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Completely flat bands and fully localized states on surfaces of anisotropic diamond-lattice models
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We discuss flat-band surface states on the (111) surface in the tight-binding model with nearest-neighbor
hopping on the diamond lattice, in analogy to the flat-band edge states in graphene with a zigzag edge. The
bulk band is gapless, and the gap closes along a loop in the Brillouin zone. The verge of the flat-band surface
states is identical with this gap-closing loop projected onto the surface plane. When anisotropies in the hopping
integrals increase, the bulk gap-closing points move and the distribution of the flat-band states expands in the
Brillouin zone. Then when the anisotropy is sufficiently large, the surface flat bands cover the whole Brillouin
zone. Because of the completely flat bands, we can construct surface-state wave functions, which are localized
in all the three directions.
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I. INTRODUCTION

Flat bands have been studied particularly in the context
of possible ferromagnetism driven by interactions, as was
proposed by Lieb,1 and successively by Mielke and Tasaki.2–5

On the other hand, from the research on graphene6 it is known
that the tight-binding model with nearest-neighbor hopping
on a honeycomb lattice with a zigzag edge exhibits flat-band
edge states,7 and its origin is topologically interpreted.8

In the dispersion of a graphene ribbon with zigzag edges,
the flat-band edge states appear between the wave numbers
corresponding to the projection of Dirac points at K and K ′.
In contrast, there are no flat-band edge states in the graphene
ribbon with armchair edges, because in the projection of the
dispersion, Dirac cones at the K and K ′ points overlap each
other. In three dimensions, the nearest-neighbor tight-binding
model on the diamond lattice, i.e., a three-dimensional analog
of the honeycomb lattice, exhibits flat-band surface states.9

When the hopping of the tight-binding model on the
honeycomb lattice becomes anisotropic, the Dirac points in the
bulk Brillouin zone (BZ) move away from the K and K ′ points.
Moreover, when the anisotropy is sufficiently large, the two
Dirac points meet and the bulk dispersion relation becomes
linear in one direction and quadratic in the other.10 In that
case, the flat-band edge states cover the whole one-dimensional
(1D) BZ.12 With a further increase of the anisotropy, the bulk
becomes gapped while the completely flat band remains in the
edge BZ.

In this paper, we focus on surface flat bands in the nearest-
neighbor tight-binding models on the diamond lattice with the
(111) surface. When the model has no anisotropy, the gap
closes along a loop in the bulk BZ. If the Fermi energy is set
to be zero, which corresponds to the case with particle-hole
symmetry, the bulk Fermi surface (FS) coincides with this loop.
If we introduce anisotropy in the nearest-neighbor hopping
integrals, we find that the loop is deformed and shrinks.
Similarly to the honeycomb-lattice model, the surface flat
bands are formed in the k region surrounded by the projection
of the FS loop. When the anisotropy is sufficiently large, the
FS loop vanishes, and consequently the flat-band surface states
cover the whole 2D BZ.

In both the honeycomb-lattice and the diamond-lattice mod-
els, because the edge/surface band is completely flat over the
entire BZ, any linear combinations of the edge/surface states
remain eigenstates. Thereby we can construct edge/surface
states that are spatially localized in all directions, i.e., not
only along the direction into the interior, but also along the
edge/surface. We call such states as fully localized states. In
addition, we also find that the isotropic case is at a topological
transition of the bulk FS; the loop of the bulk FS changes its
topology by varying anisotropy of the hopping integrals.

The organization of the paper is as follows. In Sec. II,
we review how the flat-band edge states of the tight-binding
model on the honeycomb lattice evolve with changes in the
anisotropy. We discuss analogous behaviors of surface states
of the model on the diamond lattice in Sec. III. In Sec. IV,
we show how the behaviors of the edge/surface states shown
so far are explained by topological argument. Section V is
devoted to a calculation of the edge/surface states that are
fully localized, for both the honeycomb- and diamond-lattice
models. We summarize our results in Sec. VI.

II. HONEYCOMB LATTICE

We first review the flat-band edge states on the honeycomb-
lattice structure shown in Fig. 1(a), and study the completely
flat band for the models with anisotropy, which has been
studied in Ref. 12. We consider a tight-binding Hamiltonian
on this lattice,

Hh =
∑
〈ij〉

c
†
i tij cj , (1)

where the subscript “h” represents the honeycomb lattice, tij
is the hopping integral along the nearest-neighbor bond vector
τ a , and ci (c†i ) is the annihilation (creation) operator of the
electron. We treat the hopping integral tij as a real positive
parameter, and it is labeled with the vectors τ a as ta . The bulk
Hamiltonian matrix Hhb(k) at wave vector k is given as

Hhb(k) =
(

0
∑3

i=1 tie−ik·τi∑3
i=1 tieik·τi 0

)
. (2)
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FIG. 1. (Color online) (a) Schematic of the honeycomb-lattice
structure. The dotted line shows a choice of unit cell with translational
symmetry along the edge. The arrows show the directions along
zigzag, armchair, and Klein edges. (b) shows the first BZ of the
honeycomb lattice. Dots at the zone corners show the gap-closing
points for the graphene model (t1 = t2 = t3 = 1). Namely, the bulk
bands become gapless at K and K ′ points, when the hopping integral
is isotropic. By increasing t1 from unity, the gap-closing points move
away from K and K ′ points as shown by the arrows. The flat-band
edge states expand in the BZ as the bulk gap-closing points move.
(c) shows the dispersions for ribbon geometry for t1 = 1 and 2.2
at t2 = t3 = 1. The dispersions are shown for zigzag, armchair and
Klein edges. In zigzag and Klein edges, flat bands appear at the zero
energy.

