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Nonlinear optics of semiconductors is an important field of fundamental and applied research, but surprisingly
the role of excitons in the coherent processes leading to harmonics generation has remained essentially unexplored.
Here we report results of a comprehensive experimental and theoretical study of the three-photon process of optical
second-harmonic generation (SHG) involving the exciton resonances of the noncentrosymmetric hexagonal
wide-band-gap semiconductor ZnO in the photon energy range of 3.2–3.5 eV. Resonant crystallographic SHG is
observed for the 1s(A,B), 2s(A,B), 2p(A,B), and 1s(C) excitons. We show that SHG signals at these exciton
resonances are induced by the application of a magnetic field when the incident and the SHG light wave vectors
are along the crystal z axis where the crystallographic SHG response vanishes. A microscopic theory of SHG
through excitons is developed, which shows that the nonlinear interaction of coherent light with excitons has to be
considered beyond the electric-dipole approximation. Depending on the particular symmetry of the exciton states
SHG can originate from the electric- and magnetic-field-induced perturbations of the excitons due to the Stark
effect, the spin as well as orbital Zeeman effects, or the magneto-Stark effect. The importance of each mechanism
is analyzed and discussed by confronting experimental data and theoretical results for the dependences of the
SHG signals on photon energy, magnetic field, electric field, crystal temperature, and light polarization. Good
agreement is obtained between experiment and theory proving the validity of our approach to the complex
problem of nonlinear interaction of light with ZnO excitons. This general approach can be applied also to other
semiconductors.
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I. INTRODUCTION

Nonlinear optics has opened multifaceted possibilities for
studying and tailoring light-matter interaction. Nowadays
nonlinear optical phenomena and materials are a broad basis
for fundamental and applied research.1–5 In linear optics
propagation, absorption, and emission of light are essentially
single-photon processes. In contrast, in nonlinear optics the
interaction of light with a medium is governed by multiphoton
processes. Obviously the light-matter interaction becomes
more intricate. Linear and nonlinear optical experiments
address different types of optical susceptibilities, still they
all are determined by the features of the crystal structure of
the material under study as well as the resulting charge and
spin properties. Therefore they open versatile opportunities
for in-depth analysis from different perspectives. In this sense,
linear and nonlinear optics may be regarded as complementary
to each other in material investigations.

In nonlinear optics frequency conversion processes such
as the second, third, and higher order harmonics generation
as well as the sum and difference frequency generation play
a particularly important role.1–3 Among these phenomena,
most prominent is the simplest three-photon process of optical
second-harmonic generation (SHG). First, the parity selection
rules for the optical transitions between the contributing elec-
tronic states radically differ from those in linear optics and also
from other, more complicated nonlinear phenomena. Second,
besides the parity selection rules, the time-reversal symmetry
operation is a principally important factor in harmonics
generation, when the spin system becomes involved in applied
magnetic fields or in magnetically ordered materials.6–8

From the beginning of nonlinear optics, optical generation
of second and higher order harmonics has been the subject
of active research in various semiconductors.9,10 However, the
majority of these studies, typically performed on bulk crystals
or thin films, were limited to fixed excitation wavelengths
when the fundamental and harmonics photon frequencies were
in the transparency region, below the fundamental band gap.
This approach is motivated by avoiding any absorption in the
medium which would impede potential applications. There are
only a few examples where the SHG spectroscopic studies
of semiconductors cover broad spectral ranges. Absolute
values of the SHG coefficients for bulk zinc-blende ZnTe,
ZnSe, and ZnS were measured at room temperature in the
SHG spectral range of 1.8–4.8 eV.11 Spectroscopic SHG in
bulk GaAs was reported in the range of 2–5 eV, covering
several electronic transitions at critical points.12 The SHG
spectral features found for these materials were in reasonable
agreement with theoretical calculations and experimental data
acquired by other techniques. For hexagonal ZnO, the material
selected for the present study, SHG was reported for selected
wavelengths below the band gap in numerous publications,
see, e.g., Refs. 13–16. Furthermore, also spectroscopic SHG
studies in the range 2.25–3.44 eV were reported for ZnO
microcrystallite thin films.17 The SHG output was found to
increase significantly in the vicinity of the direct band gap.
SHG over broad infrared spectral ranges was also applied
to various chalcopyrites and semiconductors of practical
importance, see, e.g., Refs. 18 and 19 and references therein.

In semiconductors the optical properties in close vicinity
to the band gap are largely determined by excitons, bound
complexes of an electron and a hole. The exciton energy levels
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including their spin properties have been intensely studied
using both linear and nonlinear optical methods such as absorp-
tion, reflection, photoluminescence, two-photon absorption,
four-wave mixing, etc.9,10 Surprisingly, the contributions of
excitons to harmonics generation have remained essentially
unexplored. Typically studies lack a microscopic theoretical
explanation, with scarce exceptions.20–22 Experimental ob-
servations were reported for forbidden SHG in resonance
with the 2p Wannier exciton in ZnSe thin films;23,24 resonant
SHG at the 1s orthoexciton in Cu2O;25,26 and second- and
third-harmonic spectroscopy of excitons in a homoepitaxial
GaN layer.27 An early attempt to detect SHG signals in the
spectral region of the C exciton in ZnO and the 1s excitons
in CuCl was undertaken in Refs. 28 and 29. The concept
of Wannier excitons was used in the SHG study of CuCl,
whereas Frenkel excitons were explored in SHG studies of a
C60 molecular crystal.30,31

Detail insight into the role of excitons in harmonics
generation can be taken if the studies are performed at low
temperatures with a high spectral resolution. External mag-
netic and electric fields can perturb and mix charge and spin
states, providing novel mechanisms for nonlinear harmonics
generation. For example, in diamagnetic materials GaAs and
CdTe the orbital quantization is the origin of magnetic-
field-induced SHG.32,33 In diluted magnetic semiconductor
(Cd,Mn)Te, on the other hand, the giant Zeeman spin splitting
was shown to be the source of magnetic-field-induced SHG.34

Even for the centrosymmetric magnetic semiconductors EuTe
and EuSe a magnetic field was found to induce SHG with high
efficiency.35,36

This rudimentary state of the exciton SHG problem has
motivated our spectroscopic research of SHG as the simplest
frequency conversion process in the wide-band-gap semicon-
ductor ZnO, characterized by a large exciton binding energy of
60 meV and a rich exciton level structure.37 This material has
recently gained substantial renewed interest, partly because the
large exciton binding energy could lead to lasing by exciton
recombination even at room temperature. This and other
potential ZnO applications are discussed in the comprehensive
review by Özgür et al.38 In order to get deeper insight, our
study of SHG at excitons is performed in applied magnetic
and electric fields. In conjunction with a detailed theoretical
analysis we show that SHG spectroscopy allows us to work
out the underlying microscopic mechanisms of the nonlinear
process of simultaneous coherent two-photon excitation and
subsequent one-photon emission involving excitons. Magnetic
and electric fields can perturb the exciton states through
the Stark, the magneto-Stark, and the Zeeman effects and
may act therefore as sources of SHG carrying characteristic
signatures for the chosen field geometry. Our findings open
new opportunities for studying exciton complexes in detail
and involving them in frequency conversion processes.

The paper is organized as follows. In Sec. II we describe the
crystallographic and electronic structures as well as the optical
and magneto-optical properties of hexagonal ZnO. Also a
symmetry analysis of the SHG polarization selection rules is
given. Experimental details are presented in Sec. III, followed
by Sec. IV where the experimental data are described. In Sec. V
the microscopic theory of the SHG is introduced and several
mechanisms involving exciton states are suggested. The

comparison of experiment and theory in Sec. VI allows assign-
ment of particular SHG signals to the specific mechanisms.

II. SECOND-HARMONIC GENERATION IN ZnO

A. Symmetry of electronic states, excitons, and polaritons

ZnO crystallizes preferably in the wurtzite-type
structure,38,39 see Fig. 1(a), characterized by two
interconnected sublattices of Zn2+ and O2− ions with a
strong ionic binding. The lattice constants of ZnO are
a0 = 3.2495 Å and c0 = 5.2069 Å.40 The unit cell is formed
by two Zn2+ and two O2− ions (Z = 2) each of them being
tetrahedrally surrounded by four ions of the other species.
Wurtzite ZnO has a hexagonal crystal lattice, belonging to
the point group 6mm and space group P 63mc.41,42 The z

direction of the used Cartesian xyz system is chosen parallel
to the polar hexagonal [0001] axis, the so-called c axis, which
subsequently will be referred to as z axis following the Birss
notation [0001] ‖ z and [1100] ‖ y.43 From the optical point
of view ZnO is a uniaxial material with the optical axis
directed along the crystallographic z axis.

The electronic band structure of wurtzite ZnO is shown in
Fig. 1(b). The valence band is formed by the 2p orbitals of the
O2− ions and the conduction band is formed by the 4s orbitals
of the Zn2+ ions. The 2p orbitals are split by the hexagonal
crystal field into two �5 and �1 subbands. Including the spin
through the spin-orbit interaction leads to a further splitting
into three twofold degenerate valence band states (�1 ⊕ �5) ⊕
�7 = �7 ⊕ �9 ⊕ �7. In all wurtzite-type semiconductors these
bands are usually labeled from higher to lower energies as A

(�9), B (�7), and C (�7) bands. However, ZnO has an inverted
valence band ordering A (�7), B (�9), and C (�7).37 The
selection rules for transitions from the upper valence bands A

(�7) and B (�9) to the conduction band (�7) are essentially the
same, because the admixture of the |z〉 character to the Bloch
wave functions of the A (�7) valence band is small.44 As a
result, these transitions are allowed for Eω ⊥ z, where Eω is
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FIG. 1. (Color online) (a) Uniaxial crystal structure of wurtzite
ZnO, [0001] ‖ z is the hexagonal crystallographic axis. (b) Electronic
band structure of wurtzite ZnO. The hexagonal crystal field is
responsible for the energy splitting between the A, B, and C valence
bands.
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the electric field of the fundamental light wave. Transitions
from the C (�7) valence band to the conduction band (�7) are
allowed for Eω ‖ z.

Correspondingly, three exciton series are formed in ZnO
by a �7 electron and a hole from one of the A (�7), B (�9),
or C (�7) valence bands. These excitons have approximately
the same binding energy of �60 meV and a Bohr radius of
�1.8 nm. The exciton symmetry results from the direct product
of the envelope function symmetry and the symmetry of
conduction and valence band Bloch states, see e.g., Refs. 45
and 46. The energies of the resulting exciton states are split
by the short-range exchange interaction. For the s-symmetry
excitons of the A and B series, the strongest state has �5

symmetry. It is twofold degenerate and polarized perpendicular
to the z axis, while for the C exciton it has �1 symmetry and is
polarized parallel to the z axis. As a result, for light propagating
along the z axis (k ‖ z) both �5 excitons are transversal, while
the �1 exciton is longitudinal and cannot be excited. For light
with k ⊥ z, one of the �5 exciton states is transversal and the
other is longitudinal, while the �1 exciton is transversal. The
resonances of the longitudinal excitons are shifted to higher
energies by the long-range exchange interaction.

