (t ′) by ρ̂
(ss)
eh (ĥz,t

′)P̂ (t) and obtain

d

dt
ρ̂(t) = −i[Ĥ0(t),ρ̂(t)] − i

[
V̂nd(t),ρ̂(ss)

eh

(
ĥz,t

)
P̂ (0)

]
−
∫ t

0
dt ′

[
V̂nd,

[
Û0(t,t ′)V̂ndÛ

†
0 (t,t ′),ρ̂(ss)

eh (ĥz,t)P̂ (t)
]]

.

Finally, tracing over the e-h degrees of freedom and taking
the diagonal part of the nuclear spin density matrix yields an
equation of motion for P̂ (t):

d

dt
P̂ (t)

=−
∑

j

a2
j,+

∫ t

0
dt ′
{
e−iωj,N (t−t ′)[Îj,−,Îj,+C+,−(ĥz,t,t

′)P̂ (t)]

+ eiωj,N (t−t ′)[Îj,+,Îj,−C−,+(ĥz,t,t
′)P̂ (t)] + H.c.

}
. (B3)

The above equation shows that the nuclear spin dynamics is
driven by the e-h fluctuation, which in turn is controlled by
the continuous pumping and the nuclear field ĥz.

If the time dependence of the effective e-h Hamiltonian
Ĥeh(ĥz,t) ≡ Ĥeh(t) + F̂zĥz can be eliminated by a rotating-
wave transformation

ρ̂rot
eh (t) = R̂(t)ρ̂eh(t)R̂−1(t), (B4a)

Ĥ rot
eh (ĥz) = R̂(t)Ĥeh(ĥz,t)R̂

−1(t) + i
dR̂(t)

dt
R̂−1(t), (B4b)

then ρ̂
(ss)
eh (ĥz,0) is the time-independent steady state in the

rotating frame, i.e., ρ̂
(ss)
eh (ĥz,0) commutes with Ĥ rot

eh (ĥz), so
that

Û0(t,t0) = e−iĤN (t−t0)R̂−1(t)e−iĤ rot
eh (ĥz)(t−t0)R̂(t0),

Ca,b(ĥz,t,t
′) = Treh eiĤ rot

eh (ĥz)(t−t ′)F̂ rot
a (t)e−iĤ rot

eh (ĥz)(t−t ′)

× F̂ rot
b (t ′)ρ̂(ss)

eh (ĥz,0),

where Ôrot(t) ≡ R̂(t)Ô(t)R̂−1(t) is the operator in the rotating
frame. In the simplest case, the e-h operator F̂−(t) = F̂

†
+(t) has

a definite frequency F̂ rot
− (t) = e−iω0t F̂− in the rotating frame,

then C∓,±(ĥz,t,t
′) are invariant under simultaneous temporal

translation: t → t + τ and t ′ → t ′ + τ . Generally, F̂ rot
− (t) can

be expanded into different frequency components

F̂ rot
− (t) =

∑
α

F̂−,αe−iωαt ,

and the e-h fluctuation functions

C∓,±(ĥz,t,t
′) =

∑
αβ

e−i(ωα−ωβ )tC∓α,±β (ĥz,t − t ′)

contain the interference terms

C∓α,±β (ĥz,τ ) = e−iωβτ Treh eiĤ rot
eh (ĥz)τ F̂∓,αe−iĤ rot

eh (ĥz)τ F̂
(ss)
±,β

× ρ̂
(ss)
eh (ĥz,0).

However, on the time scale T1,N of nuclear spin relaxation, the
rapidly oscillating phase factor e−i(ωα−ωβ )t averages out the
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interference terms if |ωα − ωβ |T1,N 
 1, which is satisfied
for α �= β under typical experimental conditions. Neglecting
the interference terms restores the temporal translational
invariance of the e-h fluctuation functions Ĉ∓,±(ĥz,τ ) =∑

α Ĉ∓α,±α(ĥz,τ ). Note that even when the time dependence of
Ĥeh(ĥz,t) cannot be eliminated by a rotating-wave transforma-
tion, a similar reasoning can be used to show that the steady-
state fluctuation functions Ĉ∓,±(ĥz,t,t

′) (with t,t ′ → ∞) is
invariant under temporal translation if |ωα − ωβ |T1,N 
 1 is
satisfied for two arbitrary characteristic frequencies of F̂ I

+(t).
For the e-h fluctuation functions being invariant under

temporal translations, by further neglecting the second-order
energy correction of the nuclear spins induced by the off-
diagonal coupling, Eq. (B3) simplifies to Eq. (9).