where the subscript “b” means the bulk. τ i=1,2,3 are expressed

as τ 1 = (0,1),τ 2 = (−
√

3
2 ,− 1

2 ),τ 3 = (
√

3
2 ,− 1

2 ), and we put the
length of the nearest-neighbor bonds as unity. For simplicity,
ti are assumed to be positive. The primitive vectors ai=1,2

are a1 = (
√

3
2 , 3

2 ),a2 = (−
√

3
2 , 3

2 ), and the reciprocal primitive

vectors are G1 = 2π 2
3 (

√
3

2 , 1
2 ),G2 = 2π 2

3 (−
√

3
2 , 1

2 ).
We first note that the bulk Hamiltonian Hhb has chiral

symmetry: σzHhbσz = −Hhb, where σz is the Pauli matrix.
Therefore, if |ψ〉 is an eigenstate with an eigenvalue E,
σz|ψ〉 is an eigenstate with energy −E. The eigenvalues are
given by

Ehb(k) = ±
∣∣∣∣∣ti

3∑
i=1

e−iτ i ·k
∣∣∣∣∣ . (3)

Hereafter, we put parameters as t2 = t3 = 1, and t1 = t , where
t is a real positive tunable parameter. The bulk dispersion is
given as

E2
hb =

(
t + 2 cos

√
3kx

2
cos

3ky

2

)2

+ 4 cos2

√
3kx

2
sin2 3ky

2
. (4)

Because of the chiral symmetry, the gap closes only at zero
energy. The bulk gap-closing points (k∗

x ,k
∗
y ) are given by the

equations cos
√

3k∗
x

2 = ± 1
2 t and sin 3

2k∗
y = 0. The equations give

two gap-closing points in the bulk BZ, and they exist for t � 2.
The gap-closing points move with the change of the anisotropy
t , as pointed out in Ref. 10. For t = 1, i.e., the tight-binding
model of graphene, the upper and lower bands touch at K

( 2π
√

3
9 , 2π

3 ) and K ′ (− 2π
√

3
9 , 2π

3 ), and with the increase of t

the gap-closing points get closer along the line ky = 2π
3 [see

Fig. 1(b)]. Around each of the two gap-closing points, the
dispersion forms a Dirac cone, and Berry phase around each
gap-closing point is π , which is protected by chiral symmetry.
Because of this π Berry phase, the gap-closing points do
not disappear11 as we change t(< 2). The bulk gap-closing
points move in the direction perpendicular to the bonds with
anisotropic hopping integral t . At t = 2, the gap-closing points
meet and they annihilate each other at kx = 0 [see Fig. 1(b)].10

This is possible because the sum of the Berry phase becomes
zero, i.e., π + π ≡ 0 (mod 2π ). For t > 2, there are no bulk
gap-closing points.

The evolution of the edge states with the change of the
anisotropy has been studied in several papers.10,12,13 As we
see in the following, for t > 2, flat-band edge states on the
zigzag or Klein edges completely cover the BZ, as has been
studied in Ref. 12. For the zigzag edges, it occurs when the
bond with hopping t is perpendicular to the edge, and for the
Klein edges it occurs when the bond with hopping t is not
perpendicular to the edge. For these cases with zigzag and
Klein edges, we calculate dispersions in Fig. 1(c) for t1 = 1
and t1 = 2.2, at t2 = t3 = 1 in both cases. The flat-band edge
states are separated completely from the bulk for t1 = 2.2 [see
Fig. 1(c)].

To explain this behavior, we solve the Schrödinger equation
in the semi-infinite geometry with a zigzag edge. The zigzag
edge is assumed to be perpendicular to the bonds with hopping
integral t1. We express the wave function |� (k)〉 as

|� (k)〉 =
∑
i=1

[ai(k)|Ai(k)〉 + bi(k)|Bi(k)〉], (5)

where i denotes an index for unit cells containing two
sublattice sites, A and B, counted from the edge (i = 1), k

is the wave number along the edge, and ai(k) [bi(k)] denotes
the coefficient for the wave functions at A(B) sublattice,
|Ai(k)〉 [|Bi(k)〉]. Acting Hh onto |Ai(k)〉 and |Bi(k)〉, we
have

〈Bi(k)|Hh|Ai(k)〉 = t1, (6)

〈Bi−1(k)|Hh|Ai(k)〉 = t2 + t3e−ik. (7)
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From Fig. 1(c), the surface states are expected to be at
the zero energy, and as we see later, it is the case indeed.
When we set the eigenvalue to be zero, Hh|�(k)〉 = 0, we
obtain

ai(t2 + t3e−ik) + ai+1t1 = 0, bi = 0. (8)

Thus the amplitude of the flat-band states is given by

an(k) = a1

(
− t2 + t3e−ik

t1

)n−1

, bi = 0, (9)

where a1 = (1 − |t2+t3e−ik |2
t2
1

)−1/2 from normalization, and the
condition for existence of the edge states, i.e., normalizability
of the wave function, is given as∣∣∣∣ t2 + t3e−ik

t1

∣∣∣∣ < 1. (10)

For example, for t1 = t2 = t3 (graphene model), the wave
number that satisfies the condition [see Eq. (10)] for existence
of the edge state is given as 2π

3 < k < 4π
3 , which agrees

with the well-known flat band in graphene ribbon with a
zigzag edge.7 In addition, by the relation | t2+t3e−ik

t1
| < t2+t3

t1
,

when t1 > t2 + t3 is satisfied, the wave function defined by
(9) is normalizable for every k and the flat bands cover
the whole 1D BZ. This condition t1 > t2 + t3 means that
the anisotropy is sufficiently large. These results agree with
numerical calculations in Fig. 1(c).