The strong light-matter interaction in ZnO leads to the
formation of exciton-polaritons and their symmetries depend
on the direction of the light propagation. The interaction of
the transversal excitons with photons leads to the formation
of two transversal, lower and upper polariton branches (LPB
and UPB). Their dispersion relations can be obtained from
the condition ε⊥(ω,k) = (kc/ω)2 for the �5 excitons and
ε‖(ω,k) = (kc/ω)2 for the �1 excitons. Here c is the speed
of light and ω is the photon frequency. ε⊥ and ε‖ are the
dielectric functions for the electric field of light polarized
perpendicular and parallel to the z axis, respectively, including
contributions of exciton resonances with energies close to h̄ω.
The energies of the UPB at k = 0 coincide with the energies of
the longitudinal excitons determined from ε⊥,‖(ω,k = 0) = 0,
while the energies of the LPB at k → ∞ coincide with the
energies of the transversal excitons. If k is not parallel or
perpendicular to the crystal z axis, one obtains the so called
mixed-mode polaritons.47–49

B. Polarization selection rules for SHG

Wurtzite ZnO belongs to the noncentrosymmetric point
group 6mm and, consequently, the leading-order SHG is
allowed in the electric-dipole (ED) approximation. The crys-
tallographic SHG polarization P 2ω can be written as

P 2ω
i = ε0χ

cryst
ij l (−2ω; ω,ω)Eω

j Eω
l , (1)

where i,j,l are the Cartesian indices, ε0 is the vacuum
permittivity, χ

cryst
ij l is the nonlinear optical susceptibility, and

Eω
j (l) are the components of the fundamental light electric field

Eω. In the ED approximation and in the absence of external
fields a group theoretical analysis predicts the following
nonzero components of the crystallographic nonlinear optical
susceptibility for bulk ZnO χ

cryst
ij l : χxxz = χxzx = χyyz = χyzy ,

χzxx = χzyy , and χzzz.3,50

Note that Eq. (1) accounts only for the ED contribu-
tions on or off resonant with electronic band transitions at

the fundamental and SHG photon frequencies ω and 2ω,
respectively. However, more generally the SHG process can
involve also electric-quadrupole (EQ) and magnetic-dipole
(MD) contributions. They become important when the out-
going SHG is resonant with the exciton energy Eexc, for
example. Taking into account higher order contributions and
the feasibility of a resonance, the incoming fundamental elec-
tric field Eω(r,t) = Eω exp[i(kr − ωt)] generates an effective
polarization inside the semiconductor at the double frequency
as51

P 2ω
eff,i(Eexc) = ε0χ

cryst
ij l (Eexc,kexc)Eω

j Eω
l , (2)

where the nonlinear optical susceptibility χ
cryst
ij l (Eexc,kexc)

describes the spatial-dispersion phenomena entering in the
EQ and MD approximations. kexc = 2nk is the exciton wave
vector, n is the refractive index at the fundamental energy h̄ω,
and k is the wave vector of the incoming light.

Additional information on the exciton energy levels includ-
ing their spin structure, as well as on their wave functions can
be obtained by applying external fields. The symmetries of
exciton states may be modified by electric or magnetic fields,
enabling mixing of states. This opens the way for novel SHG
mechanisms induced by the fields. In this case, the effective
polarization inside the semiconductor can be written as

P 2ω
eff,B,E,i(Eexc) = ε0χijl(Eexc,kexc,B,E)Eω

j Eω
l , (3)

where the nonlinear optical susceptibility χijl(Eexc,kexc,B,E)
accounts for phenomena induced by the external magnetic
(B) and electric (E) fields. The nonlinear polarizations in
Eqs. (1)–(3) are the sources of the outgoing SHG electric
field E2ω(r,t) ∝ P2ω exp[i(2kr − 2ωt)] with SHG intensity
I 2ω ∝ |P2ω|2.

For a resonant SHG process, which involves the ground
state of the unexcited crystal |G〉 and an exciton state |Exc〉,
the optical transition from |G〉 to |Exc〉 should be allowed both
for the two-photon excitation and the one-photon emission
processes. Fulfillment of this condition strongly depends on the
crystal symmetry and experimental geometry. With including
excitonic effects, this situation becomes richer due to the
different symmetries of the exciton states with s, p, and d

type of envelope wave functions.
Furthermore, external perturbations such as stress, electric,

or magnetic field can mix the exciton states, thereby reducing
their symmetry. For linear optical spectroscopy on ZnO (e.g.,
one-photon absorption or emission) only s exciton states are
active, while p states cannot be seen. In order to study p

exciton states, either nonlinear spectroscopy (e.g., two-photon
absorption) or external perturbations, which mix s and p states
have to be used. To study exciton states and their mixing,
we performed detailed experimental and theoretical studies of
ZnO, serving as a model system, by SHG spectroscopy with
application of magnetic and electric fields.

III. EXPERIMENT

A hydrothermally grown hexagonal ZnO crystal of high
optical quality with [0001] orientation and thickness of 500 μm
was chosen for this study. The SHG technique used for exciton
spectroscopy was described in Ref. 33. The linearly polarized
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FIG. 2. (Color online) Sketch demonstrating the measurement
geometry. θ is the sample tilting angle and ϕ is the turning angle
of Eω(2ω) around k. Electric and magnetic fields are perpendicular to
each other and to the propagation direction of the light E ⊥ B ⊥ k.

fundamental light with photon energy h̄ω was provided by a
laser system with an optical parametric oscillator tunable in the
spectral range of interest (h̄ω = 1.6–1.75 eV) and generating
optical pulses of 7 ns duration with energies up to 3 mJ per
pulse. The experiments were performed in the transmission
geometry with the light wave vector k either parallel or tilted
to the z axis of the ZnO sample. The SHG signal at photon
energies 2h̄ω was spectrally selected by a monochromator
and detected by a cooled charge-coupled-device camera. The
experimental geometry is shown in Fig. 2. Here θ is the
angle between the light wave vector k and the z axis which
gives the sample tilting. ϕ is the azimuthal angle of the
fundamental light polarization, where ϕ = 0◦ coincides with
the crystallographic y axis. Magnetic fields B up to 10 T
generated by a split-coil superconducting solenoid were
applied in the Voigt geometry (B ⊥ k) or the Faraday geometry
(B ‖ k). External electric fields E up to 550 V/cm were applied
via contacts perpendicular both to the magnetic field and the
propagation direction of the light E ⊥ B ⊥ k. The sample
temperature T was varied in the range 1.6–125 K.

As we will show below in Secs. IV and V, decisive experi-
ments for distinguishing different microscopic contributions to
the SHG signal are measurements of the rotational anisotropy,
i.e., the dependence of the SHG signal on the azimuthal
angle ϕ. Such rotational anisotropies were measured for four
different geometries.

(1) I 2ω
‖ �→ E2ω ‖ Eω, fundamental and SHG light polariza-

tions are rotated synchronously, such that they are parallel to
each other.

(2) I 2ω
⊥ �→ E2ω ⊥ Eω, fundamental and SHG light polar-

ization are rotated synchronously, such that the SHG light
polarization is perpendicular to the fundamental light.

(3) I 2ω
‖B �→ E2ω ‖ B, SHG light polarization is fixed parallel

to the magnetic-field direction, while the fundamental light
polarization is rotated around k.

(4) I 2ω
⊥B �→ E2ω ⊥ B, SHG light polarization is fixed per-

pendicular to the magnetic-field direction, while the funda-
mental light polarization is rotated around k.

The corresponding patterns of rotational anisotropies are
modeled according to Eqs. (1)–(3). The results are discussed
in Sec. VI.

FIG. 3. (Color online) Crystallographic SHG spectra of ZnO
for E2ω ‖ Eω and ϕ = 90◦ (compare with anisotropies in Fig. 4),
measured at T = 1.6 K. (a) Close-up of the exciton spectral range
3.37–3.44 eV for θ = 49◦. (b) Extended spectral range 3.2–3.5 eV
for θ = 49◦ and 0◦. SHG signals vanish for k ‖ z (θ = 0◦).

IV. EXPERIMENTAL RESULTS

A. Crystallographic SHG

It follows from the symmetry analysis of the selection rules
in Sec. II B that for laser light propagating along the hexagonal
z axis (k ‖ z) no ED crystallographic SHG is allowed. This
geometry addresses solely components of the susceptibility
without z index, which are all zero. Indeed, no SHG signals
are found experimentally in the vicinity of the ZnO band gap
for zero tilting angle θ = 0◦, see Fig. 3(b).

For tilted geometry, k∠z �= 0, SHG is provided by the
nonzero χ

cryst
ij l components with z index, see Eq. (1). For

parallel orientation of the linear polarizations of fundamental
and SHG light (E2ω ‖ Eω), strong SHG signals are found for
ϕ = 90◦ (see Fig. 4). As one can see in Fig. 3(b), the SHG
consists of a broad band in the spectral range below the exciton
transitions. Furthermore, several sharp lines show up in the
exciton spectral range. Above the band gap the SHG signal
vanishes. The SHG intensity shows pronounced rotational
anisotropies summarized in Fig. 4. These anisotropies allow
distinguishing of the SHG signals from two-photon photolu-
minescence signals which are expected to be isotropic.

The exciton spectral range is shown in more detail in
Fig. 3(a). Arrows mark the reported energies of the different
exciton states in hexagonal ZnO.52 Letters T and L mark the
transversal and longitudinal excitons, respectively. A feature
at 3.407 eV has not been reported in literature so far. It will
be referred to as the X line and discussed in more detail in
Sec.VI. In the tilted geometry, both s and p exciton states are
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FIG. 4. (Color online) Angular dependences of the crystallo-
graphic SHG measured at θ = 49◦ for different energies. Filled
(blue) and open (red) circles represent the geometries E2ω ‖ Eω

and E2ω ⊥ Eω, respectively. Lines and shaded areas show best fits
according to Eq. (1). (a) Off-resonant signal at 2h̄ω = 3.361 eV.
(b) Unidentified X line at 2h̄ω = 3.407 eV. Signal is scaled down
by a factor of 2. (c) 2p(A) exciton line at 2h̄ω = 3.425 eV. Signal is
scaled up by a factor of 1.5. (d) 1sL(C) exciton line at 2h̄ω = 3.434 eV.

SHG active. Using linear spectroscopy, only the 1s exciton
states are observed in absorption and reflection spectra due to
their strong oscillator strength. By contrast, the SHG intensity
in the range of 1s states of A and B excitons is surprisingly
much weaker than the intensity of their excited 2s and 2p

states. This observation is a clear manifestation that nonlinear
SHG spectroscopy addresses exciton properties inaccessible
by linear spectroscopy.

Rotational anisotropy diagrams were measured for
E2ω ‖ Eω and E2ω ⊥ Eω at the following photon energies:
3.361, 3.379, 3.391, 3.400, 3.407, 3.413, 3.425, 3.430, 3.434,
and 3.444 eV. Those anisotropies in Figs. 4(a) and 4(c) are
representative for the off-resonant and A,B exciton regions.
Figures 4(b) and 4(d) show rotational anisotropies specific
for energies close to the X line and the 1sL(C) exciton. The
strongest signal for E2ω ‖ Eω is found for all energies in
the (yz) plane meaning that the shape is dominated by the
χzzz component. Indeed, the fitting procedure gives an χzzz

value which is an order of magnitude larger than the other
components. For the crossed geometry E2ω ⊥ Eω, the fitting
procedure gives the same ratio of nonlinear components. On
the other hand, for energies close to the X line and the 1sL(C)
exciton in Figs. 4(b) and 4(d), the SHG intensity I 2ω

⊥ has a
pronounced feature along the y axis, which can be explained
by a phase shift. The real and imaginary parts of the nonlinear
components change signs in these specific regions, leading to
a strong distortion in the crossed geometry E2ω ⊥ Eω.

We note that our experiments do not allow us to measure the
absolute values of the nonlinear susceptibilities. Therefore, it is
difficult to compare the relative nonlinearities for SHG signals
which are widely separated on the photon energy scale. To
measure the absolute values of the nonlinear susceptibilities
one has to take into account the complex linear refraction in-
dices for both the fundamental and the SHG photon energies.29

We also note that the expected quadratic increase of the SHG
intensity with the fundamental power has been confirmed
for the off-resonant and on-resonant crystallographic SHG
signals, as well as for the magnetic-field-induced SHG signals,
described in the next subsection.

