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Exciton condensation in strongly correlated electron bilayers
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We studied the possibility of exciton condensation in Mott insulating bilayers. In these strongly correlated
systems, an exciton is the bound state of a double occupied and empty site. In the strong coupling limit, the
exciton acts as a hard-core boson. Its physics is captured by the exciton t-J model, containing an effective XXZ

model describing the exciton dynamics only. Using numerical simulations and analytical mean-field theory, we
constructed the ground-state phase diagram. Three homogeneous phases can be distinguished: the antiferromag-
net, the exciton checkerboard crystal, and the exciton superfluid. For most model parameters, however, we predict
macroscopic phase separation between these phases. The exciton superfluid exists only for large exciton hopping
energy. Additionally, we studied the collective modes and susceptibilities of the three phases. In the superfluid
phase, we find the striking feature that the bandwidth of the spin-triplet excitations, potentially detectable by
resonant inelastic x-ray scattering (RIXS), is proportional to the superfluid density. The superfluid phase mode
is visible in the charge susceptibility, measurable by RIXS or electron energy loss spectroscopy (EELS).
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I. INTRODUCTION

Strongly correlated electron systems exhibit the highest
attained superconducting transition temperatures currently
known, and a rich variety of complex electronic phases.1,2

Many compounds among this family of Mott insulators, such
as the cuprates, are quasi-two-dimensional layered materials.
This renders them ideal candidates for bilayer exciton conden-
sation, which is the topic of this publication.

The effort to achieve the condensation of excitons has a long
history starting just after the discovery of BCS theory.3–5 An
exciton is the bound state of an electron and a hole and as such
it can Bose condense. The obvious advantage of considering
excitons above Cooper pairs is the strong Coulomb attraction
between the electron and the hole; allowing in principle for
a much higher critical temperature. To reduce the exciton
lifetime problems caused by electron-hole recombination, it
has been suggested to spatially separate the electrons and holes
in their own subsequent layers.6,7 This indeed has resulted in
the experimental realization of exciton condensates, first in the
so-called quantum Hall bilayers8 and more recently without an
externally applied magnetic field in electrically gated, optically
pumped semiconductor quantum wells.9

The successes of exciton condensation in semiconductor
2DEG bilayer systems have led to many proposals for
exciton condensation in alternative bilayer materials, such as
gated topological insulators10 or double layer graphene.11–15

However, these proposals are limited to the BCS paradigm of
weak coupling.

On the other hand, Mott insulators provide a completely
different route to exciton condensation.16–19 Naively one
would expect that the localization of the electrons and holes
leads to a higher critical temperature, since Tc is determined
by the competition between the electronic kinetic energy
and the electron-hole attraction. But the physics of exciton
condensation in Mott insulators is in fact much richer.

Instead of the picture that the electron-hole pair lives in
a conduction and valence band, an exciton now consists of
a double occupied and vacant site bound together on an
interlayer rung, see Fig. 1. To estimate the binding energy,
consider the in-plane charge-transfer excitons, which are
known to have a binding energy of the order of 1–2 eV.20

Due to the small interlayer distances of order 1 nm, we expect
that a similar energy scale will set the binding of the interlayer
exciton. As such, excitons in a Mott bilayer are most likely in
the strongly coupled regime.

Furthermore, a single doublon-holon pair inserted into a
Mott insulator leads to dynamical frustration effects,21,22 even
stronger than seen for a single hole in the t-J model.24,25 The
study of excitons in strongly correlated materials thus catches
the complexity of doped Mott insulators. As we discussed
elsewhere,22 the bosonic nature of the excitons actually falls
short to completely eliminate all “fermionlike” signs: there
are still leftover signs of the phase-string type.23 However, it
is easy to demonstrate that collinear spin order is a sufficient
condition for these signs to cancel out, leaving a truly bosonic
dynamics controlling the ground-state and long wavelength
physics. The problem thereby reduces to that of hard-core
bosons (the excitons) in a sign-free spin background. This
is very similar to the “spin-orbital” physics described by
Kugel-Khomskii type models,26 which can be viewed after
all as describing d-d excitons interacting with spins. Also the
lattice implementations27 of the SO(5) model28 for (cuprate)
superconductivity are in this family.66

Such bosonic problems can be handled with standard
(semiclassical) mean-field theory, and therefore the regime of
finite exciton density can be addressed in an a priori controlled
manner. In most bilayer exciton setups, such as the quantum
Hall bilayers or the pumped systems, there is no controllable
equilibrium exciton density. In these cases, one can hardly
speak of the exciton density as a conserved quantity, and
exciton condensation in the sense of spontaneously broken
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FIG. 1. (Color online) Side view of a strongly correlated electron
bilayer with an exciton present. The red arrows denote the spin of
the localized electrons, and the exciton is a bound state of a double
occupied and an empty site.

U (1) symmetry is impossible.29 However, in Mott insulators,
the dopant density per layer could be fixed by, for example,
chemical doping. The effective exciton chemical potential is
then by definition large compared to the recombination rate.
Effectively, the excitons are at finite density in equilibrium and
hence spontaneous U (1) symmetry breaking is possible in the
Mott insulating bilayer.

Besides the exciton superfluid phase one anticipates a
plethora of competing orders, as is customary in strongly corre-
lated materials. At zero exciton density, the bilayer Heisenberg
system exhibits already interesting magnetism, in the form of
the antiferromagnet for small rung coupling turning via an
O(3)-QNLS quantum phase transition into an “incompressible
quantum spin liquid” for larger rung couplings that can be
viewed as a continuation of pair singlets (“valence bonds”)
stacked on the rungs.30 The natural competitor of the exciton
superfluid at finite density is the exciton crystal and one
anticipates that due to the strong lattice potential this will
tend to lock in at commensurate densities forming exciton
“Mott insulators.” We will wire this in by taking also the
exciton-exciton dipolar interaction into account that surely
promotes such orderings. In principle, there is the interesting
possibility that all these orders may coexist microscopically
forming an “antiferromagnetic supersolid.”31 In this bosonic
setting, we can address it in a quite controlled manner, but
we find that at least for the strongly coupled “small” excitons
assumed here this does not happen. The reason is interesting.
We already alluded to the dynamical “frustration” associated
with the exciton delocalizing in the antiferromagnetic spin
background, which is qualitatively of the same kind as for the
standard “electron” t-J model. At finite densities, this turns
into a tendency to just phase separate on a macroscopic scale,
involving antiferromagnets, exciton crystalline states, and
high-density diamagnetic exciton superfluids, respectively.

Even though the exciton dipolar repulsion is long-ranged,
there is no possibility of frustrated phase separation as
suggested for the electronic order in cuprates32–36 because the
1/r3 interaction falls off too quickly. However, if one correctly
incorporates the full exciton dipolar interaction, a variety of
different exciton ordered phases may arise.37 Here, we restrict
ourselves to nearest-neighbor repulsion only, which allows for
the formation of a checkerboard ordered exciton crystalline
state.

It is disappointing that apparently in this system only
conventional ground states occur. However, this is actually to
a degree deceptive. The Hamiltonian describing the physics at
the lattice scale describes a physics where the exciton- and spin

motions are “entangled:” the way in which these subsystems
communicate gets beyond the notion of just being strongly
coupled, since the motions of the exciton motions and the
spin dynamics cannot be separated. By coarse graining this
all the way to the static order parameters (the mean fields),
an effective decoupling eventually results as demonstrated by
the pure ground states. However, upon going “off-shell,” this
spin-exciton entanglement becomes directly manifest in the
form of unexpected and rather counterintuitive effects on the
excitation spectrum. A simple example is the zero exciton
density antiferromagnet. From the rather controlled linear
spin wave self-consistent Born approximation (LSW-SCBA)
treatment of the one exciton problem,21 we already know that
the resulting exciton spectrum can be completely different
from that in a simple semiconductor. We compute here
the linearized excitations around the pure antiferromagnet,
recovering the LSW-SCBA result in the “adiabatic limit”
where the exciton hopping is small compared to the exchange
energy of the spin system, which leads to a strong enhancement
of the exciton mass. In the opposite limit of fast excitons,
the energy scale is recovered but the “Ising-confinement”
ladder spectrum revealed by the LSW-SCBA treatment is
absent. The reason is clear: in the language of this paper, the
couplings between the exciton- and spin-wave modes become
very big, and these need to be resummed in order to arrive at
an accurate description of the exciton propagator, while our
mean-field treatment corresponds with a complete neglect of
these exciton-spin interactions.

The real novelty in this regard is revealed in the high-density
exciton superfluid phase. The spin system forms here a ground
state that is a product state of pair-singlets living on the rungs.
Besides the superfluid phase modes, one expects in addition
also the usual massive spin-triplet excitations associated with
the (incompressible) singlet vacuum. The surprise is that these
are characterized by a dispersion, which is in part determined
by the superfluid density of the exciton condensate, as we
already announced elsewhere38 for which we present here the
details. Counterintuitively, by measuring the spin fluctuations,
one can, in principle, determine whether the excitons are
condensed in a superfluid.