In Fig. 1(c), we also show results for armchair edges and
for Klein (bearded) edges. For armchair edges, there are no
flat-band edge states. For Klein edges where τ1 bonds (hopping
t1) are not perpendicular to the edge, there are flat-band edge
states; if t1 > 2, the flat-band edge states cover the entire BZ.
These results agree with the results in Ref. 12.

III. DIAMOND LATTICE

In the previous section, we have seen that the flat-band
edge states of the honeycomb-lattice model with the large
anisotropy cover the whole BZ. In the similar way as in the
honeycomb-lattice model, in this section, we show surface flat
bands in the tight-binding model on the diamond lattice. The
existence of such a flat-band surface states has been proposed
in Ref. 9 for an isotropic case. In the following, we extend this
concept to anisotropic cases and study properties of the wave
functions. In the honeycomb lattice in the previous section,
the flat-band edge states exist between certain wave numbers,
which are identified with the bulk gap-closing points. We
will show similar phenomena for the diamond lattice. The
Hamiltonian Hd is

Hd =
∑
〈ij〉

c
†
i tij cj , (11)

where tij = tj i is the hopping integral from site i to j , and
the suffix d means the diamond lattice. We assume that the
hopping integrals tij are real positive parameters. The nearest-
neightbor bond vectors, τ s, are as follows: τ 1 = 1

4 (1,1,1),
τ 2 = 1

4 (−1,1,−1), τ 3 = 1
4 (−1,−1,1), and τ 4 = 1

4 (1,−1,−1)
(see Fig. 2). The four hopping integrals are labeled with τ a as
tτ a

= ta . The bulk Hamiltonian matrix Hdb(k) is represented

FIG. 2. (Color online) (a) Schematic of a diamond lattice. A

(gray) and B (black) atoms denote the two sublattices. τ s represent
vectors connecting nearest-neighbor atoms. (b) The BZ of the
diamond lattice structure within kx,y,z > 0.

as

Hdb(k) =
(

0
∑4

i=1 tie−ik·τ i∑4
i=1 tieik·τ i 0

)
. (12)

This also preserves the chiral symmetry, σzHdbσz = −Hdb,
and therefore the eigenenergy is symmetric with respect to
E ↔ −E. As is proposed in Ref. 9, when t1−4 are identical,
the surface states on the (111) surface for this Hamiltonian
forms a flat band, which partially cover the surface BZ.

First, we set one of the four hopping integrals as a tunable
positive parameter t and the other hopping integrals as unity.
For t = 1.4, the dispersions for slab geometry with (111)
surface are shown in Fig. 3. We show the results for cases,
(a) t1 = t , t2 = t3 = t4 = 1 and (b) t3 = t , t1 = t2 = t4 = 1,
whose differences lie in their surface orientation relative to the
anisotropy; namely, the stronger bond is perpendicular to the
surface for (a) and not perpendicular for (b). Figures 3(a1) and
3(b1) show the dispersions for the slab geometry near zero
energy for (a) and (b), respectively. As one can see, there is
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FIG. 3. (Color online) Band structure for the diamond lattice
model with the (111) surface, for the two cases: (a) t1 = t , t2 =
t3 = t4 = 1 and (b) t3 = t , t1 = t2 = t4 = 1. (a1) and (b1) show the
respective band structures close to zero energy for (a) and (b). The
thick lines represent the first BZ. (a2) and (b2) show the region
with the surface flat bands at zero energy. In (c), the FS at zero
energy in the 3D bulk BZ projected on the (111) plane for the cases
(a) and (b).
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FIG. 4. (Color online) The FSs at zero energy in the 3D bulk
BZ projected on the (111) plane for t2 = t3 = t4 = 1 and t1 = t =
0.6,1,1.4,2.2,3.0 are shown. For t > 1, the loop shrinks with increase
in t , and at t = 3.0 the loop becomes a dot.

a surface flat band at zero energy, which partially covers the
BZ. The distributions of zero-energy flat bands in the surface
BZ are shown in (a2) and (b2). On the other hand, Fig. 3(c)
shows the projections of the bulk gap-closing points at E = 0
onto the (111) surface for (a) and (b). Notably, it is a novel
property of the model that the gap closes along a loop in k
space. This comes because Hdb consists only of σx and σy ,
and one should tune only two parameters (the coefficients
of σx and σy) to be zero to close the gap. Such gap-closing
points form a loop in the bulk BZ. In particular, if one sets
the Fermi energy to be zero, the gap-closing loop becomes
the Fermi surface (Fermi loop). By comparing the bulk FSs in
Fig. 3(c) with the flat-band surface states (a) and (b), we see
the correspondence between the bulk FS and the distribution
of the flat surface bands, as is discussed in the previous case
of the honeycomb lattice; the verge of the flat surface bands
corresponds to the bulk FS projected onto the surface direction.
In this case, the surface dispersion is determined by the relative
orientation between the nearest-neighbor hopping vector with
t and the surface. Therefore by rotating the surface orientation
in (b) from (111) to (1̄1̄1), we have the same flat-band states
as shown in (a). From these observations, one can see how
an anisotropy affects the surface flat band. In particular, if t1
is increased, the surface flat band gradually grows within the
surface BZ and eventually cover the whole BZ, as we see in
the following. The bulk dispersion for t1 = t , t2 = t3 = t4 = 1
is given by

E2
db =

∣∣∣∣∣
4∑

i=1

tie
−ik·τ i

∣∣∣∣∣
2

=
(

t + cos
kx + ky

2
+ cos

ky + kz

2
+ cos

kz + kx

2

)2

+
(

sin
kx + ky

2
+ sin

ky + kz

2
+ sin

kz + kx

2

)2

.