APPENDIX C: DERIVATION OF FOKKER–PLANCK
EQUATION

The equation of motion of p(s,t) follows from Eq. (9) as

∂

∂t
p(s,t) = −NI {W+(hmaxs) Tr δŝ,s(K̂ − s)P̂ (t)

−W+[hmax(s − a)] Tr[K̂ − (s − a)]δŝ,s−aP̂ (t)}
−NI {W−(hmaxs) Tr δŝ,s(K̂ + s)P̂ (t)

−W−[hmax(s + a)] Tr(K̂ + s + a)δŝ,s+aP̂ (t)},
where N is the number of nuclear spins in the QD, a ≡ 1/(NI )
is the change of ŝ by each nuclear spin flip, and

K̂ ≡ 1

NI

∑
j

(
Î 2
j,x + Î 2

j,y

)
.

For nuclear spin 1/2 or weak nuclear spin polarization
|s0(h)| 	 1, the transverse fluctuation of each individual
nuclear spin is not influenced by its longitudinal polarization,
then K̂ can be replaced with 2(I + 1)/3 and we obtain a closed
equation for p(s,t):

∂

∂t
p(s,t) = −[G+(s)p(s,t) − G+(s − a)p(s − a,t)]

− [G−(s)p(s,t) − G−(s + a)p(s + a,t)],

(C1)

where

G±(s) ≡ NIW±(hmaxs)

(
2(I + 1)

3
∓ s

)
.

For N 
 1, we expand Eq. (C1) up to the second order of the
small quantity a and obtain the Fokker–Planck equation (24).

For the general situation, the equation of motion for p(s,t)
is not closed. In this case, to quantify the fluctuation of nuclear
spin I , we define the population-number operator

N̂m ≡
N∑

j=1

|m〉j 〈m|

to count the number of nuclear spins in the mth single-
spin eigenstate |m〉 for m = −I, − (I − 1), . . . ,I and the
population N̂ ≡ [N̂−I , . . . ,N̂I ]T to characterize the state of
the nuclear spins. The information about the nuclear spin

fluctuation is contained in the population-number distribution

p(N,t) ≡ Tr P̂ (t)
∏
m

δN̂m,Nm
≡ Tr P̂ (t)δN̂,N,

where N ≡ [N−I , . . . ,NI ]T . Straightforward algebra shows
that p(N,t) obeys the equation of motion

∂

∂t
p(N,t)

= −
∑
m

Nmη2
mW+(h(N))p(N,t)

+
∑
m

(Nm + 1)η2
mW+

(
h(N(m,m+1))

)
p
(
N(m,m+1),t

)
−
∑
m

Nm+1η
2
mW−(h(N))p(N,t)

+
∑
m

(Nm+1 + 1)η2
mW−

(
h(N(m+1,m))

)
p
(
N(m+1,m),t

)
,

(C2)

where ηm ≡ 〈m + 1|I+|m〉,
h(N) ≡ az

∑
m

mNm

is the nuclear field produced by nuclear spins in a state
characterized by population numbers N,

N(m,m+1) ≡ [. . . ,Nm + 1,Nm+1 − 1, . . .]T

is obtained from N by flipping one nuclear spin from state
|m + 1〉 to state |m〉, and

N(m+1,m) ≡ [. . . ,Nm − 1,Nm+1 + 1, . . .]T

is obtained from N by flipping one nuclear spin
from state |m〉 to state |m + 1〉. The corresponding
Overhauser shift h(N(m,m+1)) = h(N) − az and
h(N(m+1,m)) = h(N) + az. Equation (C2) describes
the population flow of the nuclear spins induced by
the e-h fluctuation. The first two terms of Eq. (C2)
come from the jump of one nuclear spin from |m〉 to |m + 1〉,
which changes the nuclear spin population from N to N(m+1,m)

(the first term) or from N(m,m+1) to N (the second term). The
last two terms come from the jump of one nuclear spin from
|m + 1〉 to |m〉, which changes the nuclear spin population
from N to N(m,m+1) (the third term) or from N(m+1,m) to N (the
fourth term). For N 
 1, a second-order Taylor expansion
can be used to transform Eq. (C2) into a multivariable
Fokker–Planck equation.

As an example, for I = 1, we define x = N+1/N and y =
N−1/N , where N = N−1 + N0 + N+1 is the total number of
nuclear spins in the quantum dot. The equation of motion for
the distribution function q(x,y,t) ≡ p(N−1,N0,N+1) follows
from Eq. (C2) as

∂

∂t
q(x,y,t)

= −gy+(x,y)p(x,y,t) + gy+(x,y + a)p(x,y + a,t)

− gx−(x,y)p(x,y,t) + gx−(x − a,y)p(x − a,y,t)

− gy−(x,y)p(x,y,t) + gy−(x,y − a)p(x,y − a,t)

− gx+(x,y)p(x,y,t) + gx+(x + a,y)p(x + a,y,t),
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where

gx+(x,y) = 2NxW−(hmax(x − y)),

gx−(x,y) = 2N (1 − x − y)W+(hmax(x − y)),

gy+(x,y) = 2NyW+(hmax(x − y)),

gy−(x,y) = 2N (1 − x − y)W−(hmax(x − y)).