Let us complete this introduction by specifying the point of
departure: the Hamiltonian describing strongly bound excitons
propagating through a bilayer Heisenberg spin 1/2 system.
This model is derived and discussed at length in our earlier
papers21,22 and here we just summarize the outcome. Due to the
strong electron-electron interactions, the electronic degrees of
freedom are, at electronic half-filling, reduced to spin operators
sil governed by the bilayer Heisenberg model30,39

HJ = J
∑
〈ij〉,l

sil · sj l + J⊥
∑

i

si1 · si2. (1)

The subscript denotes spin operators on site i in layer l =
1,2. The Heisenberg HJ is antiferromagnetic with J > 0 and
J⊥ > 0. As it turns out, it is often convenient to express results
in terms of the ratio of the interlayer and intralayer Heisenberg
couplings,

α ≡ J⊥
Jz

, (2)

where z = 4 is the coordination number for the square lattice.
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The interlayer exciton can hop around, thereby interchang-
ing places with the spin background. In the strong-coupling
limit of exciton binding energies, the exciton hopping process
is described by the Hamiltonian

Ht = −t
∑
〈ij〉

|Ej 〉
(

|0 0〉i〈0 0|j +
∑
m

|1 m〉i〈1 m|j
)

〈Ei |,

(3)

where |E〉 is the exciton state on an interlayer rung and |s m〉
represent the rung spin states. Whenever an exciton hops, it
effectively exchanges the spin configuration on its neighboring
site. This exciton t-J model was derived earlier in Refs. 21 and
22, where the optical absorption was computed in the limit of
vanishing exciton density 〈|E〉〈E|〉 → 0. In order to study the
system with a finite density of excitons, we need to enrich the
current t-J model with two extra terms: a chemical potential
and an exciton-exciton interaction.

The chemical potential is straightforwardly

Hμ = −μ
∑

i

|Ei〉〈Ei |. (4)

Its value in p/n heterostructures can be modified by, for
example, chemical substitution in the two layers. This tech-
nique is quite common in the cuprates, where La2−xSrxCuO4

and Nd2−xCexCuO4 are examples of hole or electron doped
materials, respectively.1 Another possibility is to tune the
chemical potential by electrostatic field gating or by the use of
ionic liquids.40

The exciton-exciton interaction requires more thought. The
bare interaction between two interlayer excitons results from
their electric dipole moment. Since all interlayer exciton dipole
moments are pointing in the same direction the full exciton-
exciton interaction is described by a repulsive 1/r3 interaction.
Hence the interaction strength decays sufficiently fast to avoid
the Coulomb catastrophe responsible for frustrated phase
separation.33,34 We consider it reasonable to only include the
nearest-neighbor repulsion,

HV = V
∑
〈ij〉

(|Ei〉〈Ei |)(|Ej 〉〈Ej |). (5)

Here, V is the energy scale associated with nearest-neighbor
exciton repulsion. This number can get quite high: given a
typical interlayer distance1 of 8 Å and an intersite distance
of 4 Å the bare dipole interaction energy is 14 eV. In reality,
we expect this energy to be lower due to quantum corrections
and screening effects. However, the exciton-exciton interaction
scale remains on the order of electronvolts and thus larger than
the estimated Heisenberg J and hopping t .

Let us finally consider the effects of interlayer hopping of
electrons, which leads to the annihilation of excitons,

Ht⊥ = −t⊥
∑

i

|Ei〉〈0 0|i + H.c. (6)

This term explicitly breaks the U (1) symmetry associated with
the conservation of excitons. While this term is almost cer-
tainly present in any realistic system, it is a matter of numbers
whether it is relevant. In the present case of cuprates, where
each layer can be doped by means of chemical substitution,

we expect the chemical potential μ to be significantly larger
than the interlayer tunneling t⊥. Consequently, the interlayer
hopping is barely relevant. Throughout this publication we will
discuss the effects that the inclusion of a small t⊥ will have.

The full model Hamiltonian describing a finite density of
excitons in a strongly correlated bilayer is thus

H = HJ + Ht + Hμ + HV . (7)

Let us now summarize the layout of our paper. Most
of the physics of hard-core excitons on a lattice can be
captured using an effective XXZ model, which is studied in
Sec. II. The ground-state phase diagram of the full exciton t-J
model is derived in Sec. III, using both numerical simulations
and analytical mean-field theory. The excitations and the
corresponding susceptibilities are discussed in Sec. IV. We
conclude this paper with a discussion on possible further lines
of theoretical and experimental research in Sec. V.

II. AN EFFECTIVE X X Z MODEL

The Hamiltonian (7) has five model parameters: J , J⊥,
t , V , and μ. However, most properties of the excitons can be
understood by considering the problem of hard-core bosons on
a lattice. In this section, we will argue that the exciton degrees
of freedom can be described by an effective XXZ model.
Based on some reflections on the mathematical symmetries
of the full exciton t-J model, we will describe the properties
of this effective XXZ model in Sec. II B. We will conclude
this section with an outline of the method used to obtain the
excitation spectrum of the model.

A. Dynamical and symmetry algebra

Before characterizing different phases of the model we need
to assess the algebraic structure of the exciton t-J model. The
set of all operators that act on the local Hilbert space form the
dynamical algebra, whereas the symmetries of the system are
grouped together in the symmetry algebra.

To derive the dynamical algebra, it is instructive to start with
the bilayer Heisenberg model which has, on each interlayer
rung, a SO(4) ∼= SU(2) × SU(2) dynamical algebra.41 Upon
inclusion of the exciton hopping term we need more operators,
since now the local Hilbert space on an interlayer rung is
five-dimensional (four spin states and the exciton). Consider
the spin-to-exciton operator E+

sm ≡ |E〉〈s m| and its conjugate
E−

sm = (E+
sm)†. Their commutator reads

[E+
sm,E−

sm] = |E〉〈E| − |s m〉〈s m| ≡ 2Ez
sm, (8)

where we have introduced the operator Ez
sm to complete a

SU(2) algebraic structure. We could set up such a construction
for each of the four spin states |s m〉. Under these definitions
the exciton hopping term, Eq. (3), can be rewritten in terms of
an XY model for each spin state,

Ht = −t
∑

〈ij〉,sm
(E+

sm,iE
−
sm,j + E−

sm,iE
+
sm,j ) (9)

= −2t
∑

〈ij〉,sm

(
Ex

sm,iE
x
sm,j + E

y

sm,iE
y

sm,j

)
, (10)

where the sum over sm runs over the singlet and the three
triplets. Note that the exciton chemical potential (4) acts as
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an externally applied magnetic field to this XY model, and
that the exciton-exciton repulsion (5) can be rewritten as
an antiferromagnetic Ising term in the Ez

sm operators. The
dynamical algebra therefore contains four SU(2) algebras in
addition to the SO(4) from the bilayer Heisenberg part. The
closure of such an algebra is necessarily SU(5), which is
the largest algebra possible acting on the five-dimensional
Hilbert space. Hence we need a full SU(5) dynamical al-
gebra to describe the exciton t-J model at finite density.
The operators that compose this algebra are enumerated
in Appendix A.

From the XY representation of the hopping term one
can already deduce that we have four distinct U (1) sym-
metries associated with spin-exciton exchange. The bilayer
Heisenberg model contains two separate SU(2) symmetries,
associated with in-phase and out-phase interlayer magnetic
order. Therefore the full symmetry algebra of the model is
[SU(2)]2 × [U (1)]4.

Breaking of the SU(2) symmetry amounts to magnetic
ordering, which is most likely antiferromagnetic (and therefore
also amounts to a breaking of the lattice symmetry). Each of the
U (1) algebras can be broken leading to exciton condensation.
Note that next to possible broken continuous symmetries, there
also might exist phases with broken translation symmetry. The
checkerboard phase, already anticipated in the introduction, is
an example of a phase where the lattice symmetry is broken
into two sublattices.

B. What to expect: An effective X X Z model

When discussing the dynamical algebra of the exciton
t-J model, we found that the exciton hopping terms are
similar to an XY model. The main reason is that the
excitons are, in fact, hard-core bosons and thus allow for
a mapping onto pseudospin degrees of freedom. Viewed as
such, the exciton-exciton interaction equation (5) is similar
to an antiferromagnetic Ising term and the exciton chemical
potential equation (4) amounts to an external magnetic field
in the z direction. Together they form an XXZ model in the
presence of an external field, which has been investigated in
quite some detail elsewhere42–47 as well as in the context of
exciton dynamics in cold atom gases.48,49

In order to understand the basic competition between the
checkerboard phase and the superfluid phase of the excitons,
it is worthwhile to neglect the magnetic degrees of freedom
and study first this effective XXZ model for the excitons
only. The transition between the checkerboard and superfluid
phases is known as the “spin flop” transition.42 Keeping the
identification of the exciton degrees of freedom as XXZ

pseudospin degrees of freedom in mind, let us review the
basics of the XXZ Hamiltonian

H = −t
∑
〈ij〉

(
Ex

i Ex
j + E

y

i E
y

j

) − μ
∑

i

Ez
i + V

∑
〈ij〉

Ez
i E

z
j ,

(11)

where E+ = |1〉〈0| = Ex + iEy creates a hard-core bosonic
particle |1〉 out of the vacuum |0〉. This model has a built-in
competition between t > 0, which favors a superfluid state,
and V > 0, which favors a crystalline state where all particles
are on one sublattice and the other sublattice is empty. The

external field or chemical potential μ tunes the total particle
density. The ground state can now be found using mean-field
theory. It is known that for pseudospin S = 1

2 models in
(2 + 1)D the quantum fluctuations are not strong enough to
defeat classical order and therefore we can rely on mean-field
theory, as supported by exact diagonalization studies.46

To find the ground state, we introduce a variational wave
function describing a condensate of excitons,

|�〉 =
∏

i

(cos θie
iψi |1〉i + sin θi |0〉i). (12)