B. Magnetic-field-induced SHG

For investigating magnetic-field-induced SHG we chose
the experimental geometry with θ = 0◦, where the crystallo-
graphic SHG signal vanishes. A magnetic field B = 5 T was
applied perpendicular to the z axis in the geometry B ⊥ k ‖ z.
SHG signals are observed only in resonance with excitons,
see Fig. 5. Two strong lines are seen in the spectral range of
the 2s/2p(A,B) exciton states and three much weaker lines
in the range of the 1s(A,B) excitons. Note that this behavior
differs from the observations in GaAs and CdTe, where the 1s

exciton line always dominates in the magnetic-field-induced
SHG spectrum.32,33 In ZnO, the weak SHG intensity observed
at the 1s(A,B) excitons can be related to the strong absorption
of SHG light due to the large absolute values of the complex
dielectric function.53

A magnetic field is an axial vector of even parity and,
therefore, it is not supposed to mix wave functions of opposite
parities. In spite of this restriction, a strong magnetic-field-
induced contribution to SHG was found in ZnO. An in-depth

FIG. 5. (Color online) Magnetic-field-induced SHG spectrum of
ZnO in a wide energy range 3.35–3.45 eV for E2ω ‖ Eω ⊥ B, θ = 0◦

and ϕ = 0◦ at T = 1.6 K. Inset shows the 1s exciton region zoomed
by a factor of 20. The integration time for recording the data shown
by the red line was tripled compared to the data shown by the blue
line.
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analysis of the SHG microscopic mechanisms is required
for understanding these experimental findings. Such analysis
based on the theoretical model of Sec. V will be given in
Sec. VI.

1. SHG on 1s(A,B) excitons

Let us consider the experimental observations in the
1s exciton region in magnetic field more thoroughly. The
corresponding SHG spectra for different fields up to 10 T
are shown in Fig. 6(a). Three lines corresponding to the 1s(A)
transversal and longitudinal polaritons54 and 1s(B) transversal
polariton are clearly seen at the strongest field with the first
line at 3.3754 eV being the most intense. The integrated
intensity of the 1sT (A,�5/�1) line shows a B2 dependence,
see Fig. 7(a). Its temperature dependence measured at B = 7 T
shows a rapid decrease; see Fig. 14(a). For excitons with strong
binding energies it is expected that the diamagnetic shift of
their 1s states for the magnetic-field strengths used here is
very small, as illustrated in Fig. 6(b).

Figure 6(c) shows the rotational anisotropies of the SHG
intensities in a magnetic field of 5 T for the parallel E2ω ‖ Eω

and the perpendicular E2ω ⊥ Eω detection geometries for

FIG. 6. (Color online) (a) Magnetic-field-induced SHG spectra
in the range of the 1s(A,B) excitons in ZnO. (b) Magnetic-field
dependence of the peak energy of the SHG exciton lines from (a),
dashed lines are calculated after Eq. (A8). (c) Rotational anisotropy
of SHG intensity measured for the strongest line at B = 5 T, detected
for synchronous rotation of the linear polarizers for fundamental and
SHG light: blue filled circles for E2ω ‖ Eω and red open circles for
E2ω ⊥ Eω. Black lines give best fits after Eqs. (9) and (11).

FIG. 7. (Color online) (a) Integrated SHG intensity for the
strongest 1s line at 2h̄ω = 3.3754 eV [compare Fig. 6(a)] as function
of magnetic field (symbols). Line is the best fit with I 2ω

‖ ∝ B2.
(b) Integrated SHG intensity in the spectral range of the 2s/2p(A,B)
excitons at 2h̄ω = 3.420–3.439 eV (compare Fig. 8) as function of
magnetic field (symbols). Line gives model calculation for 2h̄ω =
3.4254 eV (the energy of the strongest peak in the SHG spectra) and
�i = 1.2 meV.

1sT (A,�5/�1) exciton. The rotational anisotropies show
twofold symmetry patterns, have the same amplitudes, and
are rotated relative to each other by 90◦, where the strongest
signal is found for ϕ = 0◦ in the parallel geometry. These
patterns clearly differ from the crystallographic ones in Fig. 4,
highlighting the difference of involved SHG mechanisms. The
fits are done according to Eqs. (9) and (11) in Sec. V.

2. SHG at 2s/2 p(A,B) excitons

Figure 8(a) shows the magnetic-field-induced SHG spectra
at the 2s/2p(A,B) exciton photon energies. A double peak
structure with lines at 3.425 and 3.431 eV appears with
increasing magnetic field, corresponding to the energies of the
2p(A,B) excitons.55,56 In strong magnetic fields exceeding 7 T
the doublet structure splits further into at least four peaks.
In fact, more states can be distinguished in high magnetic
fields when the signals in different polarization geometries
are analyzed, see Fig. 8(b). The energy shifts of these lines
are plotted as a fan chart diagram in Fig. 9, where the SHG
peak intensities are represented by the symbol sizes. Here
experimental results are compared with model calculations,
which details are discussed below in Sec. VI B.

The magnetic-field dependence of the integrated SHG
intensity of the 2s/2p states shows a quadratic increase at
low fields B < 6 T, similar to the 1s exciton, and then tends to
saturate for B > 6 T, see Fig. 7(b). This behavior, which was
not observed for the 1s states, gives a strong indication that
the mechanisms responsible for the magnetic-field-induced
SHG differ for the 1s and the 2s/2p excitons in ZnO.
The temperature dependence of the 2s/2p SHG intensity in
Fig. 14(a) shows a similar but slightly faster decrease than that
of the 1s excitons.

SHG rotational anisotropies detected in different geome-
tries at B = 10 T for the 2s/2p(A,B) states are shown in
Figs. 10 and 11. They have different patterns depending on
the exciton state involved, see, e.g., Figs. 11(d) and 11(f).
The anisotropies differ strongly in the amplitude ratios for
different geometries. In the perpendicular geometry E2ω ⊥ Eω
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FIG. 8. (Color online) Magnetic-field-induced SHG spectra in
the energy range of the 2s/2p exciton states measured at T = 1.6 K.
(a) SHG spectra in different magnetic fields for E2ω ‖ B and ϕ(Eω) =
45◦. (b) SHG spectra at B = 10 T for E2ω ‖ Eω ⊥ B and E2ω ‖ B
with ϕ(Eω) = 45◦.

the shapes are quite different, compare Figs. 11(b) and
11(f), leading to the assumption that the responsible SHG
mechanisms are different and vary with the photon energy.

3. Magnetic-field-induced versus crystallographic SHG

It is instructive to compare the intensities of the crys-
tallographic and the magnetic-field-induced SHG signals.
This comparison is presented in Fig. 12, where all four
panels, recorded with the tilting angle θ ≈ 45◦, have the same
intensity scale. In absence of magnetic field the strongest
crystallographic SHG signal is found for E2ω ‖ Eω and
ϕ(Eω) = 90◦, while it vanishes for E2ω ‖ Eω and ϕ(Eω) = 0◦;
see Fig. 4(c). Figure 12(a) demonstrates that even for a tilted
sample no signal is observed for E2ω ‖ Eω, ϕ(Eω) = 0◦. Thus,
for a tilted sample Fig. 12(b) shows the intensity of a pure
magnetic-field-induced SHG signal for the 2s/2p(A,B) states,
which is even more intense than the strongest crystallographic
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FIG. 9. (Color online) Fan chart diagram for the magnetic-field
dependences of the 2s and 2p excited state energies of the A and
B excitons. Symbols are experimental data with their size scaled
by the observed peak intensity. Blue and red circles are observed
in the geometries E2ω ‖ Eω ⊥ B and E2ω ‖ B with ϕ(Eω) = 45◦,
respectively. Solid lines give the energies of the coupled 2s/2pz/2py

and the 2px states according to the calculations in the Appendix and
after Eq. (A12). Labels at low fields indicate the zero field exciton
energies, while labels at high fields give the dominant component in
the mixed exciton wave functions.

signal I 2ω
⊥ in Fig. 12(c) observed for the 1sL(C) with E2ω ⊥

Eω and ϕ(Eω) = 0◦, see Fig. 4(c). Consequently, we can
conclude that the susceptibilities of magnetic-field-induced

FIG. 10. (Color online) Angular dependences of the magnetic-
field-induced SHG intensity at 3.424 eV for different geometries at
B = 10 T. Open circles represent measured data and lines show best
fits following Eqs. (6)–(11). (a) E2ω ‖ Eω; fit according to Eq. (9).
(b) E2ω ⊥ Eω; fit according to I 2ω ∝ [a sin ϕ + b sin ϕ cos2 ϕ]2, with
a/b = 1/2; a and b represent the spin Zeeman contributions of s

and p type, respectively, see Figs. 16(b) and 16(j). (c) E2ω ‖ B; fit
according to Eq. (7). (d) E2ω ⊥ B; fit according to I 2ω ∝ cos4 ϕ.
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FIG. 11. (Color online) Angular dependences of the magnetic-
field-induced SHG intensity for different energies at B = 10 T. Open
blue circles give the measured intensity I 2ω

‖ for E2ω ‖ Eω and open
red circles give the measured intensity I 2ω

⊥ for E2ω ⊥ Eω. Solid
lines show best fits according to I 2ω

‖ ∝ χ 2
yyy cos2(ϕ) [see Eq. (9)]

and I 2ω
⊥ ∝ [a sin ϕ + b sin ϕ cos2 ϕ]2; a and b represent the spin

Zeeman contributions of s- and p-type excitons, respectively, see
Figs. 16(b) and 16(j). The ratio I 2ω

‖ /I 2ω
⊥ indicates the dominance

of the magneto-Stark contribution compared to the spin Zeeman
contribution. (a) and (b) 2h̄ω = 3.429 eV; I 2ω

‖ /I 2ω
⊥ ≈ 14/1; I 2ω

⊥ with
a/b = 1/1. (c) and (d) 2h̄ω = 3.427 eV; I 2ω

‖ /I 2ω
⊥ ≈ 40/1; I 2ω

⊥ with
a/b = 3/4. (e) and (f) 2h̄ω = 3.432 eV; I 2ω

‖ /I 2ω
⊥ ≈ 4/1; I 2ω

⊥
with a/b = 2/1.

and crystallographic SHG have comparable values. On the
other hand, the 1sL(C) state is not strongly modified by the
magnetic-field-induced contributions, compare amplitudes in
Figs. 12(c) and 12(d).

C. Temperature dependence

Figure 13 compares the crystallographic SHG intensities
I 2ω
‖ recorded at 1.6 and 128 K. While the off-resonant

contribution has comparable intensity, the exciton SHG signals
strongly decrease with rising temperature. A closer look at
the detailed evolutions of the peak intensities shows that
all 1s states and the X-line intensities decrease slower with
temperature than the 2px,y(A) states, compare the results
shown in Fig. 14(a). At the same time, the full width at half
maximum (FWHM) of the 2px,y(A) line increases much faster
than those of the 1sL(C) state and the X line, see Fig. 14(b). The
magnetic field influences the temperature dependence only
slightly: The magnetic-field-induced signals show a similar
behavior as the crystallographic ones; the closed and open dots

FIG. 12. (Color online) Crystallographic and magnetic-field-
induced SHG in the spectral range of the 2s/2p(A,B) and 1sL(C)
excitons measured for the tilted geometry with θ ≈ 45◦. T = 1.6 K.
(a) There is no crystallographic contribution to I 2ω

‖ for ϕ(Eω) = 0◦.
(b) Pure magnetic-field-induced SHG signals at B = 4 T for I 2ω

‖
and ϕ(Eω) = 0◦ contributed by the 2s/2p(A,B) excitons. (c) and (d)
I 2ω
⊥ for the 1sL(C) exciton does not change significantly from B = 0

to 4 T.

in Fig. 14(a) give the temperature dependences for zero field
and B = 7 T, respectively. We conclude that these dependences
are rather independent of the SHG generating mechanism. An
explanation based on our theoretical model will be discussed
in Sec. VI.