(13)

Therefore the gap-closing points Ebd = 0 are given by
two equations, t + cos kx+ky

2 + cos ky+kz

2 + cos kz+kx

2 = 0 and

sin kx+ky

2 + sin ky+kz

2 + sin kz+kx

2 = 0 (see Fig. 4). The FS
encircles the �-L line in the bulk BZ for t � 1. This can
be explicitly seen when the wave vector is close to the L point,
k ∼ (π,π,π ), which is true when t is close to 3. Around the L

point, by putting k = (π,π,π ) + (δkx,δky,δkz), the FS loop is
expressed as

(δkx)2 + (δky)2 + (δkz)
2 = 8(3 − t), δkx + δky + δkz = 0

(14)

from Eq. (13). Thus the FS is a circle of radius
√

8(3 − t),
surrounding the L points. We see that the FS is getting smaller
with the increase of t and shrinks to the � point at t = 3, while
the flat-band surface states expand with t . For t > 3, the loop
vanishes, and the surface flat band covers the whole surface BZ.

A. Flat-band states localized at the surface

Here, we calculate the Bloch wave function of the flat-band
surface states for the tight-binding model [see Eq. (11)] with
the (111) surface. To this end, we consider a semi-infinite ge-
ometry with the (111) surface. We derive a wave function with
zero eigenvalue as |φ〉 = ∑

i=1[ai(k)|Ai(k)〉 + bi(k)|Bi(k)〉],
where i denotes indices of the unit cell counted from the
surface (i = 1), |Ai(k)〉 (|Bi(k)〉) denotes the wave function at
the ith layer with the wave vector k, and ai(k)[bi(k)] denotes
the coefficient of the wave function for each sublattice. The
matrix element of the Hamiltonian Hd is given as

〈Bj−1(k)|Hd|Aj (k)〉 = t1, (15)

〈Bj (k)|Hd|Aj (k)〉 = t2e−ik1 + t3 + t4eik2 , (16)

where k1 = k · (τ 2 − τ 3) and k2 = k · (τ 3 − τ 4).
In order to calculate the flat-band surface states, we impose

the state |φ〉 to have zero energy Hd|φ〉 = 0. In the Schrödinger
equation, Hd|φ〉 can be calculated as

Hd|φ(k)〉 =
∞∑

j=2

[aj (t2e−ik1 + t3 + t4eik2 ) + aj+1t1]|Bj (k)〉

+ [b1(t2e−ik1 + t3 + t4eik2 )]|A1(k)〉

+
∞∑

j=2

[bj−1t1 + bj (t2eik1 + t3 + t4e−ik2 )]|Aj (k)〉.

(17)

From Hd|φ〉 = 0, the amplitudes are derived as bi(k) = 0, and

aj+1(k) = − t2e−ik1 + t3 + t4eik2

t1
aj (k). (18)

Namely, the zero-energy states localize near the surface for
every wave vector if t1 > t2 + t3 + t4, because from Eq. (18),
we have ∣∣∣∣aj+1(k)

aj (k)

∣∣∣∣ =
∣∣∣∣ t2e−ik1 + t3 + t4eik2

t1

∣∣∣∣
� t2 + t3 + t4

t1
< 1. (19)

The second equality in Eq. (19) holds only at the � point in the
2D surface BZ. In addition, from Eq. (19), a penetration depth
λ, defined as |aj | ∼ e−j/λ, is given by e− 1

λ = | t2e−ik1 +t3+t4eik2

t1
|.

Hence the penetration depth of the surface states is maximum
at k = 0. As we see in the following, the longest penetration
depth at k = 0 means that the finite-size effect is largest there.
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FIG. 5. (Color online) Dispersion near zero energy at t = 3.4 for
the slab geometry. The number N of unit cells to the direction normal
to the surface is N = 20 in (a) and 40 in (b).

From the above discussion, the model has the completely
flat band at zero energy when the system is semi-infinite.
However, if the thickness of the slab is finite, there will be
a small splitting of energy to ±� due to hybridization of
the surface states at the opposite sides of the slab. This gap
is larger when the penetration depth is longer. Therefore the
gap is expected to be largest at the � point. We calculate
the band structure for a slab geometry in Figs. 5(a) and 5(b),
and see that it is indeed the case. The maximum value of the
finite-size gap � is estimated as the following. We focus on
the � point, and assume (t2 + t3 + t4)/t1 = α < 1. When the
thickness of the slab N is large, the surface wave function for
the top surface |φt 〉 and that for the bottom surface |φb〉 can
be treated separately. The wave functions are approximately
given as

|φt (k)〉 ∼
N∑

n=1

acn−1|Ai(k)〉, |φb(k)〉 ∼
N∑

n=1

acN−n|Bi(k)〉,

(20)

where c = −(t2e−ik1 + t3 + t4eik2 )/t1, and a2 = (1 − |c|2)/
(1 − |c|2N ). Then we obtain the hybridization as

〈φb(k)|H |φt (k)〉 ∼ a2cN t1, (21)

which is expected to give the size of the gap due to the finite-
size effect. At the � point, |c| becomes maximum and therefore
the finite-size effect of the energy is largest at �, taking its
maximum value

� ∼ t1(1 − α2)αN. (22)

For t1 = 3.4, t2 = t3 = t4 = 1.0, Eq. (22) gives � ∼ 0.0616
for N = 20, and � ∼ 0.00504 for N = 40. On the other hand,
our band-structure calculation (see Fig. 5) gives � to be � ∼
0.0632 for N = 20, and � = 0.005042 for N = 40. Thus our
estimate for λ in Eq. (22) well agrees with the numerical
calculation, showing that the gap around k = 0 is governed by
the penetration depth of the surface states into the bulk.