The mean-field approximation amounts to choosing ψi con-
stant and θi only differing between the two sublattices. We find
the following mean-field energy:

E/N = − 1
8 tz sin 2θA sin 2θB + 1

8V z cos 2θA cos 2θB

− 1
4μ(cos 2θA + cos 2θB). (13)

Let us rewrite this in terms of θ = θA + θB and �θ = θA − θB ,

E/N = z

8
[(V − t) cos2 �θ + (V + t) cos2 θ ]

− 1

2
μ cos �θ cos θ − V z

8
. (14)

When |μ| � 1
2 (V z + zt), the ground state is fully polarized

in the z direction. This means either zero particle density for
negative μ, or a ρ = 1 for the positive μ case. Starting from
the empty side, increasing μ introduces a smooth distribution
of particles. This phase amounts to the superfluid phase of the
excitons. The particle density on the two sublattices is equal
and the total density is given by

ρ = cos2 θ = 1

2
(cos θ + 1) = 1

2

(
2μ

V z + zt
+ 1

)
. (15)

At the critical value of the chemical potential

(μc)2 = (
1
2z

)2
(V − t)(V + t), (16)

a first-order transition occurs towards the checkerboard phase:
the spin-flop transition. In the resulting phase, which goes
under various names such as the antiferromagnetic,67 solid,
checkerboard or Wigner crystalline phase, the sublattice
symmetry is broken. The resulting ground-state phase diagram
is shown in Fig. 2(a), where we also show the dependence of
the particle density on μ.

At finite temperatures in (2 + 1)D, there can be algebraic
long-range order. At some critical temperature, a Kosterlitz-
Thouless phase transition50 will destroy this long-range or-
der. The topology of the phase diagram, however, can be
obtained using the finite temperature mean-field theory for
which we need to minimize the mean-field thermodynamic
potential:51

�/N = −kT ln
(

2 cosh

(
βm

2

))
+ 1

2
m tanh

(
βm

2

)
+ z

8
tanh2

(
βm

2

)
× [(V − t) cos2 �θ + (V + t) cos2 θ − V ]

− μ

2
tanh

(
βm

2

)
cos �θ cos θ. (17)
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(a)

(b).

FIG. 2. (Color online) (a) The ground-state phase diagram of
the XXZ model (11). The graph shows the mean-field particle
density 〈Ez〉 as a function of μ, with model parameters t = 1 and
V = 2t . One clearly distinguishes the fully polarized phases for
large μ, the superfluid phase with a linear 〈Ez〉 vs μ dependence,
and the crystalline checkerboard phase with 〈Ez〉 = 0. In between
the checkerboard and the superfluid phase, a nontrivial first-order
transition exists, with a variety of coexistence ground states with the
same ground-state energy. The insets show how the (Ex,Ez) vectors
look like in the different phases. (b) Finite temperature phase diagram
of the XXZ model with the same parameters. The background
coloring corresponds to a semiclassical Monte Carlo computation
of 〈Ez〉, the solid lines are analytical mean-field results for the phase
boundaries. We indeed see the checkerboard phase and the superfluid
phase, as well as a high-temperature nonordered “normal” phase.

Expectation values are〈
Sx

i∈A

〉 = 1

2
sin 2θA tanh

(
βm

2

)
, (18)

and the parameter m needs to be determined self-consistently.
The resulting phase diagram is shown in Fig. 2(b), which is of
the form discussed by Fisher and Nelson.43

The first-order quantum phase transition at μc turns out
to be nontrivial, a point which is usually overlooked in the
literature. A trivial first-order transition occurs when there
are two distinct phases with exactly the same energy. In the
case presented here, there is an infinite set of mean-field order
parameters all yielding different phases yet still having the
same energy. A simple analytic calculation shows that the
energy of the ground state at the critical point is Ec = −V z/8.

Now rewrite the mean-field parameters ρA and ρB into a sum
and difference parameter:

ρ = 1
2 (ρA + ρB), (19)

�ρ = 1
2 (ρA − ρB). (20)

For each value of �ρ with |�ρ | � (1/2) we can find a value
of ρ such that the mean-field energy is exactly −V z/8.

This has interesting consequences. If one can control the
density instead of the chemical potential around a first-order
transition, in general, phase separation would occur between
the two competing phases. From the mean-field considerations
above, it is unclear what would happen in a system described
by the XXZ Hamiltonian (11). All phases would be equally
stable, at least on the mean-field level, and every phase may
occur in regions of any size. Such a highly degenerate state
may be very sensible to small perturbations. We consider it
an interesting open problem to study the dynamics of such a
highly degenerate system, and whether this degeneracy may
survive the inclusion of quantum corrections.

In Introduction, we mentioned the existence of interlayer
hopping, Eq. (6). Qualitatively, the t⊥ is irrelevant, which can
be seen in the XXZ pseudospin language where it takes the
form of a tilt of the magnetic field in the x direction,

Ht⊥ = −t⊥
∑

i

Ex
i . (21)

As a result, the phase diagram is shifted but not qualitatively
changed. The effect of the t⊥ on the excitation spectrum is
briefly discussed in Sec. IV B.

C. Excitations of the X X Z model

Of direct experimental relevance are the elementary exci-
tations of a phase. The dispersion of these excitations can be
computed using the equations of motion-method based on the
work of Zubarev.52 We present the formalities of this method
in Appendix B. In this section, we briefly show the essence of
this technique, applied to the XXZ model. Later, in Sec. IV,
we will compute the excitations for the full exciton t-J model.

The key ingredients of this Zubarev-approach are the
Heisenberg equations of motion,

i∂tE
+
i = −t

∑
δ

Ez
i E

+
i+δ + μE+

i − V
∑

δ

E+
i Ez

i+δ, (22)

i∂tE
−
i = t

∑
δ

Ez
i E

−
i+δ − μE−

i + V
∑

δ

E+
i Ez

i+δ, (23)

i∂tE
z
i = −1

2
t
∑

δ

(E+
i E−

i+δ − E−
i E+

i+δ), (24)

where δ runs over all nearest neighbors. These equations
cannot be solved exactly, and one relies on the approximation
controlled by the mean-field vacua. That is, we neglect
fluctuations of the order parameters, so that products of
operators on different sites are replaced by52,53

AiBj → 〈Ai〉Bj + Ai〈Bj 〉, (25)

where 〈· · · 〉 denotes the mean-field expectation value. By such
a decoupling, the Heisenberg equations of motion become a
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coupled set of linear equations, which can be solved easily.
In the homogeneous phase, we thus obtain, after Fourier
transforming,

ωkE
+
k = − 1

2 tz
(
cos 2θγkE

+
k + sin 2θEz

k

) + μE+
k

− 1
2V z

(
cos 2θE+

k + sin 2θγkE
z
k

)
, (26)

ωkE
−
k = 1

2 tz
(
cos 2θγkE

−
k + sin 2θEz

k

) − μE−
k

+ 1
2V z

(
cos 2θE−

k + sin 2θγkE
z
k

)
, (27)

ωkE
z
k = − 1

4 tz sin 2θ (1 − γk)(E+
k − E−

k ). (28)

We find an analytical expression for the excitations in the
superfluid phase,

ωk = 1

2
zt

√
1 − γk

√
1 − γk(1 − 2ρ)2 + 4V

t
γk(1 − ρ)ρ

= 1

2
zt

√
ρ(1 − ρ)(1 + V/t) |k| + · · · , (29)

where γk = 1
2 (cos kx + cos ky). For small momenta, this exci-

tation has a linear dispersion, conforming to the Goldstone
theorem requiring a massless excitation as a result of the
spontaneously broken U (1) symmetry. Exactly at μ = μc,

the dispersion reduces to ωk = zt

√
1 − γ 2

k , hence the gap
at k = (π,π ) closes thus signaling a transition towards the
checkerboard phase.

At the critical point and in the checkerboard phase, we need
to take into account the fact that expectation values of operators
differ on the two sublattices. The Heisenberg equations of
motion now reduce to six (instead of three) linear equations,
which can be straightforwardly solved. For now we postpone
the discussion on the dispersion of elementary excitations to
Sec. IV, where the full exciton t-J model will be considered
using the technique discussed here.

III. GROUND-STATE PHASE DIAGRAM

In the previous section, we have seen that the effective XXZ

model predicts the existence of both an exciton superfluid
phase and a checkerboard phase, separated by a first-order
transition. Now we derive the ground-state phase diagram for
the full exciton t-J model given by Eq. (7).

We will proceed along the same lines as in the previous
section, starting with a variational wave function. Numerical
simulation of this wave function creates an unbiased view on
the possible inhomogeneous and homogeneous ground-state
phases. This serves as a basis to further analyze the phase
diagram with analytical methods. The analytical mean-field
theory also allows us to characterize the three homogeneous
phases: the antiferromagnet, the superfluid, and the checker-
board crystal. Finally, combining the numerical and analytical
mean-field results, we obtain the ground-state phase diagram,
see Fig. 7.