FIG. 13. (Color online) Crystallographic SHG spectra of ZnO
for E2ω ‖ Eω at ϕ = 90◦, measured at T = 1.6 K (blue line) and
128 K (red line).

235207-8



SECOND-HARMONIC GENERATION SPECTROSCOPY OF . . . PHYSICAL REVIEW B 88, 235207 (2013)

FIG. 14. (Color online) (a) Normalized SHG intensity vs tem-
perature for different photon energies. Crystallographic signals of
the 1sL(C) exciton (green squares) and the unidentified X line
(black squares) decrease to about 20% at T = 50 K. Crystallographic
signal of the 2px,y(A) state (blue squares) and magnetic-field-induced
signal of 2s/2p(A,B) states (open blue circles) show a fast decay
and vanish in the background for T > 30 K. For B = 7 T the
temperature dependences of the 1s and 2s/2p states change only
slightly compared to the zero-field case, see open symbols. (b)
Normalized FWHM extracted from SHG measurements at different
energies. In contrast to the slow temperature increase for the 1sL(C)
exciton (green squares) and the X line (black squares) the FWHM
of the 2px,y(A) exciton (blue squares) shows a rapid increase with
temperature.

D. Joint action of magnetic and electric field

An applied electric field modifies the wave functions of the
exciton states and, therefore, offers another promising option
for SHG spectroscopy. The electric field is a polar vector of
odd parity, in contrast to the even parity magnetic field, so that
it can mix exciton wave functions of opposite parity.

The two spectra in Fig. 15(b) demonstrate the effect of
an applied electric field on SHG spectra for the 2s/2p(A,B)
excitons in ZnO at zero magnetic field. In the absence of
electric field the residual SHG amplitude (about 1% of those
previously discussed) originates from small strain caused by
the sample holder with electrical contacts. Application of an
electric field perpendicular to the z axis E ⊥ k ‖ z leads to an
increase in the SHG signal.

The electric field effect is much more pronounced in
combination with an applied magnetic field E ⊥ B, see
Fig. 15(a). Here the SHG amplitude is initially gained by
applying a magnetic field of +1 T and then tuned by adding
an electric field of ±550 V/cm. The SHG signal increases for
positive electric fields and decreases for negative fields. The
rotational anisotropies of these signals are not changed by the
electric field. The variation of the integral SHG intensity with
electric field strength is shown in the inset of Fig. 15(a). Such
a behavior that a weak effect (here induced by the electric
field) is enhanced when combined with a stronger effect (by
the magnetic field) is known in SHG spectroscopy when these
effects interfere with each other, see, e.g., Eq. (3) in Ref. 35.

Resistivity measurements have shown that the incident laser
beam reduces the sample resistivity enormously (by several
orders of magnitude), when twice the fundamental photon
energy 2h̄ω comes close to that of the 2p exciton states, see
Fig. 15(c). The resistivity is not instantaneously restored when
the laser is switched off.
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FIG. 15. (Color online) (a) SHG spectra in the range of the
2s/2p(A,B) excitons in ZnO subject to magnetic field and combined
electric and magnetic fields. An applied electric field of E =
±550 V/cm corresponds inside the crystal to the field E/ε⊥, where
ε⊥ = 7.40 is the static dielectric permittivity perpendicular to the
hexagonal z axis. Inset shows integrated intensity in the spectral range
3.417–3.438 eV as function of electric field for B = +1 and −1 T.
Symbols are experimental data and lines give best fits according to
I 2ω ∝ (±B + γE)2 with γ = 2.5 × 10−4. (b) SHG spectra without
applied magnetic field. The red line demonstrates electric field effect
[intensity is increased by a factor of 4 compared to (a)]. (c) Measured
resistivity of the sample at B = 0 T showing a strong drop by about
three orders of magnitude when 2h̄ω becomes close to the 2py,x(A,B)
excitons. Inset shows a close-up (×100) of this region.

V. THEORY OF SHG AT EXCITON RESONANCES

A. General consideration

Theoretical studies of SHG were performed for many model
semiconductors, see, e.g., Refs. 57–67. These publications
analyze the generation of the second and higher harmonics
by band theory or first-principle calculations, while exciton
contributions have remained essentially unexplored. The com-
plex experimentally observed exciton SHG signals for ZnO
in external fields as reported here demands development of a
corresponding microscopic theory.
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In this section we focus on SHG effects in resonance with
exciton states. This requires the analysis of the wave function
symmetries for different exciton states and their modifications
in external magnetic and electric fields. We present a theoreti-
cal analysis for the excitons in ZnO with wurtzite-type crystal
structure. The developed theoretical approach, however, can
be readily applied to other semiconductors. In particular, most
of the suggested mechanisms of magnetic- and electric-field-
induced SHG at the exciton resonances should exist also in
other materials.

To analyze SHG in close vicinity of an exciton resonance we
write the nonlinear optical susceptibilities χijl(Eexc,kexc,B,E)
introduced in Eq. (3) for each exciton energy Eexc = 2h̄ω in
general form as

χij l(Eexc,kexc,B,E)

∝
∑

v

〈G|V̂ 2ω
i |
exc〉〈
exc|V̂ ω

j |ψv〉〈ψv|V̂ ω
l |G〉

(Eexc − 2h̄ω − i�exc)(Ev − h̄ω)

≈ i

�exc
〈G|V̂ 2ω

i |
exc〉M2ph
exc,G. (4)

Here |G〉 denotes the unperturbed ground state with zero
energy, |ψv〉 describes intermediate virtual states with energy
Ev , |
exc〉 describes the exciton state, and �exc is the exciton
damping constant. The summation in Eq. (4) is carried out over
all intermediate states satisfying the symmetry selection rules
for the two-photon transition from the ground to the exciton
state described by the matrix element M

2ph
exc,G.

To account for the effects of the external electric and
magnetic fields we consider the geometry where the crystallo-
graphic SHG signals are suppressed, namely kexc ‖ k ‖ z, B ‖
x, and E ‖ y. In this case the incoming photon field is described
by Eω = (Eω

x ,Eω
y ,0) so that the outgoing polarization can be

written as P2ω
eff = (P 2ω

eff,x,P
2ω
eff,y,0).

The perturbation caused by the photon field Eω(r,t) is
described by (ie/m0ω)[Eω(r,t)p̂], where e and m0 are the
charge and mass of free electron and p̂ is the momentum
operator. Then the perturbation V̂ ω

x(y) is given by

V̂ ω
x(y) = ie

m0ω
p̂x(y) exp(ikzrz)

≈ ie

m0ω
p̂x(y)(1 + ikzrz + · · · ), (5)

where p̂x(y) are the projections of the momentum operator p̂
on the light polarization components x or y, respectively. For
V̂ 2ω

x(y) one should substitute kz by 2kz in Eq. (5) and everywhere
below, as well as ω by 2ω. We are interested in the lowest
order effects in kz, that is zero-order independent of kz, if it
exists, or first-order linear in kz. Therefore, we keep only two
terms in the expansion of exp(ikzrz) = 1 + ikzrz and consider
the perturbation in the form V̂ ω

x(y) = D̂ω
x(y) + Q̂ω

x(y)z. The first

term D̂ω
x(y) = (ie/m0ω)p̂x(y) corresponds to the electric-dipole

(ED) approximation for which the matrix elements can be
replaced68 by the matrix elements of the dipole operator
erx(y)/h̄. The operator Q̂ω

x(y)z = −(ekz/m0ω)p̂x(y)rz includes
the electric-quadrupole (EQ) and the magnetic-dipole (MD)
contributions where the matrix elements can be replaced68

by the sum of matrix elements of the electric-quadrupole

operator Q̂
ω,q

x(y)z = −(iekz/2)rx(y)rz and the magnetic-dipole

operator Q̂
ω,m
x(y)z = ±(eh̄kz/2m0ω)L̂y(x). Here L̂ is the orbital

momentum operator. Depending on the perturbation V̂ ω and
V̂ 2ω involved in the two-photon absorption and one-photon
emission, respectively, we denote the resulting three-photon
SHG process as X2wYωZω, where the X,Y,Z are either D (ED)
or Q (EQ + MD). We emphasize, that the presence of EQ or
MD transition for one of the steps either excitation or emission,
leads to a linear dependence of the susceptibility on kz.

In ZnO, the direct ED transitions between the valence and
conduction band states are allowed. The strongest one-photon
process for k ‖ z are the excitation of the (s × �5) states or the
emission from them. The respective matrix elements can be
written as Dω,a or D2ω,a , where the index a denotes “allowed”
transition within the ED approximation according to the no-
tation of Elliot.69 In contrast, the one-photon ED “forbidden”
transitions to the 2p excitons in noncentrosymmetric wurtzite
semiconductors like ZnO may occur because the valence and
conduction band states do not have pure even or odd parities.
These transitions are much weaker compared to the s exciton
transitions and can be described by the matrix elements Dω,f

or D2ω,f , where the index f denotes the forbidden character
within the ED approximation.69 In the used geometry such
forbidden transitions are possible only for the 2px,y states, and
not for the 2pz state. Alternatively, the one-photon emission
from all three 2px , 2py , and 2pz states may occur due to
magnetic-dipole transitions described by the matrix element
Q2ω,m.

The strongest two-photon process in ZnO is the excitation of
the 2p exciton states. It is ED allowed, exploiting intermediate
virtual states in the valence or conduction band. Such a process
involves a transition between valence and conduction band
states and another transition between s and p envelopes in the
same energy band. The relevant two-photon matrix element is
M

2ph
2p,G ∝ Dω,aDω,f . On the other hand, the direct two-photon

absorption by the s exciton states in noncentrosymmetric
semiconductors may occur within the ED approximation via
the intermediate virtual states in remote bands.70 In this
case the two-photon matrix element is M

2ph
s,G ∝ Dω,aDω,a .

However, such processes are much weaker than those for the
2p excitons.71 Alternatively, the s states can be excited in the
two-photon process when the first transition is a MD transition
(or ED transition of forbidden character) to the 2px,y states
and the second one is an ED transition of forbidden character
between the s and the p envelopes. In this case the two-photon
matrix element is M

2ph
s,G ∝ Dω,f Qω,m (or M

2ph
s,G ∝ Dω,f Dω,f ).

Important information on the symmetry of the exciton states
involved in the SHG process is provided by the SHG rotational
anisotropies. According to Eq. (3) the SHG intensity is given
by

I 2ω
⊥B ∝ |χyyy cos2 ϕ + χyxx sin2 ϕ|2, (6)

if E2ω⊥B; and by

I 2ω
‖B ∝ |χxxy sin(2ϕ)|2, (7)

for the E2ω‖B geometry. Here ϕ is the angle between Eω and
the y axis. Note that B ⊥ y. For parallel polarization E2ω‖Eω
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TABLE I. Different mechanisms providing SHG in external electric and magnetic fields at the 1s(A,B,C), 2s(A,B,C), and 2p(A,B)
exciton resonances in ZnO. Experimental geometry: k ‖ z, E = (0,Ey,0), and B = (Bx,0,0). Due to symmetry χxxy = χxyx . The symbols
indicate the different mechanisms: � for the spin Zeeman effect, ♠ for the Stark, the magneto-Stark, and the orbital Zeeman effect, � for the
spin Zeeman effect for 2py , and ♣ for the spin Zeeman effect for 2px . The corresponding rotational anisotropies are given in Fig. 16.