B. Topological transition of the bulk FS

As can be seen in Fig. 4, the topology of the FS loop changes
at t = 1. In this section, we study this topological transition
of the FS in the diamond-lattice model. We assume that t2,3,4

are fixed to be unity, whereas t1 = t is varied. The FSs for
t = 1.2,1,0.8 are shown in Fig. 6. When t < 1, there are two
FS loops forming open orbits, though it is not immediately
seen in Fig. 6. On the other hand, when t = 1.2 there is a
single FS loop forming a closed orbit. At t = 1, the topology
of the FS changes at the three X points. This change at the X

points is not clearly seen, because the X points are on the BZ

FIG. 6. (Color online) The FSs in the 3D bulk BZ for t2 =
t3 = t4 = 1 and t1 = t = 0.8, 1, 1.2 are shown. At t = 0.8 (blue)
the FSs consist of two open orbits. On the other hand at t = 1.2
(red), the FS becomes one closed orbit in the BZ. To illustrate the
topological transition of the FS at t = 1 (green), the FSs around
one of the X points are magnified in the inset in the extended zone
scheme.

boundary. To clarify the topology change, in the inset of Fig. 6,
we show the FSs close to the X points in the extended zone
scheme. As t is increased further, at t = 3, the FS shrinks to
a point and simultaneously the surface flat band extends cover
the whole BZ.

IV. TOPOLOGICAL EXPLANATION FOR EXISTENCE
OF THE FLAT-BAND STATES

In Ref. 8, a topological interpretation of the existence of
edge states at zero energy in two-dimensional models with
chiral symmetry is given. In this section, we apply this theory to
the present models on the honeycomb lattice and the diamond
lattice, and show that the edge/surface flat band states are
explained within this theory.8

To apply the topological argument in Ref. 8, the crystal
termination is crucial. The way how the edges are oriented and
how the crystal is terminated is incorporated into the formalism
in the following way. For two-dimensional models with chiral
symmetry, for example, we begin with a bulk system, and
we cut the system along one direction by cutting the nearest-
neighbor bonds, in order to discuss edge states. Let y denote the
coordinate along which the system will be cut. Then, following
Ref. 8, we expand the bulk Hamiltonian by the Pauli matrices
σx,σy as H = hx(k′

x,ky)σx + hy(k′
x,ky)σy . Here ky denotes the

component of the wave vector along the y direction (along the
edge), and k′

x is the other component of the wave vector. We
note that because we assume chiral symmetry σzHσz = −H ,
the 2×2 Hamiltonian H has no σz term. Because the bulk
system is cut along the y axis, k′

x will no longer be a good
quantum number. Then the criterion in Ref. 8 says that if
the trajectory of (hx,hy) for the change of k′

x with fixed ky

encircles the origin, zero-energy edge states exist for the given
ky . If not, zero-energy edge states will not exist.8 An intuitive
picture of this argument is the following. The origin (hx,hy) =
(0,0) is a singular point because the bulk Hamiltonian has
degenerate eigenvalues at zero energy. Whether the trajectory
encircles this singularity or not determines a classification of
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FIG. 7. Trajectories of (hx,hy) by varying k′
x in (a) and (b) or k3

in (c) for the honeycomb-lattice model with zigzag (a), with Klein (b)
edges, and in the diamond-lattice model with the (111) surface (c).
In these trajectories, ky , k1, and k2 are fixed.

the Hamiltonian either into a class with no edge state or a
class with flat-band edge states. Namely, if the trajectory does
not encircle the origin, it can be continuously deformed into a
point without encountering the singular point, which leads to
an absence of zero-energy boundary states.

We apply this criterion to the present models to show that the
flat-band boundary states discussed so far are fully explained
by this theory. For the anisotropic honeycomb-lattice models,
explanations are given in Ref. 12, and we reproduce it here for
illustration. For zigzag edges, we have

hx = t cos(ky − k′
x) + 1 + cos ky, (23)

hy = −t sin(ky − k′
x) + sin ky. (24)

Hence the trajectory is a circle with a radius |t | centered at (1 +
cos ky, sin ky) [see Fig. 7(a)]. The condition that it encircles the
origin reproduces the range of the wave vector of the flat-band
edge states, obtained in the previous section. In particular,
for t > 2, the trajectory encompasses the origin irrespective
of the value of ky , and existence of the perfectly flat edge
band over the whole BZ results, as we discussed previously.
The case for the Klein edge is explained similarly, where we
have

hx = 1 + cos(ky − k′
x) + t cos k′

x, (25)

hy = − sin(ky − k′
x) + t sin k′

x, (26)

with the trajectory shown in Fig. 7(b). Then it is easily seen
that the flat-band edge states extend over the whole BZ when
t > 2.

So far, the topological characterization of flat-band edge
states is only for edge states in two-dimensional systems.8 We

can extend this discussion to three-dimensional models such
as our diamond-lattice model. For this model, we obtain

hx = 1 + cos k1 + cos k2 + t cos k3, (27)

hy = sin k1 − sin k2 − t sin k3, (28)

where k1 = k · (τ 2 − τ 3), k2 = k · (τ 3 − τ 4), and k3 = k ·
(τ 3 − τ 1). When we cut the bonds parallel to τ 1, k3 will no
longer be a good quantum number. Then, by extending the
argument in Ref. 8 we conclude the following. If the trajectory
of (hx,hy) by the change of k3 encircles the origin, there should
be zero-energy edge state. For t > 3, it holds true irrespective
of the values of k1 and k2, and therefore for t > 3 the surface
flat band covers the surface BZ [see Fig. 7(c)].