A. Variational wave function for the exciton t- J model

Recall that the local Hilbert space consists of four spin
states |s m〉 and the exciton state |E〉. We therefore propose
a variational wave function consisting of a product state of a

superposition of all five states on each rung. For the spin states,
we take the SO(4) coherent state41

|�i〉 = − 1√
2

sin χi sin θie
−iφi |1 1〉i

+ 1√
2

sin χi sin θie
iφi |1 −1〉i

+ sin χi cos θi |1 0〉i − cos χi |0 0〉i , (30)

which needs to be superposed with the exciton state,

|�i〉 = √
ρie

iψi |Ei〉 +
√

1 − ρi |�i〉, (31)

to obtain the total variational (product state) wave function

|�〉 =
∏

i

|�i〉. (32)

This full wave function acts as ansatz for the numerical sim-
ulations. Note that the homogeneous phases can be described
by this wave function with the parameters χ, θ, φ, ψ , and ρ

only depending on the sublattice. Given this wave function, the
expectation value of a product of operators on different sites
decouples, 〈AiBj 〉 = 〈Ai〉〈Bj 〉. The only nonzero expectation
values of spin operators are for S̃i = si1 − si2 and it equals

〈�i |̃Si |�i〉 = sin 2χi

⎛⎝sin θi cos φi

sin θi sin φi

cos θi

⎞⎠ = sin 2χi n̂i , (33)

where n̂i is the unit vector described by the angles θ and φ.
This variational wave function therefore assumes interlayer
Néel order of magnitude sin 2χi , which enables us to correctly
interpolate between the perfect Néel order at χ = π/4 and the
singlet phase χ = 0 present in the bilayer Heisenberg model.
The exciton density at a rung i is trivially given by ρi .

B. Simulated annealing

Given the variational wave function, we can use simulated
annealing to develop an unbiased view on the possible mean-
field ground-state phases. Therefore we start out with a lattice
with variables θi , χi , φi , ψi , and ρi on each lattice site, and with
periodic boundary conditions. The energy of a configuration
is

E = 1

2
J

∑
〈ij〉

(1 − ρi)(1 − ρj ) sin 2χi sin 2χj n̂i · n̂j

− J⊥
∑

i

(1 − ρi) cos2 χi − μ
∑

i

ρi + V
∑
〈ij〉

ρiρj

− 1

2
t
∑
〈ij〉

√
ρi(1 − ρi)ρj (1 − ρj ) cos(ψi − ψj )

× (cos χi cos χj + sin χi sin χj n̂i · n̂j ). (34)

We performed standard Metropolis Monte Carlo updates of
the lattice with fixed total exciton density. The fixed total
exciton density is imposed as follows: if during an update
the exciton density ρi is changed, the exciton density on one
of the neighboring sites is corrected such that the total exciton
density remains constant.

The main results of the simulation are shown in Fig. 3
for various values of the hopping parameter t and exciton
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FIG. 3. (Color online) Results from the semiclassical Monte Carlo simulations. Here shown are color plots with the exciton density ρ

on the horizontal axes and the hopping parameter t (in eV) on the vertical axes. Other parameters are fixed at J = 125 meV, α = 0.04, and
V = 2 eV. The five measurements shown here are the Néel order parameter (35), the checkerboard order parameter (36), the superfluid density
(37), the phase coherence (38), and the ratio signaling phase separation according to Eq. (40), 0 means complete phase separation, 1 means no
phase separation. Notice that the prominent line at ρ = 0.5 signals the checkerboard phase.

density ρ. We performed the computations on a 10 × 10 lattice.
Notice that even though true long-range order does not exist
in two dimensions, the correlation length of possible ordered
phases is larger than the size of our simulated lattice. The other
parameters are fixed at J = 125 meV, α = 0.04, and V = 2 eV.
The Heisenberg couplings J = 125 meV and α = 0.04 are
obtained from measurements of undoped YBCO samples,1,54

which we consider to be qualitatively indicative of all strongly
correlated electron bilayers. The dipolar coupling is estimated
at 2 eV, following our discussion in Introduction.

For each value of ρ and t we started at a high temperature
T = 0.1 eV, to slowly reduce the temperature to 10−5 eV
while performing a full update of the whole lattice 10 million
times. We expect that by such a slow annealing process, we
obtain the true ground state (34), devoid of topological defects.
Once we arrive at the low-temperature state, we performed
measurements employing 200 000 full updates of the system.

We measured following six different order parameter
averages: (1) the Néel order parameter defined by

Neel =
∣∣∣∣∣
∣∣∣∣∣ 1

N

∑
i

(−1)i(1 − ρi) sin 2χi n̂i

∣∣∣∣∣
∣∣∣∣∣ , (35)

where we first sum over all spin vectors and then take the
norm; (2) the checkerboard order, defined as the difference in
exciton density between the sublattices divided by the maximal
difference possible. The maximal difference possible equals

Min(ρ,1 − ρ), so

Checkerboard =
1
N

∑
i(−1)iρi

Min(ρ,1 − ρ)
. (36)

(3) The superfluid density is given by the expectation value
of the exciton operator. Here, we do not make a distinction
between singlet exciton condensation or triplet exciton con-
densation. Therefore

Superfluid density = 1

N

∑
i

√
ρi(1 − ρi). (37)

(4) Now the superfluid density is not the only measure of the
condensate, we can also probe the rigidity of the phase ψ .
Therefore we sum up all the phase factors on all sites,

Phase average =
∣∣∣∣∣ 1

N

∑
i

eiψi

∣∣∣∣∣ . (38)

If the phase is disordered, this sum tends to zero. On the
other hand, complete phase coherence in the condensate phase
implies that this quantity equals unity. (5) Finally, we consid-
ered a measure of phase separation between the checkerboard
and the superfluid phases. If the exciton condensate and the
checkerboard phase are truly coexisting, then the maximal
superfluid density attainable would be

Max SF density = 1
2

√
(ρ + �ρ)(1 − ρ − �ρ)

− 1
2

√
(ρ − �ρ)(1 − ρ + �ρ), (39)
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(a) (b)

(d) (e)

(c)

FIG. 4. (Color online) Typical configurations for the exciton density per site, obtained in the Monte Carlo simulation on a 16 × 16 square
lattice. The color scale indicates the exciton density. All five figures have model parameters J = 125 meV, α = 0.04, and V = 2 eV. (a)
Separation between the antiferromagnetic phase (without excitons, hence shown black) and the exciton condensate with smooth exciton
density (ρ = 0.05, t = 2.3 eV). (b) Separation between checkerboardlike localized excitons and an antiferromagnetic background (ρ = 0.1,
t = 0.1 eV). (c) Separation between the checkerboard phase and a low-density exciton condensate (ρ = 0.25, t = 2.3 eV). (d) Separation
between the checkerboard phase and a high-density exciton condensate (ρ = 0.75, t = 0.5 eV). (e) The region where antiferromagnetic order,
checkerboard order, and the exciton condensate are all present (ρ = 0.3, t = 1.5).

where �ρ = 1
N

∑
i(−1)iρi . If there is phase separation how-

ever, the actual superfluid density is less than this maximal
density. Therefore we also measured the ratio

Ratio = Superfluid density

Max SF density
(40)

to quantify the extent of phase separation. When this ratio is
less than 1, this indicates phase separation.

The results for a full scan for the range 0 < ρ < 1 and
0 < t < 2.5 eV are shown in Fig. 3. In Figs. 4 and 5, we have
displayed typical exciton density configurations for various
points in the phase diagram. In combination, these results
suggest that there are three homogeneous phases present in
the system: the antiferromagnet at low exciton densities, the
exciton superfluid at high exciton hopping energies, and the
checkerboard crystal at half-filling of excitons. However, for
most parts of the phase diagram, the competition between the
three phases appears to result in phase separation.

Let us investigate the phase separation in somewhat more
detail. In our earlier work, we found that the motion of an
exciton in an antiferromagnetic background leads to dynamical
frustration.21,22 In other words, excitons do not want to
coexist with antiferromagnetism. The introduction of a finite
density of excitons will therefore induce phase separation. For
large t , we find macroscopic phase separation between the
antiferromagnet and the exciton superfluid, see Fig. 4(a). At
low exciton kinetic energy the excitons will crystallize in a
checkerboard pattern as can be seen in Fig. 4(b).

Close to half-filling, the role of the dipole repulsion
V becomes increasingly relevant. The first-order spin-flop
transition we discussed in Sec. II B implies that there will be
phase separation between the superfluid and the checkerboard
order. Figures 4(c) and 4(d) show this phase separation. Finally,
there is a regime where the condensate, the checkerboard and
the Néel orders are all present. However, given the dynamical
frustration on the one hand and the spin-flop transition on
the other hand, we again predict phase separation. A typical
exciton configuration in this parameter regime is shown in
Fig. 4(e).

These simulated annealing results suggest that phase
separation dominates the physics of this exciton system. To
check whether the numerics are reliable, we inspected directly
the energies of the various homogeneous mean-field solutions,
using the Maxwell construction for phase separated states. The
constructed phase separated configurations and their energies
are shown in Fig. 5. The lowest energy configuration [Fig. 5(a)]
has macroscopic phase separation between the checkerboard
and the antiferromagnetic phases. Intermediate states with one
blob of excitons [Fig. 5(c)] are slightly higher in energy than
states with two blobs of excitons [Fig. 5(d)]. However, even
though macroscopic phase separation has the lowest energy,
configurations with more blobs have more entropy. Conse-
quently, for any nonzero temperatures, complete macroscopic
phase separation is not the most favorable solution. This is
indeed seen in the numerical simulations: annealing leads
to high-entropy states such as Fig. 5(d) rather than to the
lowest-energy configuration.
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(a) (b)

(c) (d)

FIG. 5. (Color online) Different exciton configurations with their respective energies on a 40 × 40 lattice, to show whether there is
macroscopic phase separation. The model parameters are t = 0.5 eV, J = 125 meV, α = 0.04, V = 2 eV, and ρ = 0.066 25. Yellow indicates
the presence of excitons, and in the black regions there is antiferromagnetic order. (a) The lowest energy state is the one with complete
macroscopic phase separation. (b) More complicated phase separation, such as the halter form depicted here, are higher in energy. (c) Starting
at high temperatures with the configuration a, we slowly lowered the temperature. The resulting configuration shown here is a local minimum.
(d) Using the same slow annealing as for c starting from configuration (b). The local energy minimum obtained this way is lower in energy than
the configuration c. We conclude that even though macroscopic phase separation has the lowest energy, there are many local energy minima
without macroscopic phase separation.