Mechanisms 1s, 2s 2s/2py 2pz/2py 2py 2px

Stark effect χyyy = 2χxxy �= 0,
D2ω

i Dω
j Dω

l

Ey �= 0, Bx = 0 χyxx = 0 ♠
Magneto-Stark effect χyyy = 2χxxy �= 0,
D2ω

i Dω
j Dω

l

Ey = 0, Bx �= 0 χyxx = 0 ♠
Spin Zeeman effect χyyy = χyxx �= 0,
D2ω

i Dω
j Q

ω,m
l

Ey = 0, Bx �= 0 χxxy = 0 �
Spin Zeeman effect χyyy �= 0, � χxxy �= 0, ♣
Q

2ω,m
i Dω

j Dω
l

Ey = 0, Bx �= 0 χxxy = χyxx = 0 χyyy = χyxx = 0

Orbital Zeeman effect χyyy = 2χxxy �= 0,
Q

2ω,m
i Dω

j Dω
l

Ey = 0, Bx �= 0 χyxx = 0 ♠

one obtains

I 2ω
‖ ∝ cos2 ϕ|χyyy cos2 ϕ + (χyxx + 2χxxy) sin2 ϕ|2. (8)

In a hexagonal 6mm crystal the relation χyyy = χyxx +
2χxxy is fulfilled43 so that

I 2ω
‖ ∝ |χyyy cos ϕ|2. (9)

For perpendicular polarization E2ω ⊥ Eω one finds

I 2ω
⊥ ∝ sin2 ϕ|(χyyy − 2χxxy) cos2 ϕ + χyxx sin2 ϕ|2, (10)

and if the relation χyyy = χyxx + 2χxxy is fulfilled, then

I 2ω
⊥ ∝ |χyxx sin ϕ|2. (11)

Below we will show that a magnetic field applied perpendicular
to the hexagonal z axis may reduce the symmetry of an exciton
state and, consequently, it violates the relation χyyy = χyxx +
2χxxy .

In the following subsections we will proceed with the
analysis of different specific mechanisms of the field-induced
mixing of exciton states and derive the corresponding non-
linear optical susceptibilities. The results of this analysis are
summarized in Table I. Relations between χyyy , χyxx , and
χxxy allow one to model the rotational anisotropies for each
particular mechanism. We note that the admixture of exciton
states in applied fields may lead to the dependence of the
wave function 
exc and the respective energy Eexc on the
exciton wave vector kexc, as well as on Bx and Ey . These
complex perturbations may lead to a nonlinear dependence of
the susceptibilities χijl(Eexc,kexc,Bx,Ey) on Bx , Ey , and kz,
via kexc = 2nkz. They act in addition to those arising from the
second term in the expansion of exp(ikzz) according to Eq. (5).

B. SHG and exciton Stark effect (E ⊥ k‖z)

Let us first consider the SHG signals induced by an external
electric field Ey which mixes the 2s and 2py exciton states

of opposite parity due to the Stark effect for the A and B

excitons. However, it does not affect their spin states. Two
polariton branches can be formed for each of the mixed
2s/2p exciton states. The new energies Eexc = E±

2sT/2py
for

the transversal LPB and Eexc = E±
2sL/2py

for the transversal
UPB are given in the Appendix. The resulting wave functions
of the mixed states in Eq. (A3) are constructed from the 2s

and 2py components. In this process, all matrix elements for
excitation and emission in Eq. (4) become allowed in the ED
approximation V̂

ω(2ω)
x(y) = D̂

ω(2ω)
x(y) . We denote the corresponding

SHG as D2ωDωDω as shown in the first row of Table I. The
corresponding SHG signals can be observed only when the
incoming light has a nonzero component Eω

y �= 0 responsible
for excitation of the 2py state. Therefore, for this process
χyxx = 0 and the resulting electric-field-induced susceptibili-
ties χyyy = 2χxxy = 2χxyx are proportional to the product of
the wave function admixture coefficients in Eqs. (A4) and
(A5). They can be written as

χyyy(E±
2s/2py

,kexc,0,Ey) ∝ C2s(Ey)C2py
(Ey)

= −
3eEyaB

(
E2py

− E±
2s/2py

)
(3eEyaB)2 + (

E2py
− E±

2s/2py

)2 ,

(12)

where aB is the exciton Bohr radius. One sees that these
electric-field-induced susceptibilities do not depend on the
absolute value of kz, however, the direction of k parallel
to the z axis is important. If the electric field perturbation
energy is much smaller than the zero-field splitting of the ex-
citon states, |eEyaB| � |E2p − E2sT(L) |, then the susceptibilities
depend linearly on Ey . However, for larger fields a saturation
is expected because for |eEyaB| � |E2p − E2sT(L) | the suscep-
tibilities become independent of Ey .
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C. SHG and magnetic-field effects on excitons (B ⊥ k‖z)

The effect of an applied magnetic-field B on excitons shows
more facets than an electric field. We will discuss several
mechanisms acting when the magnetic field is applied along
the x axis, B = (Bx,0,0).

(1) The spin Zeeman effect, which mixes the exciton
spin states through a perturbation ∝ (σxBx), where σx is the
corresponding Pauli matrix.

(2) The orbital Zeeman effect, which affects the p states
having nonzero envelope orbital momentum L = 1 and mixes
the 2pz and 2py states by a perturbation ∝ (LxBx).

(3) The magneto-Stark effect.72–76 This effect arises from
the oppositely directed Lorentz forces acting on electron
and hole in a magnetic field during the exciton center-of-
mass motion. The resulting perturbation of the exciton wave
function is equivalent to the effect of an effective electric field
Eeff acting on the exciton at rest:

Eeff = h̄

Mexc
[kexc × B]. (13)

Here Mexc = me + mh denotes the exciton effective mass. In
the given geometry the effective electron and hole masses for
motion parallel to the hexagonal z axis kexc ‖ z and Eeff ‖ y
have to be used: me = m

‖
e and mh = m

‖
h.

The diamagnetic shift of the exciton energy occurs for all
states and is state dependent.45,46 It does not directly lead to a
state mixing, but can enhance mixing by other mechanisms due
to favorable energy shifts, bringing states closer to each other.

It is important that the external magnetic-field Bx can mix
exciton states of different symmetry allowing two-photon res-
onant excitation and one-photon resonant emission at a given
energy and thus leading to SHG signals. The Zeeman spin
mixing may induce SHG signals for one particular envelope
exciton state. The orbital Zeeman effect and the magneto-
Stark effect mix states with different envelope functions. The
strength of this mixing depends on the energy separation of
these states at zero field. At a given exciton energy the SHG
signal might be induced by several mixing mechanisms acting
simultaneously. Below we analyze these mechanisms in detail
for each particular exciton state.

1. Magnetic-field-induced SHG for s-type excitons
due to spin Zeeman effect

The spin states of the s-type excitons depend on the
symmetries of the conduction and valence bands. For excitons
formed from the conduction band of �7 symmetry and the
valence band of �7 symmetry the resulting exciton states
are of �5, �1, and �2 symmetry, split from each other by
the electron-hole exchange interaction. Examples of such
states are the A and C excitons in ZnO, or the B and C

excitons in GaN. The dipole-allowed �5 state can occur for
a one-photon process and forms two polariton branches in
the given geometry. The �1 state can become excited by a
two-photon process if one of the involved photons is due
to the quadrupole perturbation or due to the involvement of
intermediate virtual states in remote bands.70 As a result, the
1s exciton states of the A and C excitons might be observed in
the SHG spectrum due to the Zeeman spin mixing of the �5y

and �1 states. The energies of the new mixed polariton states

E�5y/�1 are given by Eq. (A8) in the Appendix. The resulting
wave functions of the mixed states described by Eq. (A9) are
constituted by both �5y and �1 components.

The two-photon excitation of the s state might occur
through an electric-dipole/electric-dipole (Dω,aDω,a) or an
electric-dipole/magnetic-dipole (DωQω,m) process as dis-
cussed above. For the sake of clarity we consider the second
case in detail. It is represented by the process D2ωDωQω,m in
the third row of Table I. Then the SHG process involves a ma-
trix element for the two-photon excitation with V̂ ω

x(y) = Q̂
ω,m
x(y)z

for one of the photons and V̂ ω
x(y) = D̂ω

x(y) for the second photon.

The subsequent one-photon ED emission with V̂ 2ω
y = D̂2ω

y is
allowed through the s�5y

part of the exciton wave function, so
that χxxy = 0. The resulting magnetic-field-induced nonzero
susceptibilities χyyy = χyxx are given by

χyyy

(
E±

�5y/�1
,kexc,Bx,0

)
∝ C�5 (Bx)C�1 (Bx)(kza0)

= −
2μBgexcBx

(
E�5 − E±

�5y/�1

)
(kza0)

(μBgexcBx)2 + 4
(
E�5 − E±

�5y/�1

)2 . (14)

Here gexc is the exciton g factor, a0 is the lattice constant,
and E±

�5
is the zero-field energy of the LPB or UPB exciton-

polariton, respectively. The linear dependence on kz enters
through the matrix element of the magnetic-dipole excitation
with V̂ ω

x(y) = Q̂
ω,m
x(y)z. If the exciton Zeeman splitting |μBgexcBx |

is much smaller than the zero-field splitting of the correspond-
ing exciton state, then the susceptibilities depend linearly on
Bx so that the SHG intensity follows a B2 dependence.

For s-symmetry states, for which the SHG process is al-
lowed by the Zeeman spin effect, calculations show that χyyy =
χyxx �= 0 and χxxy = χxyx = 0. The intensity of the SHG
signal polarized perpendicular to the magnetic field I 2ω

y ∝
|χyyy(E�5y/�1 ,k

ω
z ,Bx,0)|2 does not depend on the excitation

polarization direction, while the signal polarized parallel to the
magnetic field vanishes: I 2ω

x ∝ |χxxy(E�5y/�1 ,kz,Bx,0)|2 = 0.
For the parallel P2ω

eff ‖ Eω and the crossed P2ω
eff ⊥ Eω geometries

SHG signals of the same amplitude are predicted. Their
anisotropies are described by I 2ω

‖ ∝ |χyyy |2 cos2 ϕ and I 2ω
⊥ ∝

|χyxx |2 sin2 ϕ.
For excitons formed by the conduction band of �7 symme-

try and the valence band of �9 symmetry the resulting exciton
states are of �5 and �6 symmetry. Examples are the B excitons
in ZnO and the A excitons in GaN. The Zeeman effect mixes
the dipole-allowed �5 states and the dark �6 state. In addition,
one has to take into account the exchange interaction between
the �5 components of the A and B excitons which may lead to
SHG from the �5y/�6 exciton states with the same properties
as described above for the �5y/�1 excitons. In addition, the
�5y/�6 exciton states can be excited via the Dω,aDω,a process.

2. Magnetic-field-induced SHG for mixed 2s/2 p excitons

Let us now consider the effect of the effective electric
field Eeff = h̄

Mexc
kexcBx on the exciton states. The mixing

of 2s and 2py states of opposite parity induced thereby is
similar to that caused by the Stark effect due to an external
electric field. Simultaneously, another type of mixing occurs
due to the Zeeman orbital effect, but this mechanism mixes
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the 2pz and 2py states of the same parity. The resulting
energies E i

2s/2pz/2py
(i = 1,2,3) of the mixed 2s/2pz/2py

polariton branches are listed in Eq. (A16). The appropriate
wave functions in Eq. (A17) are constructed from all three
contributing states with coefficients Ci

2s(2pz,2py )(Bx) given
by Eqs. (A18)–(A20). As a result, all mixed states can be
excited by two photons with polarization having a nonzero
field component Eω

y �= 0, which excites the 
2py
component.