Through a second-order Taylor expansion, we obtain the
Fokker–Planck equation

∂

∂t
q(x,y,t)

= − ∂

∂x

[
vx(x,y)p(x,y,t) − ∂

∂x
Dxx(x,y)p(x,y,t)

]

− ∂

∂y

[
vy(x,y)p(x,y,t) − ∂

∂y
Dyy(x,y)p(x,y,t)

]
,

where

vx(x,y) ≡ a[gx−(x,y) − gx+(x,y)],

vy(x,y) ≡ a[gy−(x,y) − gy+(x,y)],

Dxx(x,y) ≡ 1
2a2[gx−(x,y) + gx+(x,y)],

Dyy(x,y) ≡ 1
2a2[gy+(x,y) + gy−(x,y)].

APPENDIX D: EVALUATION OF e-h FLUCTUATION
FUNCTION C(�,ν)

In the absence of the nuclear spins, the e-h fluctuation
function becomes

C(�0,ν) ≡ ∫∞
−∞ eiνtdt Treh σ̂ I

1,1(t)σ̂ I
1,1(0)ρ̂(ss)

eh (0)

= ∫∞
0 eiνtdt Treh σ̂ I

1,1(t)σ̂ I
1,1(0)ρ̂(ss)

eh (0) + H.c.,

where σ̂ I
1,1(t) is driven by the free e-h evolution Ûeh(t)

[Eq. (7)] and ρ̂
(ss)
eh (0) is the steady-state of the e-h system in

the absence of the nuclear spins. Below we evaluate C(�0,ν),
so that C(�,ν) is obtained by replacing �0 with �.

First we define a three-component operator X̂(t) ≡
[σ̂ I

1,1(t),eiωt σ̂ I
0,1(t),e−iωt σ̂ I

1,0(t)]T and its average

〈X̂(t)〉(ss) ≡ Treh X̂(t)ρ̂(ss)
eh (0)

over the steady e-h state ρ̂
(ss)
eh (0). Since the coupling Ĥdamp

to the vacuum electromagnetic fluctuation induces the hole
relaxation |1〉 → |0〉 with rate γ1 and hole dephasing with
total rate γ2 in the Lindblad form, the equation of motion of
〈X̂(t)〉(ss) is given by

d

dt
〈X̂(t)〉(ss) = −A

[〈X̂(t)〉(ss) − A−1B
]

≡ −A
[〈X̂(t)〉(ss) − 〈X̂(+∞)〉(ss)

]
for t > 0, where

A =
⎡
⎣ γ1 −i�R/2 i�R/2

−i�R i(�0 − iγ2) 0
i�R 0 −i(�0 + iγ2)

⎤
⎦,

and B = [0, − i�R/2,i�R/2]T . According to the quantum
regression theorem,95 the fluctuation functions 〈X̂(t)σ̂1,1〉(ss)
obey a similar equation

d

dt
〈X̂(t)σ̂1,1〉(ss) = −A

[〈X̂(t)σ̂1,1〉(ss) − 〈X̂(+∞)〉(ss)〈σ̂1,1〉(ss)
]
,

from which we obtain

〈X̂(t)σ̂1,1〉(ss) = 〈X̂〉(ss)〈σ̂1,1〉(ss) + e−At
[〈X̂σ̂1,1〉(ss)

−〈X̂〉(ss)〈σ̂1,1〉(ss)
]
,

where we have used 〈X̂(+∞)〉(ss) = 〈X̂〉(ss) for the steady-state
average. As a result, C(�0,ν) is given by the first element
of ∫ ∞

0
eiνtdt

[〈X̂(t)σ̂1,1〉(ss) − 〈X̂〉(ss)〈σ̂1,1〉(ss)
]+ H.c.

= (A − iν)−1[〈X̂σ̂1,1〉(ss) − 〈X̂〉(ss)〈σ̂1,1〉(ss)
]+ H.c.
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81A. Högele, M. Kroner, C. Latta, M. Claassen, I. Carusotto,

C. Bulutay, and A. Imamoglu, Phys. Rev. Lett. 108, 197403 (2012).
82B. Urbaszek, X. Marie, T. Amand, O. Krebs, P. Voisin,
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