We thus conclude that the dominant phases are the antiferro-
magnet, the superfluid and the checkerboard. The competition
between these three phases leads to phase separation in
most parts of the phase diagram. The unbiased Monte Carlo
simulations show the direction in which further analytical
research should be directed: we will use mean-field theory
to characterize the three homogeneous phases.

C. Mean-field theory and characterization of the phases

Given the fact that we are dealing with a hard-core boson
problem, we know that mean-field theory is qualitatively
correct. A remaining issue is whether one can tune the
exciton chemical potential rather than the exciton density in
realistic experiments. Since we are prescient about the many
first-order phase transitions in this system, we will perform the
analysis with a fixed exciton density (the canonical ensemble).
Using the Maxwell construction and the explicit μ versus
ρ relations, we can transform back to the grand-canonical
ensemble.

The numerical simulations suggest that the only solutions
breaking translational symmetry invoke two sublattices,

ρi =
{
ρA i ∈ A,

ρB i ∈ B,
(41)

and so forth for χ , θ , ψ , and φ. This broken transla-
tional symmetry allows for the antiferromagnetic and exciton
checkerboard orders. Evaluation of the energy E = 〈�|H |�〉
of the variational wave function (32) directly suggests that we
can set θ = ψ = φ = 0 on all sites.68 We are left with four
parameters ρA, ρB, χA, and χB , and as it turns out it will be
more instructive to rewrite these in terms of sum and difference
variables,

ρ = 1
2 (ρA + ρB), (42)

�ρ = 1
2 (ρA − ρB), (43)

χ = χA + χB, (44)

�χ = χA − χB. (45)
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FIG. 6. (Color online) The canonical mean-field phase diagram for typical values of J = 125 meV, α = 0.04, and V = 2 eV while varying
t and the exciton density ρ. In the absence of exciton, at ρ = 0, we have the pure antiferromagnetic Néel phase (AF). Exactly at half-filling
of excitons (ρ = 1/2) and small hoping energy t < 2V , we find the checkerboard phase (CB) where one sublattice is filled with excitons
and the other sublattice is filled with singlets. For large values of t , we find the singlet exciton condensate (EC), given by the wave function∏

i(
√

ρÊ+
00,i + √

1 − ρ)|0 0〉i . The coexistence of antiferromagnetism and superfluidity for small ρ and t is an artifact of the mean-field theory.
Conform the Monte Carlo results of Fig. 3, for most parts of the phase diagram phase separation (PS) is found.

The mean-field energy per site is now given by

E/N = 1
8Jz

[
(1 − ρ)2 − �2

ρ

]
(cos 2�χ − cos 2χ )

− 1
2J⊥[(1 − ρ)(cos χ cos �χ + 1)

+�ρ sin χ sin �χ ]

− 1
4zt

√[
(1 − ρ)2 − �2

ρ

](
ρ2 − �2

ρ

)
cos �χ

−μρ + 1
2zV

(
ρ2 − �2

ρ

)
, (46)

which has to be minimized for a fixed average exciton density ρ

with the constraint |�ρ | � min(ρ,1 − ρ). The resulting mean-
field phase diagram for typical values of J, J⊥, and V , and for
various t, and ρ is shown in Fig. 6.

1. Antiferromagnetic phase

As long as the exciton density is set to zero, the mean-
field ground state is given by the ground state of the bilayer
Heisenberg model,

ρ = 0, χ = 0, and cos �χ = J⊥
Jz

≡ α. (47)

The Néel order is given by

1

N

∑
i

(−1)i
〈
S̃z

i

〉 =
√

1 − α2 (48)

and the energy of the antiferromagnetic state is

E = − 1
4Jz(1 + α)2. (49)

The introduction of excitons in an antiferromagnetic back-
ground leads to dynamical frustration effects which disfavors
the coexistence of excitons and antiferromagnetic order.21,22 In
fact, the numerical simulations already ruled out coexistence
of superfluidity and antiferromagnetism.

2. Exciton condensate

For large exciton hopping energy t , it becomes more fa-
vorable to mix delocalized excitons into the ground state. Due
to the bosonic nature of the problem, this automatically leads
to exciton condensation. The delocalized excitons completely
destroy the antiferromagnetic order and the exciton condensate
is described by a superposition of excitons and a singlet
background,

|�〉 =
∏

i

(
√

ρ|Ei〉 +
√

1 − ρ|0 0〉i). (50)

Here, we wish to emphasize the ubiquitous coupling to light
of the superfluid. The dipole matrix element allows only spin
zero transitions, and since the exciton itself is S = 0 the dipole
matrix element is directly related to the superfluid density,〈∑

σ

c
†
i1σ ci2σ

〉
= 〈E|(c†1↑c2↑ + c

†
1↓c2↓)|0 0〉

= 1√
2

√
ρ(1 − ρ)〈↑↓1 02|(c†1↑c2↑ + c

†
1↓c2↓)

× (|↑1 ↓2〉 − |↓1 ↑2〉) =
√

2ρ(1 − ρ).

(51)

The dipole matrix element thus acts as the order parameter
associated with the superfluid phase. In most bilayer exciton
condensates, such as the one in the quantum Hall regime,8 this
order parameter is also nonzero in the normal phase because of
interlayer tunneling of electrons. One can therefore not speak
strictly about spontaneous breaking of U (1) symmetry in such
systems; there is already explicit symmetry breaking due to the
interlayer tunneling. In strongly correlated electron systems,
the finite t⊥ is small compared to the chemical potential μ.
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As discussed in Introduction, the Mott insulating bilayers now
effectively allow for spontaneous U (1) symmetry breaking,
and the above dipole matrix element acts as a true order
parameter. Note that the irrelevance of interlayer hopping t⊥
implies that this order parameter is, unfortunately, not reflected
in photon emission or interlayer tunneling measurements.

The exciton condensate is a standard two-dimensional
Bose condensate. The U (1) symmetry present in the XY -
type exciton hopping terms is spontaneously broken, and we
expect a linearly dispersing Goldstone mode in the excitation
spectrum, reflecting the rigidity of the condensate. We will get
back to the full excitation spectrum in Sec. IV.

The energy of the singlet exciton condensate is

E = −J⊥ −
(
μ + 1

4zt − J⊥
)2

zt + 2V z
(52)

and the exciton density is given by

ρ = 2
μ + 1

4zt − J⊥
zt + 2V z

. (53)

3. Checkerboard phase

Whenever the exciton hopping is small, the introduction
of excitons into the system leads to the spin-flop transition
towards the checkerboard crystalline phase. As shown in the
context of the XXZ model, this phase implies that one sublat-
tice is completely filled with excitons and the other sublattice
is completely empty. On the empty sublattice, any nonzero J⊥
will guarantee that the singlet spin state has the lowest energy.
Hence the average exciton density is here ρ = �ρ = 1/2, and
the energy of the checkerboard phase is given by

E = − 1
2J⊥ − 1

2μ. (54)

It is interesting to note that the checkerboard phase is in fact
similar to a Bose Mott insulator: with the new doubled unit
cell we have one exciton per unit cell. The nearest-neighbor
dipole repulsion now acts as the “on-site” energy preventing
extra excitons per unit cell.

4. Coexistence of antiferromagnetism and exciton condensate

Within the analytical mean-field theory set by Eq. (46),
there exists a small region where antiferromagnetism and
the exciton condensate coexist. There the energy of the
homogenous coexistence phase is lower than the energy of
macroscopic phase separation of the antiferromagnet and the
condensate, as obtained using the Maxwell construction. How-
ever, within numerical simulations we found no evidence of
coexistence. Instead, we found microscopic phase separation,
which hints at a possible complex inhomogeneous phase. We
therefore conclude that the homogeneous mean-field theory
discussed here is insufficient to find the true ground state.

5. Exciton Mott insulator

Finally, when the exciton density is unity we have a system
composed of excitons only. In the parlance of hard-core
bosons, this amounts to a exciton Mott insulator. This rather
featureless phase is adiabatically connected to a standard
electronic band insulator: the system is now composed of two
layers where each layer has an even number of electrons per

unit cell. In that respect, discussing physics of this phase in
terms of excitons is probably not the most fruitful point of
view. The energy of the exciton Mott insulator is trivially

E = −μ + 1
2V z. (55)

This state can be experimentally reached by increasing the
exciton chemical potential beyond the bound given by Eq. (63)
using the techniques we mentioned when introducing the
chemical potential (4).

D. Phase separation

In this mean-field theory, most of the phase transitions are
first-order, with the exciton density varying discontinuously
along the transition. The critical values of μ or t/J for the
first-order transitions are

μc,AF→CB = 1
2Jz(1 + α2), (56)

μc,CB→EI = V z + J⊥, (57)

(t/J )c,AF→EC = 2(1 + α2) − 4
μ

Jz

+ 2

√
(1 − α2)

[
4

μ

Jz
− (1 + α)2 − 2

V

J

]
,

(58)

(t/J )c,CB→EC = 4

√(
μ

Jz
− α

) (
V

J
+ α − μ

Jz

)
, (59)

(t/J )c,CO→CB

= 2α2

2 μ

Jz
− 1

− 2α

+
√(

1 − α2

2 μ

Jz
− 1

)[
2

(
V

J
+ α − μ

Jz

)
− α2

2 μ

Jz
− 1

]
.