ED perturbations V̂ ω
x(y) = D̂ω

x(y) are associated with the first

photon and the V̂ ω
y = D̂ω

y perturbation with the second photon.
There are three possible mechanisms allowing observation
of these mixed 2s/2pz/2py states in one-photon emission:
(i) emission due to the 
2s component through the ED
perturbation V̂ 2ω

x(y) = D̂2ω
x(y); (ii) emission due to the 
2pz

component through the magnetic-dipole perturbation V̂ 2ω
x(y) =

Q̂
2ω,m
x(y)z ; and (iii) emission due to the 
2py

component through

the magnetic-dipole perturbation V̂ 2ω
x(y) = Q̂

2ω,m
x(y)z or through the

electric-dipole-forbidden process V̂ 2ω
y = D̂

2ω,f
yz .

a. Magneto-Stark effect. In the first case (i) the mechanism
responsible for the SHG signal is coupling of the 2s and 2py

states via the magneto-Stark effect and ED emission of the
2s state. The D2ωDωDω process in the second row of Table I
corresponds to this mechanism. The resulting magnetic-field-
induced nonzero susceptibilities χyyy = 2χxxy = 2χxyx are
proportional to the product of admixed components in the
corresponding wave functions:

χ
2s/2py

yyy

(
E i

2s/2pz/2py
,kexc,Bx,0

) ∝ Ci
2s(Bx)Ci

2py
(Bx). (15)

The susceptibilities depend both on the magnetic field and the
wave vector value only via the dependence on the effective
electric field Eeff = γ kexcBx . This dependence is linear when
the energy of the effective electric field is smaller than the
zero-field splitting of the states and it saturates in the opposite
limit.

b. Orbital Zeeman effect. In the second case (ii) the
mechanism responsible for the SHG signal is due to coupling
of the 2pz and 2py states via the orbital Zeeman effect and
magnetic-dipole emission from the 2pz state. This is the
Q2ω,mDωDω process shown in the fifth row of Table I. This
effect is expected to be much weaker than the magneto-Stark
effect and not important at the energy where the 2s exciton
is dominant. The resulting magnetic-field-induced nonzero
susceptibilities χyyy = 2χxxy = 2χxyx can be written as

χ
2py/2pz

yyy

(
E i

2s/2pz/2py
,kexc,Bx,0

) ∝ kza0C
i
2pz

(Bx)Ci
2py

(Bx).

(16)

The linear dependence on kz comes from the matrix element
of the magnetic-dipole perturbation V̂ 2ω

x(y) = Q̂
2ω,m
x(y)z . Linear

dependence of the χ on Bx is expected only for weak magnetic
fields.

The rotational anisotropy patterns of the SHG intensities
for the processes induced by the magneto-Stark and the orbital
Zeeman effect are similar. The main feature for both of them
is disappearance of the signal in crossed geometry P2ω

eff ⊥ Eω

because I 2ω
⊥ (E i

2s/2pz/2py
) ∝ |χyxx |2 = 0 for any polarization di-

rection of the excitation light Eω. The SHG signal in the paral-
lel geometry P2ω

eff ‖ Eω can be modeled as I 2ω
‖ ∝ |χyyy |2 cos2 ϕ,

while the signal polarized along the magnetic-field direction
varies as I 2ω

x ∝ |χxxy |2 sin2(2ϕ). Since χyxx = 0, the signal
polarized perpendicular to the magnetic-field direction can be
described by I 2ω

y ∝ |χyyy |2 cos4 ϕ.

3. SHG due to spin Zeeman effect on p states

a. The py state. For the 2py state the spin Zeeman
effect provides only one nonzero susceptibility due to the
process Q2ω,mDωDω shown in the fourth row of Table I. This
susceptibility can be written as

χ
2py

yyy

(
E i

2s/2pz/2py
,kexc,Bx,0

) ∝ 1
2kza0C

i
2py

(Bx), (17)

where the linear dependence on kz comes from the matrix
element of the magnetic-dipole perturbation V̂ 2ω

x(y) = Q̂
2ω,m
x(y)z .

We have neglected here the electron-hole spin exchange
splitting of the p states. Note, that the magnetic-field-induced
mixing of the 2s/2pz/2py envelopes reduces C2py (Bx ) for the
states in vicinity to the 2py state and thus reduces the Zeeman
contribution to the SHG signal.

The corresponding rotational anisotropy patterns
for the 2py states are I 2ω

‖ ∝ |χyyy |2 cos6 ϕ, I 2ω
⊥ ∝

|χyyy |2 cos4 ϕ sin2 ϕ, I 2ω
‖B = 0, and I 2ω

⊥B ∝ |χyyy |2 cos4 ϕ.
Note that the relation χyyy = χyxx + 2χxxy valid for 6mm

crystals43 is broken because of the symmetry reduction by the
magnetic-field Bx . This field, directed perpendicular to the z

axis, lifts the degeneracy of the 2px and 2py states.
b. The px state. A similar spin Zeeman mechanism is acting

on the 2px(A) exciton state, which is not mixed by the magnetic
field with other p or s states. The px state can be excited by
two photons with a polarization with nonzero field component
Eω

x �= 0 via the dipole perturbations V̂ ω
x(y) = D̂ω

x(y) for the first

photon and V̂ ω
x = D̂ω

x for the second photon or vice versa.
Emission is due to the Zeeman mixing of the �5 and �1 spin
states and the magnetic-dipole perturbation V̂ 2ω

x(y) = Q̂
2ω,m
x(y)z ; the

relevant process Q2ω,mDωDω is shown in the fourth row of
Table I. In fact it corresponds to the very same Zeeman mixing
of spin states as for the 1s states. Differences occur in the
two-photon absorption and the one-photon emission for the s

and p states. The nonzero susceptibility χxxy = χxyx relevant
to these processes can be written as

χxxy

(
E2px

) ∝ 1
2kza0, (18)

where the linear dependence on kz comes from the matrix
element of the magnetic-dipole perturbation V̂ 2ω

x(y) = Q̂
2ω,m
x(y)z .

There is no explicit dependence on the magnetic field in
Eq. (18). However, a finite Bx is required for mixing the �5

and �1 spin states because without magnetic field the effect
vanishes. Bx does not appear in Eq. (18) because we have
neglected the exchange splitting of the mixed states, so that
they have the same energy. However, even a very weak but
finite magnetic field can mix them in equal strength. One may
compare this case with Eq. (14), where there is a mixing of
the �5 and �1 states that are split at B = 0. The magnetic-field
dependence in Eq. (17) comes only from the B dependence of
the contribution of the 2py component, given by C2py

(Bx).
The SHG rotational anisotropy patterns for the 2px states

via the spin Zeeman mixing are I 2ω
‖ ∝ |χxxy |2 sin2(2ϕ) sin2 ϕ,

I 2ω
⊥ ∝ |χxxy |2 sin2(2ϕ) cos2 ϕ, I 2ω

‖B = |χxxy |2 sin2(2ϕ), and
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FIG. 16. (Color online) Theoretical predictions for rotational anisotropies of the SHG signal due to different contributions for I‖ �→ Eω ‖ E2ω,
I⊥ �→ Eω ⊥ E2ω, I‖B �→ E2ω ‖ B, and I⊥B �→ E2ω ⊥ B according to Eqs. (8), (10), (7), and (6), respectively, using the relations from Table I:
(a)–(d) spin Zeeman effect �. (e)–(h) Stark effect / magneto-Stark effect / orbital Zeeman effect ♠. (i)–(l) spin Zeeman effect for 2py �.
(m)–(p) spin Zeeman effect for 2px ♣.

I 2ω
⊥B = 0. Note that also here the symmetry relation χyyy =

χyxx + 2χxxy valid for 6mm hexagonal crystal43 is broken
because of the symmetry reduction in the presence of a
magnetic-field Bx directed perpendicular to the z axis. This
field lifts the degeneracy of the 2px and 2py states.

All mechanisms considered above for field-induced SHG at
the s and p exciton resonances are summarized in Table I. The
susceptibilities are presented for the geometry k ‖ z, B ‖ x, and
E ‖ y. Resulting rotational anisotropy patterns corresponding
to the different mechanisms are illustrated in Fig. 16.

We have to note, without going into details, that the
considered mechanisms do not work in the Faraday geometry
B ‖ k ‖ z. A magnetic field applied along the hexagonal

z axis does not mix the �1 and �5 states, therefore the
mechanisms involving Zeeman spin mixing do not induce SHG
signals. The orbital Zeeman term LzBz also does not lead to
admixture of the 2pz states that is allowed for quadrupole
emission when k ‖ z. The effective electric field Eeff vanishes
for the geometry B ‖ k, so there is also no magneto-Stark
effect.

VI. DISCUSSION

The observed magnetic- and electric-field-induced SHG are
specific to excitons, no induced signals are observed in the
off-resonant energy range. In the following we discuss the
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various interactions between light fields and exciton states,
leading to the different types of symmetry breaking presented
in Sec. V in order to explain our experimental data of Sec. IV.
As a general rule, we note that mixing of states with different
symmetries is the key factor for inducing resonant nonlinear
susceptibilities. Rotational anisotropy measurements of the
SHG signals give comprehensive information on the symmetry
of the involved nonlinear susceptibilities and, therefore, on the
underlying origins. Thus, they help to distinguish different
nonlinear optical mechanisms, which is especially important
when more than one mechanism becomes involved. Therefore,
the measured rotational anisotropy patterns of the SHG
intensity should reflect the anisotropies predicted by our
theoretical considerations. For the sake of convenience, all
discussed states will be referred to as excitons, although
states that contain admixtures of s envelope states can couple
so strongly to the light field that exciton-polaritons may be
formed.

The energy shifts of SHG lines in magnetic field and the
field dependence of their intensities should be in accord with
the theory as well. The computed energies depend strongly
on the input parameters, which are the zero-field exciton
energies and the electron and hole effective masses. Here we
use the zero-field exciton energies from Refs. 52 and 56: E2sT =
3.4227 eV, E2sL = 3.4232 eV, E2pz

= 3.4240 eV, and E2px,y
=

3.4254 eV for the A series as well as E2sT = 3.4276 eV,
E2sL = 3.4304 eV, E2pz

= 3.4292 eV, and E2px,y
= 3.4303 eV

for the B series of excitons. We use the electron effective
mass me = 0.27m0 and the following hole effective masses
obtained from first principles calculations:44 m‖ = 2.74m0,
m⊥ = 0.54m0 for the A excitons and m‖ = 3.03m0, m⊥ =
0.55m0 for the B excitons. The static dielectric constants
ε‖ = 8.49 and ε⊥ = 7.40 are taken from Ref. 77. Spin Zeeman
splitting is not included in the calculations for the 2s/2pz/2py

states. The discussed interactions act on states with the same
spin wave functions and thus the spin Zeeman splitting leads
to an energy shift, that is the same for all involved states.
Therefore, even though the number of lines in Fig. 9 will
increase, it should not lead to additional contributions.