This theory in Ref. 8 also explains the reason why in these
models the verge of the edge/surface states should be identical
with the projection of the bulk gap-closing points/curves. Let
k∗ denote a wave number where the bulk eigenenergy is zero,
i.e., hx = 0 and hy = 0. Because of the chiral symmetry, at
such point k∗ the bulk band gap is closed. In our honeycomb-
lattice model, there are two k∗ points (see Fig. 1). The set
of k∗ points in the diamond lattice model forms a loop (see
Figs. 3 and 4). At such k∗ points, the trajectory of (hx,hy) goes
across the origin, and therefore it should be on the boundary
between the regions where the edge/surface flat band exist or
not. Therefore the projections of the bulk zero-energy points
onto the edge/surface are identical with the verge of the flat-
band edge/surface states, which is one of the consequences
in Ref. 8. To summarize, this topological notion enables us
to show existence or absence of flat-band boundary states for
various models with various boundary conditions. The flat-
band edge/surface states vary by changing anisotropy of the
hopping integral. We emphasize here that the existence of
flat-band edge/surface states here does not result from neither
interaction nor isolated atomic orbitals, but from topological
structure in k space.

V. COMPLETELY LOCALIZED EDGE/SURFACE STATES

We have found that nearest-neighbor tight-binding models
on the bipartite lattices, such as the honeycomb and the
diamond lattices, have flat-band boundary states covering the
whole BZ, when the anisotropy of their hopping integrals is
sufficiently large. In general, when systems have completely
flat bands over the entire BZ, one can construct a wave function
which is spatially localized on a finite number of sites. Namely,
because of the flatness of the band, any linear combination
of the eigenstates within this flat band is also an eigenstate;
therefore by taking an appropriate linear combination, one
can construct a fully localized state. This is analogous to
constructing a spatially localized state as a linear combination
of plane waves.

The construction of fully localized state is possible only
when the flat band covers the whole BZ. In this section,
we calculate the fully localized wave function in the present
models. This wave function is exponentially decaying in the
direction normal to the boundary, while on the outermost
atomic layer, the wave function is nonzero only on a single site,
as schematically shown in Fig. 8. We consider semi-infinite
systems for the honeycomb lattice with the zigzag edge
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FIG. 8. (Color online) Schematic of spatial distribution of the
flat-band surface states. The circles are the A sublattice sites, while
the amplitudes on B sublattices are zero and are omitted. The dotted
circles show that their amplitudes of the wave function are zero. The
line thickness of the circle shows the magnitude of the amplitude.
The top atom has the largest amplitude, and the distribution of the
wave function spatially spreads toward the interior with exponential
decay. This picture of the fully localized states applies both to the
honeycomb lattice with the zigzag edge and to the diamond lattice
with the (111) surface.

and those for the diamond lattice with the (111) surface.
Similarly to the previous sections, the outermost atomic layer
are assumed to belong to the A sublattice.

We first consider the honeycomb lattice in the half-plane
y � 0. The zigzag edge is along the x axis, and the origin
O is set to be one site on the zigzag edge. The state at
the site −ma1 − na2 is denoted as |Amn〉, where m = (m,n)
are nonnegative integers, and O = (0,0). We assume that the
amplitude of the localized wave function on the outermost
atomic layer is nonzero only at O. We express the wave
function of the localized states as

|� 〉 =
∑
m,n

amn|Amn〉, (29)

where amn is the amplitude for |Amn〉 at A sublattice. The
amplitude at B sublattice is identically zero. From the
Schrödinger equation, we have a relation between amplitudes
as

amn = − t2

t1
am−1n − t3

t1
amn−1. (30)

Intriguingly, the solution for the above sequence determined
by Eq. (30) is the same as the following problem. Consider a
mover in the xy plane on the grid shown in Fig. 9. The mover is
first on the O = (0,0) site. At each step it moves by (1,0) with
a probability P1, by (0,1) with a probability P2 (see Fig. 9),
and the movement is finished otherwise. Finally, after m + n

steps, the probability Pmn that the mover is at (m,n) (m,n � 0)
along the shortest paths is given as

Pmn = (m + n)!

m!n!
P m

1 P n
2 . (31)

FIG. 9. (Color online) Schematic of the grids for the shortest path
problem. The mover is at first at the origin O, and it moves along ei

with the probability Pi , where (ei)j = δij .

By replacing the probabilities of the movement with the ratio
of the hopping integrals,

Pi → − ti+1

t1
, (32)

where i = 1,2, we have the amplitude of the wave function as

amn = 1

Zh

(m + n)!

m!n!

(
− t2

t1

)m (
− t3

t1

)n

(m,n � 0), (33)

where Zh is the normalization constant. For m < 0 or n <

0, amn vanishes. In this spatial representation of the wave
function, the condition for existence of the fully localized states
on the boundary is that the wave function is normalizable.
Generally, because t1,2,3 are positive, Zh satisfies the following
relation:

Z2
h =

∞∑
N=0

N∑
n,m=0

δn+m,NP 2
mn

�
( ∞∑

N=0

N=n+m∑
n,m=0

|Pmn|
)2

=
[ ∞∑

N=0

(
t2 + t3

t1

)N
]2

.