(60)

The transitions towards the coexistence region from the anti-
ferromagnet or the condensate are second order. Additionally,
the transition from the condensate to the exciton Mott insulator
is second order. The critical values of t/J or μ at these
second-order transitions are

(t/J )c,AF→CO = 2Jz(1 + α) − 4μ

J⊥
, (61)

(t/J )c,EC→CO

= 1 − 2μ

Jz

+
√

(1 + 8α) +
(

2μ

Jz

)2

− 4

[
3

μ

Jz
− 2V

J
(1 − α)

]
,

(62)

μc,EC→EI = J⊥ + 1
4zt + V z. (63)

The subscripts indicate the phases: antiferromagnetic phase
(AF), coexistence phase (CO), exciton condensate (EC),
exciton Mott insulator (EI), and checkerboard phase (CB).
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For any nonzero α, the first-order transitions from the anti-
ferromagnetic or coexistence phase towards the checkerboard
phase are “standard” in the sense that at the critical value of
μ, there are only two mean-field states with equal energy. This
is also true for the transitions from the antiferromagnet to the
exciton condensate except at a single point. At the tricritical
point,

tc = 2J
√

2V/J − 1, (64)

μc = J⊥ − 1
4zt + 1

2Jz(1 − α)
√

2V/J + t/J (65)

separating the coexistence phase, the antiferromagnetic phase,
and the exciton condensate, we can set the parameters χ = 0,
�ρ = 0, and �χ given by the value in the coexistence phase.
Now the energy becomes independent of the exciton density
ρ. Similarly, at the critical value of

μc = J⊥ + 1
2V z ± 1

4

√
(2V z)2 − (zt)2 (66)

describing the transition between the checkerboard phase to
the singlet exciton condensate, we can choose the mean-field
parameters χ = 0, �χ = 0, and

�ρ = 1√
2

√
(1 − 2ρ + 2ρ2) − 2V |1 − 2ρ|√

4V 2 − t2
. (67)

With these parameters, the energy becomes independent of ρ.
This implies that the mean-field theory predicts highly

degenerate states at the critical values of μ, similar to the
one we found in the XXZ model. The phase separation that
thus occurs can be between an infinite set of possible ground
states that have all a different exciton density. Coincidentally,
the numerical simulations indicate that around the two “degen-
erate” critical points, indeed, all the three phases are present.
While the macroscopic phase separated state might have the
lowest energy, Fig. 5 suggests that more complicated patterns
of phase separation are likely to occur. The degeneracy of
the critical points on the level of mean-fields theory might be
responsible for richer physics in these special regions of the
phase diagram.

E. Conclusion

Combining the simulated annealing results of Fig. 3 with
the analytical mean-field results of Fig. 6 we arrive at the
definitive mean-field phase diagram of the exciton t-J model
in Fig. 7. There are three main phases: the antiferromagnet
at zero exciton density, the checkerboard crystal at exciton
density ρ = 1/2 and the superfluid at high hopping energy t .
For most parts of the phase diagram, phase separation between
these three phases occurs in any possible combination. The
competition between these three phases leads generally to
macroscopic phase separation.

Note that the exciton hopping energies required for the
formation of an exciton superfluid seem unphysically large.
However, the phase boundary depends on the exciton dipolar
repulsion which we have set here to V = 2 eV. Exciton
condensation could occur whenever t > V . At the same time,
the exciton hopping energy is related to electron hopping
energies by the second order perturbation result t = t2

e /V . Our
theoretical analysis thus suggests that the pursuit of exciton
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FIG. 7. (Color online) The canonical ground-state phase diagram
of the exciton t-J model, which is a combination of the semi-
classical Monte Carlo result and the mean-field computations. In
the background, we have put the mean-field phase diagram of
Fig. 6, while the lines show the phase diagram as obtained from the
Monte Carlo simulations. The dotted area represents phase separation
between the condensate, antiferromagnetic, and checkerboard orders.
Furthermore, EC means exciton condensate, CB means checkerboard
phase, AF means antiferromagnetism, and PS stands for phase
separation.

condensation in strongly correlated materials should aim to
maximize the exciton hopping energy, minimize the exciton
binding energy and minimize the exciton-exciton repulsion.
Hence, the most interesting parameter regime is the one where
the strong exciton binding energy limit is questionable. Such
intermediate coupling is, however, very difficult to study, as is
shown in recent determinant quantum Monte Carlo simulations
of exciton condensation in a p/n-bilayer system.19

Finally, within the limitations of the semiclassical Monte
Carlo approach, we deduce an estimate of the transition
temperature towards the superfluid state. Given a typical
point in the phase diagram where the exciton condensate
exists, at t = 2.5 eV and ρ = 0.18, we find a Kosterlitz-
Thouless transition temperature of approximately 700 K, see
Fig. 8. This number should be taken not too seriously, as

FIG. 8. (Color online) Finite temperature graph of the phase
coherence in the exciton condensate region of the phase diagram.
Here, t = 2.5 eV and ρ = 0.18 and the other parameters are the
same as in a. A clear transition is observed at around 0.06 eV, which
amounts to a transition temperature of about 700 K.
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the exciton t-J model might not be applicable at such high
temperatures given possible exciton dissociation. Additionally,
at high temperatures, the electron-phonon coupling becomes
increasingly important, which we neglect in our exciton
t-J model. Nonetheless, our estimate suggests that exciton
superfluidity may extend to quite high finite temperatures.

IV. COLLECTIVE MODES AND SUSCEPTIBILITIES

Each phase of the excitons in the strongly correlated bilayer
has distinct collective modes, that are in principle measurable
by experiment. In order to obtain the dispersions of the
collective modes, we employ the technique of the Heisenberg
equations of motion, introduced in the context of the XXZ

model in Sec. II C and further formalized in Appendix B. In the
case of the exciton t-J model, the set of equations is larger and
analytical solutions can, in general, not be obtained. Whenever
this is the case, we compute the dispersions numerically.

Quantities of direct experimental relevance are the dy-
namical susceptibilities. We are for instance interested in
the absorptive part of the dynamical magnetic susceptibility,
defined by

χ ′′
S (q,ω) =

∑
n

〈ψ0|S̃−(−q)|n〉〈n|S̃+(q)|ψ0〉δ(En − ω). (68)

Here, |ψ0〉 is the ground state of the system and |n〉 are the
excited states with energy En. It appears unlikely that bilayer
exciton systems can be manufactured in bulk form, which is
required for neutron scattering, while there is a real potential to
grow these using thin layer techniques. Therefore the detection
of the dynamical spin susceptibility forms a realistic challenge
for resonant inelastic x-ray scattering (RIXS)55 measurements
with its claimed sensitivity for interface physics.56

Furthermore, we are interested in the charge dynamical
susceptibility

χ ′′
E(q,ω) =

∑
n

〈ψ0|E−
00(−q)|n〉〈n|E+

00(q)|ψ0〉δ(En − ω),

(69)

which is directly related to the polarization propagator. We
use the operator E00(q) because this amounts to the interlayer
dipole matrix element. Therefore this charge dynamical
susceptibility expresses the excitonic excitations. It can be
observed by optical absorption experiments57 at q = 0. Finite
wavelength measurements may be obtained using the afore-
mentioned RIXS55 technique, or using electron energy loss
spectroscopy (EELS).58,59 The method we use to compute the
susceptibilities, based on the Heisenberg equations of motion
method, is also described in Appendix B.

The three dominant phases we encountered in our mean-
field analysis will have distinct magnetic and optical responses.
Let us briefly summarize our main findings with respect to the
collective excitations. The results for the antiferromagnetic
phase are shown in Figs. 9–11. This limit of vanishing
exciton density has been studied with in far greater rigor
than our current Zubarev method is capable of.21,22 We can
therefore compare the results of the Zubarev method with
a full resummation of spin-exciton interactions using the
self-consistent Born approximation (LSW-SCBA). It turns out

(a) (b)

FIG. 9. (Color online) The collective spin modes in the antifer-
romagnetic phase. (a) The spin wave dispersions are not influenced
by exciton dynamics. As is known from previous studies, there are
two transversal spin waves and two longitudinal spin waves.22,30

The transversal spin waves are gapless around either � (solid red
line) or the M point (dotted blue line). The longitudinal spin waves,
which are associated with interlayer fluctuations (solid green line),
are nearly flat and have a gap of order Jz. (b) The dynamic magnetic
susceptibility only displays one transversal spin wave. These results
and all subsequent figures are obtained using J = 125 meV and
α = 0.04, as is expected for the undoped bilayer cuprate YBCO.54

(a) (b)

(c) (d)

FIG. 10. (Color online) The exciton modes in the antiferromag-
netic phase in the adiabatic regime t 
 J . Here, we have chosen t =
0.1 eV, J = 125 meV, and α = 0.04. (a) Exciton mode dispersions.
Within the equations of motion picture, there are four exciton modes,
which come in pairs of two with a small interlayer splitting. Due to
the antiferromagnetic order, the exciton bands are renormalized with
respect to a free hard-core boson. (b) The mode dispersion for free
hard-core bosons on a lattice. (c) The susceptibility computed by the
equations of motion method, based on the dispersions shown in (a).
(d) The susceptibility computed using the fully interacting LSW-
SCBA method. Note that (c) and (d) look similar: in the adiabatic
regime, spins react much faster than the exciton motion and the
exciton still moves freely dressed by a spin polaron, reducing its
bandwidth to order t2/J .
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(a) (b)

(c) (d)

FIG. 11. (Color online) The exciton modes in the antiferromag-
netic phase in the antiadiabatic regime t � J . Here, we have
chosen t = 2 eV, J = 125 meV, and α = 0.04. (a) Exciton mode
dispersions are, just like in Fig. 10, renormalized with respect to
the free hard-core boson results. (b) The mode dispersion for free
hard-core bosons on a lattice. (c) The susceptibility computed with
the equations of motion method, following the dispersions in (a).
(d) The susceptibility computed using the fully interacting LSW-
SCBA theory. Upon inclusion of the interactions, the susceptibility
gets extremely renormalized with respect to (c). The large exciton
kinetic energy together with the relatively spin dynamics create an
effective potential for the exciton: the exciton becomes localized and
the confinement generates a ladder spectrum. Note that, therefore, in
the antiadiabatic regime, the free results (a) and (c) cannot be trusted.

that for small exciton kinetic hopping t , the noninteracting
equation-of-motion method yields reliable results. For large t ,
one needs the full SCBA code to correctly reproduce the dy-
namical frustration effects of excitons in the antiferromagnetic
background.