A. SHG mechanism for 1s exciton

The SHG signals at the 1s exciton resonance can be fully
explained by the spin Zeeman effect, mixing one-photon
allowed orthoexcitons and two-photon allowed paraexcitons
leading to the relations χyyy = χyxx �= 0 and χxxy = 0, see
Table I and Sec. V C 1. The nonzero component χyyy given
by Eq. (14) predicts the rotational anisotropies shown in
Figs. 16(a)–16(d) as well as a quadratic dependence of the
SHG intensity on the magnetic field I 2ω ∝ B2. The measured
intensities I 2ω

‖ and I 2ω
⊥ show indeed the predicted cos2 ϕ and

sin2 ϕ shape and also have the same amplitude, see Fig. 6(c).
Furthermore, no signal was detected for I 2ω

‖B . I 2ω
⊥B was found

to be isotropic (not shown). Figure 7(a) proves the square
dependence of I 2ω on the magnetic-field strength. For the
1s(B) exciton, which emerges from a different valence band,
two SHG mechanisms may be active: (i) mixing of the �5 and
�6 states due to the spin Zeeman effect, and (ii) mixing of the
A and B valence bands due to exchange interaction.

B. SHG mechanisms for 2s/2 p excitons

A similar process based on the magnetic-field-induced spin
Zeeman effect, mixing the �5 and �1 states of the 1s(A)
exciton, is valid also for the 2s(A) excitons. However, the
comparison of Fig. 6(c) and Figs. 10(a) and 10(b) shows that
the observed anisotropies of the n = 2 signals are different
from those of the 1s states: For the n = 2 (A) excitons the shape
of I 2ω

⊥ cannot be described by the form sin2 ϕ, and I 2ω
‖ and I 2ω

⊥
do not have the same amplitude. These anisotropies need to be
explained by other mechanisms than the spin Zeeman effect
on the s envelope.

In Ref. 76 we have shown that the magneto-Stark effect is
the dominant mechanism in the 2s/2p(A,B) exciton region. It
can explain the shapes shown in Figs. 10(a), 10(c), and 10(d),
which closely resemble the predicted shapes in Figs. 16(e),
16(g), and 16(h), respectively. But a closer look at the
nonvanishing I 2ω

⊥ intensity reveals that the spin Zeeman effect
on both the s and p envelopes add a small contribution, note
the multiplication factor 20 in Fig. 10(b). The complex shape
of I 2ω

⊥ in Fig. 10(b) can only be explained by a combination of
the spin Zeeman effects on the n = 2 states. Their predicted
shapes are shown in Figs. 16(b) and 16(j), respectively. To
compare their impact, Figs. 10 and 11 give their ratio a/b. a

and b describe the relative strength of the spin Zeeman effect
on the s and py envelope, respectively. Both contributions to
I 2ω
⊥ can be estimated to be of about 5% of the peak intensity

of I 2ω
‖ , while it follows from the fit in Fig. 10(b) that the spin

Zeeman contribution from the 2py(A) part is twice as strong
as from the 2s(A) part. As a consequence, the SHG induced
by the magneto-Stark effect involving only ED excitation as
well as ED emission processes is about 40 times more efficient
than the SHG due to the spin Zeeman mixing utilizing a MD
transition.

The orbital Zeeman effect cannot be distinguished from
the magneto-Stark effect via anisotropies (see nonzero com-
ponents of both contributions in Table I) and might be
of importance too, due to the 2py/2pz mixing, especially
for the regions where the 2pz part is large. However, the
probability of MD emission from the 2pz part is very low
in comparison with the probability of ED emission from the
2s state. Thus we assume that the orbital Zeeman effect does
not play a leading role and the magneto-Stark effect brings the
dominant contribution to the SHG signal at the 2s/2p exciton
resonances.

Furthermore, the weak nonzero signals in the crossed
geometry that do not follow from the magneto-Stark effect
were also observed in the range of the n = 2(B) excitons. The
anisotropy shapes for the B series presented in Figs. 11(a),
11(b), 11(e), and 11(f) show many similarities to those of
the A series: The strongest signals are observed for I 2ω

‖ with a
twofold cos2 ϕ symmetry pattern, whereas I 2ω

⊥ is a mixture of a
fourfold sin2 ϕ cos4 ϕ and a twofold sin2 ϕ pattern, originating
from the spin Zeeman effects. In addition, the contribution
I 2ω
⊥ ∝ sin2 ϕ in the range of the n = 2 B exciton energies might

also arise from the spin Zeeman effect on the 3s(A) or 1s(C)
excitons, located in the same spectral range. However, the
3s(A) contribution is rather unlikely, because of the high main
quantum number considerably reduces its oscillator strength in
comparison to 1s and 2s states. By contrast, the 1s(C) is also
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seen as a strong, broad feature in the crystallographic SHG
spectra, see Fig. 3. Actually an additional contribution from
the 1s(C) exciton would explain why we observed a strong
influence of the s-type spin Zeeman effect on the shape of the
anisotropies for 2h̄ω = 3.432 eV; see Figs. 11(e) and 11(f).
Only in this region the ratio a/b is larger than 1. Furthermore,
the magneto-Stark effect is not as important as for the other
energies; compare the ratios I 2ω

‖ /I 2ω
⊥ at the three energies

shown in Fig. 11.
The strongest SHG signals are observed for I 2ω

‖ and
their spectral maxima follow the energies of the states with
dominant 2py(A,B) wave functions. In higher fields (>6 T) the
peaks follow lines with dominant 2s wave functions, because
the admixture of the 2pz to 2py states reduces the efficiency
of the magneto-Stark induced SHG; see the blue circles in
Fig. 9. The analysis of the anisotropies in the regions where
the 2py/2pz wave functions dominate gives the same results as
the analysis of states with large 2s contributions, but with less
influence from the s-type spin Zeeman effect. Consequently,
the SHG at the 2s/2py/2pz states is governed mainly by the
magneto-Stark effect.

The contributions from the spin Zeeman effect on the 2px

states are best seen in Fig. 8 for I 2ω
‖B in the geometry ϕ(Eω) =

45◦ and E2ω ‖ B. The spectral maxima follow the calculated
energies of the 2px(A,B) exciton states; compare 2px lines
and red circles in Fig. 9. In addition, the ratio of the spectrally
integrated intensities I 2ω

‖B /I 2ω
‖ should be 1/4 or less without the

contribution of the spin Zeeman effect for the 2px states. We
observed, however, a deviating ratio of about 1/3 [compare
area under curves in Fig. 8(b)], underlining the importance
of the spin Zeeman mechanism for the 2px orbitals oriented
parallel to the magnetic field. Nevertheless, the contributions
of this mechanism to the I 2ω

‖ signals are not significant and
most of the integrated SHG intensity in the I 2ω

‖B spectra comes
from the 2s/2py/2pz mixed states due to the magneto-Stark
effect.

The developed model describes well the measured angular
dependences of the SHG intensities and it is in reasonable
accordance with the energy shifts of the exciton states shown in
Fig. 9, ensuring the validity of the presented SHG mechanisms.

Another intriguing feature of the discovered mechanisms
is the complex behavior of the spectrally integrated SHG
intensity shown in Fig. 7(b). The SHG signals from the
magneto-Stark and orbital Zeeman effects are expected to
saturate when the related energies become larger than the zero-
field splitting of the involved exciton states. The typical values
of the |2sT − 2py | exciton splitting is about 3 meV for the
A and B excitons in ZnO. While the longitudinal-transversal
splitting of the 2s(A) exciton is about 0.5 meV, the respective
splitting for the B exciton is about 3 meV. Thus, the saturation
condition is reached for the orbital Zeeman effect (gorbμBBx)
around B ≈ 8 T, but it is not fulfilled for the magneto-Stark
effect [3eEeff(B)aB] even at the strongest field of B � 10 T.
The spin Zeeman effect for the 2px state is independent of
magnetic field, whereas the susceptibility decreases with the
fraction of C2py

, as for the 2py state, compare Eq. (17). Due
to the linewidths of the exciton resonances, we were not able
to resolve in Fig. 8 individual lines, but rather the interplay of
contributions from different energies leading to the observed

complex behavior of the spectrally integrated intensity. For the
geometry shown in Fig. 7(b) we take into account the magneto-
Stark and orbital Zeeman effects to model the SHG intensity
dependence. The model calculation for the strongest peak
2h̄ω = 3.4254 eV reproduces well the observed dependence,
assuming � = 1.2 meV and χmagneto-Stark : χorbital Zeeman ≈
100 : 1. Slight deviations can be expected, as in the experiment
the data were spectrally integrated. If the spin Zeeman effect is
taken into account the model calculations lead to a dependence
with a shoulder, shown for E2ω ‖ Eω ⊥ B in Ref. 76.

C. Temperature dependence

The temperature dependence of the integrated SHG inten-
sity can be qualitatively understood by a simple consideration.
Equation (4) shows that the susceptibility for resonant SHG
depends inversely linear on the exciton damping �exc, which is
contributed by inhomogeneous and homogeneous broadening
of the exciton. The inhomogeneous broadening in the studied
sample does not exceed 1 meV, one can see that in Fig. 6(a),
where it is already limited by the laser spectral width. There-
fore, at temperatures exceeding 10–20 K the exciton linewidth
is controlled by the homogeneous broadening due to scattering
on acoustic phonons. This broadening increases linearly with
the temperature. The SHG peak intensity, proportional to the
susceptibility, depends inversely quadratically on the linewidth
I 2ω ∝ �−2

exc. The dependences for the exciton resonances in
Fig. 14 are spectrally integrated, for which the intensities in
principle have to be multiplied with the linewidth leading to
the integrated SHG being proportional to �−1

exc and respectively
to T −1. In contrast, the crystallographic SHG signal measured
in the off-resonant region remains constant with increasing
temperature, compare blue and red curves in the lower energy
region in Fig. 13.

D. Origin of X line

To our knowledge the observed strong SHG line at 3.407 eV
has not been reported in linear absorption spectra studies.
However, the observed temperature and angular dependences
of the SHG at this line correspond to those of the free 1s(C)
exciton; compare Figs. 4(b) and 4(d). Thus, a correlation be-
tween these resonances is likely. In addition, we want to point
out the recent observation of an unknown line at ∼3.405 eV
with polarization pattern and uniaxial pressure coefficients
matching those of the CT (�1) state,78 suggesting to link the
X line to the C valence band. Suggesting that the X line
is the bound state of 1s(C) exciton shifted to lower energy
by 26 meV, one may expect to observe such resonances
below 1s(A) and 1s(B) excitons as well. However, we did not
find resonances at the corresponding energies for the A and
B excitons. Clarification of the X-line origin needs further
investigations. We also note that phase synchronization for
the fundamental and second-harmonic waves are of great
importance for SHG. Therefore, the strong SHG line at
3.407 eV might be due to phase matching29 as consequence
of polaritonic effects in the dielectric function in the exciton
energy range53 of ZnO.
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E. Crossed electric and magnetic fields

To verify the magneto-Stark effect as a dominant source
of the observed SHG signals, it is instructive to discuss the
joint action of external magnetic and electric fields. Theory
predicts that an electric field produces the same type of
symmetry breaking as the effective electric field induced by a
magnetic field. This is proven by the fact that the anisotropy of
magnetic-field-induced signals is not changed by additionally
applying an electric field. Nevertheless, the electric field acts
very differently in comparison to the magnetic field. The
effective electric field acts on exciton levels only, whereas
the electric field creates a potential throughout the crystal.