(34)

Therefore, for t2+t3
t1

< 1, the normalization constant Zh con-
verges; namely, the fully localized states appear.

Next, we consider the diamond lattice with the (111) surface
in the half-space x + y + z � 0. The surface are located on
x + y + z = 0 plane, and the origin O is set to be (0,0,0).
The wave function at md1 + nd2 + ld3 in the A sublattice is
denoted as |Amnl〉, where di = τ i+1 − τ 1 for i = 2,3,4 (here,
the vectors τ i are the same as those in Sec. III). Then, the wave
function of the fully localized state is expressed as

|�〉 =
∑
m,n,l

amnl|Amnl〉, (35)

where amnl is the amplitude for |Amnl〉. The Schrödinger
equation leads to the relation between amplitudes as

amnl = − t2

t1
am−1nl − t3

t1
amn−1l − t4

t1
amnl−1. (36)
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Similarly, to the case of the honeycomb lattice, the solution
for the sequence is obtained by the shortest path problem in
three dimensions. Let P1, P2, and P3 denote the probabilities
for moving along (1,0,0), (0,1,0), and (0,0,1) respectively.
The probability Pmnl of the shortest path problem from O to
(m,n,l) is given as

Pmnl = (m + n + l)!

m!n!l!
P m

1 P n
2 P l

3. (37)

By replacing the probabilities of the movement with the ratio
of the hopping integrals, we have the amplitude amnl as

amnl = 1

Zd

(m + n + l)!

m!n!l!

(
− t2

t1

)m (
− t3

t1

)n (
− t4

t1

)l

, (38)

where Zd is the normalization constant for the wave function
|�〉, and this amplitude is nonzero only when m, n, l are all
nonnegative. The condition for existence of the fully localized
state is that Zd converges. Zd satisfies as the following
relation:

Z2
d =

∞∑
m,n,k=0

P 2
mnk =

∞∑
N=0

N∑
m,n,k=0

δm+n+k,NP 2
mnk

�
( ∞∑

N=0

N∑
m,n,k=0

δm+n+k,N |Pmnk|
)2

=
[ ∞∑

N=0

(
t2 + t3 + t4

t1

)N
]2

. (39)

Therefore, for t2+t3+t4
t1

< 1, the normalization constant Zd

converges, and the completely flat-band states appear.
Those convergence conditions for Zh and Zd agree with

the conditions for existence of flat edge/surface states for the
whole BZ. However, we note that Eqs. (34) and (39) give
sufficient conditions for normalizability of the fully localized
wave function. In Appendix, we calculated Zh and Zd for
t1 = t , the others being unity, where t is the hopping parameter
of the anisotropy. The results agree with the conditions in
Eqs. (34) and (39). Thus the fully localized states exist when
there is a flat-band edge/surface-localized states for the whole
BZ.

VI. SUMMARY AND DISCUSSIONS

Existence of flat-band boundary states is shown for tight-
binding models on the diamond lattice. In the diamond-lattice
model, we found that the verge of the distribution of the
flat-band surface states is identical with the loop formed by
the gap-closing points. Thus if the Fermi energy is zero,
this loop corresponds to the Fermi surface. We showed that
the distribution of the bulk Fermi loop shrinks and then
disappears in the BZ with increasing anisotropy of the hopping.
The surface flat bands cover the surface BZ completely
when the anisotropy is sufficiently large. These flat bands
are understood topologically within the theory by Ryu and
Hatsugai.8 We found that the isotropic case is just at a
topological phase transition of the bulk Fermi loop, and this
transition is driven by anisotropy of the hopping. Lastly, for
strongly anisotropic cases we constructed a fully localized
wave function. The wave function is localized at a single site

in the outermost edge/surface layer, while it expands inward
with exponential decay. From the Schrödinger equation, we
calculated the wave function of the spatially localized states
both in the honeycomb- and diamond-lattice models, and
showed that they are normalizable for strongly anisotropic
cases.

We note that our model is an idealized one; for example,
only the nearest-neighbor hopping is retained while other
hopping is neglected. If other hopping is taken into account,
the results for the flat-band boundary states will be modified.
Nevertheless, as long as the hopping to next-nearest neighbors
and other sites are not so strong, the modification will be small.
For example, in the graphene model, if we take into account
next-nearest neighbor hopping, there will be a small dispersion
to the otherwise flat (dispersionless) edge states.14 Though one
might think that such an idealized model would be useless for
real materials, it is not the case. In fact, for the search of novel
edge/surface states, idealized models discussed in this paper
work quite well. One can resort to first-principle calculations,
only after candidate materials are identified. On the other hand,
in order to search candidate materials, model calculations in
this paper would be powerful in general and would give a
hint to search for a new class of materials which have novel
edge/surface states.

For the flat-band edge states in graphene, a ferromagnetic
magnetization is theoretically proposed when the Hubbard
on-site interaction U is included.7 In this flat-band edge
states, because within the flat-band states the kinetic energy
is degenerate for all the multiparticle states, the Hubbard
interaction favors the multiparticle states with spins all aligned
parallel. Therefore, also in the flat-band surface states in
the diamond-lattice model, magnetization is expected when
the Hubbard on-site interaction is included. In reality, the
flat-band states will be dispersed by hoppings other than
nearest-neighbor ones, and whether or not the magnetization
depends on the relative size of the Hubbard U versus the
bandwidth for the (almost flat) surface states.