The collective modes of the exciton condensate are shown in
Figs. 12 and 13. Due to the absence of dynamical frustration
and the presence of a spin gap, we expect that these results
survive in a fully interacting computation. In fact, here the
modes of the simple hard-core boson system discussed in
Sec. II can be used as a template. Just as for the phase
diagram, the qualitative features of XXZ model are still of
relevance for the more complicated t-J model. Nonetheless,
in this condensate phase, the interplay between excitonic
and magnetic degrees of freedom gives rise to a rather
counterintuitive effect. We find that the exciton superfluid
density can be detected directly in a measurement of the
magnetic excitations, as we already announced elsewhere.38

In contrast, in the checkerboard crystalline phase, the spin
and exciton degrees of freedom are once again decoupled.
In the remainder of this section, we will elaborate further
on these results for each phase separately. Throughout the

(a) (b)

(c) (d)

(e) (f)

FIG. 12. (Color online) Dispersions and susceptibilities of the
Goldstone mode associated with the exciton condensate. We have set
t = V = 2 eV, J = 125 meV, and α = 0.04, and the exciton density
is either ρ = 0.15 (left column) or ρ = 0.27 (right column). (a) and
(b) Mode dispersions for hard-core bosons. In the simple hard-core
boson model, the condensate phase clearly shows the superfluid phase
mode, linear at small momenta. (c) and (d) Mode dispersions in the
full t-J model. Here, the Goldstone mode has a similar dispersion
as in the XXZ model of (a) and (b). The speed of the mode scales
with the superfluid density. At higher densities, the mode softens
around (π,π ), and when this gap closes, a first-order transition to
the checkerboard phase sets in. (e) and (f) The absorptive part of the
charge susceptibility, which can be measured with for example EELS
or RIXS.

following discussion, the model parameters are J = 125 meV,
α = 0.04, V = 2 eV, and a varying t and ρ. In order to visualize
the susceptibilities, we have convoluted χ ′′ with a Lorentzian
of width 0.04 eV. The color scale of the susceptibility plots is
in arbitrary units.

A. Antiferromagnetic phase: A single exciton

In the limit of zero exciton density, we recover the
well-known bilayer Heisenberg physics.30 As discussed in
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

FIG. 13. (Color online) Magnetic modes of the exciton conden-
sate phase. We have set t = V = 2 eV, J = 125 meV, and α = 0.04
and the exciton density is either ρ = 0.15 (left column) or
ρ = 0.27 (right column). (a) and (b) Magnetic mode dispersions for
a quantum paramagnet, where the excitation spectrum is governed
by propagating triplet modes. These modes have a gap of order J⊥
and a bandwidth of order Jz. (c) and (d) Magnetic mode dispersions
for the actual exciton t-J model. In contrast to the results of (a) and
(b), the actual triplet modes have enhanced kinetics.38 The modes are
split in a spin-dominated branch with small gap and large bandwidth
proportional to the superfluid density and an exciton-dominated
branch with a large gap and a small bandwidth. (e) and (f) The spin
susceptibility as measured in, for example, RIXS. Here, the enhanced
triplet mode is clearly visible. (g) and (h) The susceptibility associated
with the operator E1m, which indicates that the upper spin branch is
dominated by exciton physics.

Sec. III C, the spins tend to order antiferromagnetically. The
excitations spectrum thus contains a Goldstone spin wave with
linear dispersion around � and a similar mode centered around
(π,π ). In addition, the bilayer nature is reflected in the presence
of two longitudinal spin waves with a gap of order Jz and a
narrow bandwidth of order J⊥. The excitation spectrum and
the corresponding magnetic dynamical susceptibility is shown
in Fig. 9. Since the spin modes of the bilayer antiferromagnet
are independent of any exciton degrees of freedom, we will
not discuss these any further.

The dynamics of an isolated exciton in an antiferromagnetic
background has been studied extensively by means of a
linear spin-wave self-consistent Born approximation technique
(LSW-SCBA).21,22 The noninteracting equations of motion
method used in this paper, amounts to the complete neglect
of exciton-spin interactions, while these are on the foreground
of the (resummed) LSW-SCBA computation. However, the
mere existence of LSW-SCBA results allows us to compare it
with our current noninteracting calculations. Let us therefore
first go through the LSW-SCBA results. There we need to
distinguish between two limits: the adiabatic limit with t 
 J

shown in Fig. 10, and the antiadiabatic limit where t � J

shown in Fig. 11.
Consider a single exciton in an antiferromagnetic back-

ground. Now, if this exciton hops to a neighboring site,
it will leave behind two spins that are ferromagnetically
aligned with their neighbors. This process is called dynamical
frustration and limits severely the motion of an exciton. In
the adiabatic limit (t 
 J ), this causes the exciton bandwidth
to be drastically reduced to an order t2/J . In addition, the
magnetic background acts as a confining potential leading to
small but detectable ladder states at higher energies.

On the other hand, in the antiadiabatic regime t � J ,
exciton hopping will destroy the antiferromagnetic order as
it will be surrounded by a cloud of frustrated spins. The
quasiparticle picture completely breaks down and the spectral
weight of the exciton is redistributed to a wide incoherent
spectral bump. The ladder spectrum arising from the effective
confinement will still be visible, though smeared out.

The equation-of-motion method, however, ignores the
effects of spin-exciton interactions such as dynamical frus-
tration. It treats the excitons as well-defined quasiparticles. As
such, we can already guess beforehand that the noninteracting
results will be reliable in the adiabatic regime. Indeed, in
the equation-of-motion method, we find four exciton modes
corresponding to either the singlet E+

00 or m = 0 triplet exciton
E+

10 operator, just as in the LSW-SCBA. When α → 0, we
can write out an analytical expression for the noninteracting
dispersions,

ωk,± = μ ± 1

2

√
(Jz)2 +

(
1

2
ztγk

)2

, (70)

where each branch is twofold degenerate. This degeneracy is
lifted when α �= 0, leading to a splitting of order α, which is
largest around � and M .

In the limit of t 
 J , the dispersions (70), indeed, result in
an effective exciton bandwidth of order t2/J , conform the fully
interacting theory as can be seen in Fig. 10. A natural question
then arises: how is it possible that in the present noninteracting
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theory the exciton bandwidth depends on the spin parameter
J ? For sure, the effective exciton model introduced in Sec. II
has no such renormalization as is shown in Fig. 10. There, the
exciton bandwidth fully depends on zt .

However, it is important to realize that the exciton operators
E+

s0,i do not commute with the antiferromagnetic order
parameter operator S̃z

i . As a result, the mean-field energy of
exciting an exciton is shifted either up or down (depending on
the sublattice) yielding a gap between the two exciton branches
of O(Jz). Now for small t , propagation of the exciton requires
that one has to “pay” the energy shift Jz to move through both
sublattices. As a result, the effective hopping is reduced by a
factor t/J . Therefore the exciton bandwidth renormalization,
seen in the full LSW-SCBA, is already present at the mean-field
level.

For large t/J , however, we will pay a price for the
convenience of the noninteracting equations of motion method.
At the mean-field level, one still expects the dispersions to
be described by Eq. (70). However, upon inclusion of the
interaction corrections, this picture breaks down completely.
The bandwidth of the noninteracting exciton is of order
zt , whereas in the interacting theory, an incoherent ladder
spectrum of the same width arises. Thus, for large t/J , the
noninteracting results cannot be trusted. However, this only
applies to the antiferromagnetic phase due to the presence
of dynamical frustration. In general, it appears that the
noninteracting results are qualitatively correct in the absence of
gapless modes that need to be excited in order for an exciton to
move. This condition is naturally met for the other two phases.
We therefore expect that exciton-spin interactions only lead to
qualitative changes in the antiferromagnetic phase.

By simple selection rules, one can already conclude that
the singlet exciton mode couples to light. As a consequence,
this is the mode that is visible in the charge dynamical
susceptibility, which is related to the polarization propagator.
The exciton excitations are shown in Figs. 10(d) (for t < J )
and 11(d) (for t > J ). Finally, note that at the transition from
the antiferromagnetic phase to the checkerboard phase the gap
in the exciton spectrum vanishes at (π,π ).