Figure 15(b) shows that an electric field of 550 V/cm has
only a weak effect on the SHG intensity. The interference of its
action with the effective electric field induced by a magnetic
field of 1 T in Fig. 15(a) shows that the electric field gives
indeed surprisingly small contributions. The magnitude of the
effective electric field is Eeff = h̄

Mexc
kexcBx . The theoretical

value for the exciton effective mass in ZnO is about 3m0
44

and kexc = nEexc/h̄c ≈ 0.03 nm−1 for Eexc = 3.425 eV with
a refractive index n ≈ 1.97.77,79 Thus, Eeff can be estimated
as ≈12 V/cm for B = 1 T. Consequently, the ratio between
the effective electric field and the electric field strength giving
the same effect is γ = 1

12[V/cm]ε⊥
≈ 1.13 × 10−2 T/V (where

ε⊥ is the relative dielectric permittivity) and would have to be
used for the fit function I 2ω ∝ (±B ± γE)2. Instead the best
fit to the data shown in the inset of Fig. 15(a) was achieved for
a value that is 50 times smaller. Such a discrepancy evidences
that much weaker electric field is in fact acting on the excitons
in our experiments. Indeed, as it is shown in Fig. 15(c), the
sample resistivity was reduced drastically when the 2h̄ω of
the laser light approaches 2p states and after illumination
the resistivity is only slowly restored. We suggest that the
screening of the external field by carriers trapped in deep
centers is responsible for the observed discrepancy.

VII. CONCLUSIONS

In summary, new exciton phenomena in bulk hexago-
nal ZnO have been thoroughly studied by optical second-
harmonic generation in the spectral range of the 1s(A,B),
2s(A,B), 2p(A,B), and 1s(C) excitons, both experimentally
and theoretically. While symmetry considerations forbid any
crystallographic SHG for k ‖ z, strong magnetic-field-induced
contributions are found for this geometry. Novel micro-
scopic mechanisms for these nonlinearities are identified and
confirmed by detailed experimental studies, addressing the
magnetic field, electric field, temperature, and polarization
dependences of the SHG signals.

We present an in-depth theoretical analysis on the basis
of phenomenological and microscopic approaches, which
suggests several mechanisms induced by external magnetic
field. The magnetic field produces a multifaceted action,
depending on the exciton type. The nonlinear mechanisms
are related to the spin and orbital Zeeman effects, and to
the magneto-Stark effect. For 1s(A,B) excitons the main
mechanism of magnetic-field-induced SHG is related to the
spin Zeeman effect, which mixes the different spin wave
functions. On the other hand, the mixing of envelope wave

functions of opposite parity by the magneto-Stark effect due
to an effective electric field is the key mechanism for magnetic-
field-induced SHG at the closely spaced 2s/2p(A,B) excitons.
The role of the orbital Zeeman effect for mixing of the
2pz and 2py orbitals and the spin Zeeman effect on the
2px and 2py spin wave functions has been also discussed.
Application of an external electric field gives rise to the Stark
effect enabling SHG by mixing the wave functions of the
2s/2p(A,B) excitons.

We show the key importance of magnetic- and electric-
field-induced symmetry reductions for inducing nonlinearities
in bulk hexagonal ZnO, a phenomenon which should occur in
the same way also for other material systems. Tailoring these
symmetry reductions of the exciton level structure opens new
degrees of freedom in the nonlinear spectroscopy of excitons.
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APPENDIX: THEORETICAL CONSIDERATION
OF EXCITON STATE MIXING IN ELECTRIC AND

MAGNETIC FIELDS

Here we describe the mixed exciton states in hexagonal
ZnO subject to external electric or magnetic fields. Only
the geometry used in the experimental part of this paper is
analyzed: k ‖ z, E = (0,Ey,0), and B = (Bx,0,0).

1. Exciton states in electric field perpendicular
to hexagonal z axis

The external electric field Ey mixes the 2s and 2py exciton
states of opposite parity for the A and B exciton series, but
does not affect their spin states. We neglect for simplicity the
interaction between the A and B series and consider them
independently within the polariton concept. Then for each
series the exciton eigenenergies in the external field Ey and
the mixed exciton functions can be found from diagonalization
of the Hamiltonian

Ĥ2s/2py
=

(
E2s 3eEyaB

3eEyaB E2py

)
, (A1)

where aB is the exciton Bohr radius, E2s = E2sT is the zero-field
energy of the 2s transversal exciton, and E2py

is that of the 2py

exciton state. The eigenenergies are

E±
2sT/2py

= 1

2

[
E2sT + E2py

±
√(

E2py
− E2sT

)2 + 36(eEyaB)2
]
,

(A2)
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and the resulting wave functions can be written as


2sT/2py
= C2sT (Ey)
2s + C2py

(Ey)
2py
, (A3)

with

C2sT (Ey) =
E2py

− E±
2sT/2py√

(3eEyaB)2 + (
E2py

− E±
2sT/2py

)2
, (A4)

C2py
(Ey) = − 3eEyaB√

(3eEyaB)2 + (
E2py

− E±
2sT/2py

)2
. (A5)

In the considered geometry these exciton states are transversal
excitons. Due to interaction with the light field two transversal
polariton branches for each of the 2s/2py mixed states are
formed. The energies of the lower polariton branches are
given by Eq. (A2). To find the energies of the upper polariton
branches one has to consider the interaction of the mixed
excitons with photons and their corresponding contribution
to the dielectric function. However, when the longitudinal-
transversal splitting 
2s

LT is much smaller than all characteristic
energies, the results can be approximated by considering the
direct interaction between the 2py exciton and the upper 2s

polariton branch. For this, one has to use the E2s = E2sL in
the Hamiltonian (A1). The resulting energies of the upper
polariton branches (UPB) are approximately given by

E±
2sL/2py

≈ 1

2

[
E2sL + E2py

±
√(

E2py
− E2sL

)2 + 36(eEyaB)2
]
,

(A6)

where E2sL = E2sT + 
2s
LT is the energy of the 2s-longitudinal

exciton and the upper polariton in zero electric field. The
resulting wave functions can be found using Eqs. (A2)–(A5)
after replacing the energy E2sT with E2sL .

2. 1s excitons in external magnetic field perpendicular
to hexagonal z axis

The spin states of the A and C 1s excitons are formed from
the conduction band of �7 symmetry and the valence band of
�7 symmetry and thus can be of �5, �1, or �2 symmetry, split
from each other by the electron-hole exchange interaction.
The external magnetic-field Bx mixes the �5y and �1 spin
states. The resulting SHG active states can be found from the
Hamiltonian

Ĥ�5y/�1 =
(

E�1 μBgexcBx/2

μBgexcBx/2 E�5

)
, (A7)

where E�1 and E�5 are the zero-field energies of the correspond-
ing states, and gexc = (g⊥

h − g⊥
e ) is the g factor of the 1s state

for B ⊥ k. In ZnO, for the A exciton g⊥
e ≈ 1.95 and g⊥

h ≈ 0.44

The resulting energies of the 1s(A) states in magnetic-field Bx

are given by

E±
�5y/�1

= 1
2

[
E�1 + E�5 ±

√

2

15 + (μBgexcBx)2
]
, (A8)

where 
15 = |E�5 − E�1 | is the exchange splitting. The LPB is
described exactly by Eq. (A8) with energy E�5 = E1sT , the UPB
is described approximately by Eq. (A8) with energy E�5 =
E1sL . The resulting wave functions are given by


�5/�1 = C�5 (Bx)
�5 + C�1 (Bx)
�1 , (A9)

with

C�5 (Bx) =
2
(
E�5 − E±

�5y/�1

)
√

(μBgexcBx)2 + 4
(
E�5 − E±

�5y/�1

)2
, (A10)

C�1 (Bx) = − μBgexcBx√
(μBgexcBx)2 + 4

(
E�5 − E±

�5y/�1

)2
. (A11)

3. 2s and 2 p exciton states in magnetic field perpendicular
to hexagonal z axis

Similar to the effect of the external electric field Ey

considered above, the effective electric field Eeff = h̄
Mexc

kexcBx

that originates from the magneto-Stark effect [see Eq. (13)],
mixes the 2s and 2py excitons of opposite parity. At the same
time, the Zeeman orbital effect mixes the 2pz and 2py states
of the same parity. The resulting energies E i

2s/2pz/2py
(i =

1,2,3 label eigenvalues) of the mixed 2s/2pz/2py polariton
branches can be found as the eigenenergies of the Hamiltonian

Ĥ±
2s/2pz/2py

=

⎛
⎜⎝

E±
2s(Bx) 0 3eEeffaB

0 E±
2pz

(Bx) igorbμBBx

3eEeffaB −igorbμBBx E±
2py

(Bx)

⎞
⎟⎠ .

(A12)

Here

E±
2s(Bx) = E2s + 14CdB

2
x ± μBg⊥

e Bx/2, (A13)

E±
2pz

(Bx) = E2pz
+ 12CdB

2
x ± μBg⊥

e Bx/2, (A14)

E±
2py

(Bx) = E2py
+ 12CdB

2
x ± μBg⊥

e Bx/2, (A15)

where Cd describes the diamagnetic shift, and gorb is the orbital
g factor. Expressions for Cd and gorb can be found, for example,
in Ref. 45. We assume the electron-hole short-range exchange
splitting to be zero for all 2s and 2p states and g⊥

h = 0, so that
all states are additionally two times degenerate with respect to
the hole spin projection.

Accounting for the different spin states and polariton
branches one has to deal with 24 mixed polariton states of
the A exciton and 24 mixed polariton states of the B exciton.
However, the perturbations in Hamiltonian (A12) mix only
the states belonging to the same spin states and the same
polariton branches. Therefore, in fact one has to consider only
the magnetic-field-induced mixing of the envelopes. Then the
energies E i

2sT/2pz/2py
of the LPB mixed states and E i

2sL/2pz/2py

of the UPB mixed states can be calculated as roots of the
following equation:

(E i − E±
2s)

(
E i − E±

2pz

)(
E i − E±

2py

) − (3eEeffaB)2
(
E i − E±

2pz

)
−(gorbμBBx)2(E i − E±

2s) = 0, (A16)

with E2s = E2sT for the LPB and E2s = E2sL for the UPB.
The resulting wave functions for the 2s/2pz/2py mixed

states contain all three components


i
2s/2pz/2py

= Ci
2s(Bx)
2s + Ci

2pz
(Bx)
2pz

+ Ci
2py

(Bx)
2py
,

(A17)
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with the coefficients

Ci
2s = 3eEeffaB

(
E i − E±

2pz

)
√

(E i − E±
2s)

2
(
E i − E±

2pz

)2 + (3eEeffaB)2
(
E i − E±

2pz

)2 + (gorbμBBx)2(E i − E±
2s)

2
, (A18)

Ci
2pz

= igorbμBBx(E i − E±
2s)√

(E i − E±
2s)

2
(
E i − E±

2pz

)2 + (3eEeffaB)2
(
E i − E±

2pz

)2 + (gorbμBBx)2(E i − E±
2s)

2
, (A19)

Ci
2py

= (E i − E±
2s)

(
E i − E±

2pz

)
√

(E i − E±
2s)

2
(
E i − E±

2pz

)2 + (3eEeffaB)2
(
E i − E±

2pz

)2 + (gorbμBBx)2(E i − E±
2s)

2
. (A20)

It is worth to note that the Hamiltonian (A12) allows one to
take into account the effects of both the external magnetic-field
Bx and the external electric field Ey . For that purpose, Eeff

should be replaced with Eeff ± Ey , where the choice of the
sign depends on the direction of the applied electric field.

The magnetic-field Bx affects the 2px exciton state only via
the spin Zeeman effect and the diamagnetic shift, but does not

mix it with the other 2p or 2s states. Its energy is given by

E±
2px

(Bx) = E2px
+ 6CdB

2
x ± μBg⊥

e Bx/2. (A21)

It is important to note, however, that the degeneracy of the 2px

and 2py states is lifted by the magnetic field and the hexagonal
symmetry is broken, i.e., χyyy = χyxx + 2χxxy is violated for
these states.
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