In previous works, the flat-band edge states in 2Ds have
been studied, particularly in the context of graphene, while
the flat-band surface states in 3Ds have not been explored in
detail. In this paper, we could explain the reason for existence
of these boundary states in 2D and 3D in parallel and we
also showed novel fully localized states both in 2D and 3D.
It would be interesting if there are materials realizing the
flat-band surface states proposed in the present paper. While
our proposed model is based on the diamond lattice, typical
cubic semiconductors such as diamond do not correspond to
the proposed class of systems. In diamond, there are four
orbitals with sp3 hybrid orbitals, giving rise to a wide gap due
to covalent bonding. In contrast, our tight-binding model has
one s-like orbital per site, giving rise to the gapless spectrum
for isotropic systems. Moreover, to realize the completely flat
band and the fully localized surface states, strong anisotropy
of hopping exceeding the factor of three is proposed, but it
is too large to be accessible by external uniaxial pressure
to isotropic systems. One can instead search for anisotropic
systems from the outset. The corresponding structure would
be a trigonal lattice structure, possibly in layered materials.
Our tight-binding model (11) applies also to this lattice
structure. Although in layered materials, interlayer hopping
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is usually weaker than the intralayer hopping, and it is the
opposite to what we need for flat-band surface states. Even
in that case, the flat-band surface states exist, even though
the region for the flat-band surface states is smaller than the
isotropic case. Furthermore, a recent study has predicted a
large anisotropy in the interlayer hopping in bilayer silicene
by the ab initio calculation.15 According to the prediction, the
interlayer hopping is twice as large as the intralayer hopping
without strain. Although the bilayer silicene does not have
the chiral symmetry, this example indicates possibility of
existence of materials with large anisotropy in the hopping
integrals.

In general, to obtain the localized boundary flat-band states,
bipartite lattices are necessary. Bipartite-lattice models can be
made in several ways; for example, by splitting the vertex
of unipartite lattices. In addition, those systems must have
the anisotropy in the hopping along the direction normal
to the surface. Thus to find candidate materials for the
flat-band surface states, one need to find bipartite systems
with strong anisotropy, and when the bulk is gapped, it
may have the complete flat band depending on the surface
orientation.
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APPENDIX: CALCULATIONS FOR NORMALIZATION
CONSTANTS

In Appendix, we calculate the normalization constants,
Zh and Zd in Sec. V, for special cases where the hopping
integrals perpendicular to the boundary is t and the others are
unity.

1. Honeycomb lattice

For t1 = t ≡ x−1 and t2 = t3 = 1, Zh is given as

Z2
h =

∞∑
m,n=0

[
(m + n)!

m!n!
(−x)m+n

]2

=
∞∑

N=0

N∑
m=0

[
N !

m!(N − m)!

]2

x2N

=
∞∑

N=0

(
2N

N

)
x2N = 1√

1 − 4x2
, (A1)

as long as x = t−1 satisfies |x| < 1
2 . Therefore, for |t | > 2,

there are flat-band states that are localized on one site on the
edge in the honeycomb lattice with zigzag edges.

2. Diamond lattice

For t1 = t and t2 = t3 = t4 = 1, Zd is given as

Z2
d =

∞∑
m,n,k=0

[
(n + m + k)!

n!m!k!

]2

t−2(n+m+k)

=
∞∑

N=0

∞∑
m,k=0

[
N !

(N − m − k)!m!k!

]2

t−2N

=
∞∑

N=0

∮
C

∮
C

dξdη

(2πi)2ξη
(1 + ξ + η)N

× (1 + ξ−1 + η−1)Nt−2N

=
∮

C

∮
C

dξdη

(2πi)2ξη

1

1 − (1 + ξ + η)(1 + ξ−1 + η−1)Y 2
,

(A2)

where t−1 = Y for notational brevity and we assume
0 � Y � 1. Later, we can analytically continue the result with
respect to Y to discuss the condition for convergence of Zd. ξ ,
η are complex numbers, and the path of the integrals is along
the unit circle C : |z| = 1. In the above equation, by using
ξ = eiθ and η = eiφ , where θ,φ ∈ �, we have

Z2
d =

∫ 2π

0

dθdφ

(2π )2

1

1 − (1 + eiθ + eiφ)(1 + e−iθ + e−iφ)Y 2

=
∫ 2π

0

dαdβ

(2π )2

1

1 − (1 + 4 cos2 β + 4 cos α cos β)Y 2

= 1

2πY 2

∫ 2π

0

dβ√
(4 cos2 β − p2)(4 cos2 β − q2)

, (A3)

where α = θ+φ

2 , β = θ−φ

2 , p = 1 + 1
Y

, q = 1
Y

− 1, and we

use the relation
∫ 2π

0 dα 1
A+B cos α

= sgn(A)√
A2−B2 for |A| > |B|, and

A,B ∈ �. By changing the variable as tan β = v, the above
equation becomes

Z2
d = 2

πY 2pq

∫ ∞

0
dv

1√
(v2 + b2)(v2 + c2)

, (A4)

where b2 = 1 − 4
q2 and c2 = 1 − 4

p2 . The integral is further
transformed to the elliptic integral of the first kind,

Z2
d = C(Y )

∫ 1

0

ds√
(1 − s2)(1 − k2s2)

, (A5)

C(Y ) = 2

πY 2pqc
= 2

π
√

(1 − Y )3(1 + 3Y )
, (A6)

k2 = 16Y 3

(1 − Y )3(3Y + 1)
, (A7)

where the variable is changed as v = bs√
1−s2 . Therefore, for

0 � Y < 1
3 , k2 satisfies 0 � k2 < 1, and Z2

d converges. On the
other hand, for Y < 0, because Z2

d is an even function of Y ,
Z2

d converges for − 1
3 < Y < 0. Namely, the condition for the

convergence of the normalization constant Zd is |t | < 3.
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