B. Superfluid phase

The mode spectrum of superfluid phase, as shown in
Figs. 12 and 13, is characterized by a linearly dispersing
Goldstone mode associated with the broken U (1) symmetry.
This superfluid phase mode has vanishing energy at the �

point, where we find the inescapable linear dispersion relation

ωk = 1

4
√

2
zt

√
(1 − ρ)ρ (1 + 2V/t) |k| + · · · . (71)

The speed of the superfluid phase mode is the same as for
the XXZ model in Eq. (29) up to a rescaling of the t and V

parameters. Indeed, this speed is proportional to the superfluid
density

√
ρSF = √

ρ(1 − ρ). This mode can be seen in the
charge susceptibility, Figs. 12(e) and 12(f). The Goldstone
mode has a gap at (π,π ), which decreases monotonically with
increasing exciton density. Precisely at the first-order transition
towards the checkerboard phase, this gap closes. This mode
softening at (π,π ) is reminiscent of the roton in superfluid

helium: the wavelength of the roton is the same as the lattice
constant of solid helium.

Next to the Goldstone mode, there are two triplet excita-
tions, shown in Fig. 13, each one threefold degenerate. The
degeneracy obviously arises from the standard triplet degen-
eracy m = −1,0,+1. The two branches, however, distinguish
between exciton-dominated and spin-dominated modes, let us
discuss them separately.

The spin-dominated modes have a gap of order �S =
Jz

√
α(1 + α − ρ), which is similar to the triplet gap in the

bilayer Heisenberg model for large α. However, the bandwidth
of these excitations scales with t rather than with J , as would
be customary in a system without exciton condensation [see
Figs. 13(a) and 13(b)]. We discussed this in great detail in
recent work,38 so let us briefly review these results. In the
absence of excitons, the motion of triplets is governed by the
Heisenberg superexchange yielding a bandwidth of order J .
Now, introduce Fock operators e† = |E〉〈0| and t† = |1m〉〈0|,
so that the exciton-triplet exchange (3) reads

−t
∑
〈ij〉

e
†
j ei t

†
i tj . (72)

This is an interaction term, thus seemingly irrelevant to
the bandwidth of the triplet. However, when the exciton
condensation sets in, the operator e† obtains an expectation
value, in fact, 〈e†〉 = √

ρSF, where ρSF is the condensate
density. Therefore the higher-order exchange term yields a
quadratic triplet hopping term

−tρSF

∑
〈ij〉

t
†
i tj , (73)

and the bandwidth of the triplet excitations becomes of order
ztρSF. Now remember that the exciton hopping energy t

resulted, in second-order perturbation theory, from the ratio
t2
e /V ′, where te is the electron hopping energy and V ′ is

the nearest-neighbor Coulomb repulsion.21,22 The Heisenberg
coupling, however, was given by J = 2t2/U , where U is the
onsite Coulomb repulsion. Since for obvious reasons U > V ′,
we find that the triplet bandwidth is enhanced whenever
exciton condensation sets is. This enhancement is clearly
visible in the spin susceptibility χ ′′

T , which allows for an
experimental probe of the exciton superfluid density.

The other branch of triplet excitations is dominated by
triplet excitons, and is therefore barely visible in the spin sus-
ceptibility and not visible in the exciton susceptibility (which
only shows singlet excitons). That it is indeed dominated by
triplet excitons can be inferred from computing the matrix
elements of the operator E1m, which are shown in Figs. 13(g)
and 13(h). Furthermore, the gap �E = (V z + tz)ρ − μ is a
function of exciton model parameters only. The bandwidth
of this mode is of order O(zt) and relatively independent of
the exciton density. As a result, for large superfluid densities,
the exciton-dominated modes cross the spin-dominated triplet
modes. One can directly see this in the excitation spectrum for
ρ = 0.27 as shown in Fig. 13(d).

We can compare the triplet spectrum to the mode spectrum
of the singlet phase of the bilayer Heisenberg model. When
J⊥ � J , the ground state consists of only rung singlets. The
excitation towards a triplet state, shown in Figs. 13(a) and
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(a) (b)

(c) (d)

FIG. 14. (Color online) The excitation spectrum of the checker-
board phase. (a) Modes of the hard-core boson model. There are
two exciton modes associated with the “doublon” and the “holon”
excitations. (b) Spin modes of the full exciton t-J model. The spin
modes are decoupled from the exciton modes. There is only one
possible spin excitation: changing the singlet ground state into a
nonpropagating triplet. (c) The exciton modes of the t-J model.
The excitation of removing an exciton can propagate through the
checkerboard. (d) The charge susceptibility of the checkerboard
phase. The propagating mode that changes an exciton into a singlet
is detectable by optical means and thus shows up in the charge
susceptibility.

13(b), has a gap Jz
√

α(α − 1) and a bandwidth of order Jz,
which is considerably smaller than the O(zt) bandwidth in
the condensate. However, because the topology of the triplet
mode is the same, we expect that the effect of the spin-exciton
interactions is the same in the bilayer Heisenberg model
as for the superfluid. Since earlier LSW-SCBA showed no
changes in the spectrum due to interactions, we infer that the
noninteracting results for the superfluid are reliable.

To conclude our discussion of the excitations of the
superfluid phase, let us consider the influence of the interlayer
tunneling. In the context of the XXZ model, we noticed
that interlayer tunneling has no qualitative influence on the
phase diagram itself. However, the presence of a weak
interlayer tunneling may act as a potential pinning the phase60

opening a gap in the superfluid phase mode spectrum of
order O(

√
t⊥(V + t)). Persistent currents can still exist, but

one needs to overcome this gap in order to get the exciton
supercurrent flowing.

C. Checkerboard phase

The third homogeneous phase of the exciton t-J model is
the checkerboard phase. In this phase, the unit cell is effectively
doubled with one exciton per unit cell. This state is analogous
to a Bose Mott insulator. The trivial excitations are then the

doublon and the holon; create two bosons per unit cell, which
costs an energy V z − μ or to remove the boson. The latter will
generate a propagating exciton mode, with dispersion

ωk,pm = 1
2

[ ± V z +
√

(V z)2 ± (
1
2ztγk

)2] ∓ μ ± J⊥. (74)

There are two such propagating modes: one associated with
the singlet exciton and one with the triplet exciton. Precisely
at the transition towards the superfluid phase, one of these
exciton waves becomes gapless. Note that the arguments that
lead to the bandwidth renormalization in the antiferromagnetic
phase also apply here, leading to an exciton bandwidth of
order t2/V . The dispersions and the corresponding charge
dynamical susceptibility can be seen in Fig. 14.

In the spin sector, one can excite a localized spin triplet on
the empty sublattice. The triplet gap is set by the interlayer
energy J⊥, and the dispersion is flat because this triplet cannot
propagate, as can be seen in Fig. 14(b).

V. CONCLUSIONS AND DISCUSSION

We have studied the possibility of exciton condensation
in strongly correlated electron bilayers. Starting from the de-
scription of the Mott state, with localized electrons, an exciton
is defined as an interlayer bound state of a double occupied
and vacant site. In the strong coupling limit, as of relevance
to laboratory systems based on Mott insulators, the physics of
such a system is described by the exciton t-J model (7).

We constructed the ground-state phase diagram (Fig. 7),
based on both numerical simulations and analytical mean-field
theory. Three distinct phases are dominant: the antiferromag-
netic phase, the checkerboard phase, and the exciton conden-
sate. For most parts of the phase diagram, however, macro-
scopic phase separation will occur between these three phases.

Measurements of the spin and charge susceptibilities may
discern in which one of the three main phases a specific system
is in. The antiferromagnetic phase is characterized by a spin
wave centered at (π,π ), whilst in the exciton condensate the
triplet bandwidth acts as a probe for the superfluid density
(see Fig. 13 and Ref. 38). In the checkerboard phase, the spin
degrees of freedom are reflected only in a localized triplet
excitation at low energy.

The charge dynamic susceptibility shows distinct qualita-
tive behavior depending on the phase. In the antiferromagnet,
the spin-exciton interactions play an important role.21,22 The
superfluid phase is characterized by the visibility of the
condensate Goldstone mode, whereas the checkerboard phase
has propagating exciton waves with bandwidthO(t2/V ). Note,
however, that since we expect phase separation to occur for
most model parameters, realistic samples will likely display
features from all phases in its susceptibilities.

Our theoretical work presented here is largely based on
the assumption of strong coupling. In this limit, the excitons
behave as local hard-core bosons. If the exciton binding
energy is less dominant, the exciton will extend over more
lattice sites and thus probably enable coexistence phases.
On the other hand, we expect that spin-exciton interactions
destabilize the coexistence phases, since these interactions
generally lead to frustration effects. One could also wonder
what happens if one includes longer-ranged interactions for
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the excitons, with the possibility of exciton stripes and
incommensurate charge ordered phases.37 Next, we are dealing
with first-order phase transitions where small changes may
have severe consequences. Combining all these effects may
lead to significant changes in the phase diagram, most notably
in the regime where we predict phase separation.

Within the context of the strongly coupled exciton t-J
model, a weaker exciton binding energy can be incorpo-
rated via interaction and hopping terms for the next-nearest
neighbors, next-next-nearest neighbors, etc. This might lead
to complex ordered phases such as stripes.61 Such phases are
found in many strongly correlated electron systems,32,35 and
studying these in the context of the simple bosonic exciton
t-J model might shed new light on the more troublesome
fermionic t-J model.

In addition to stripy behavior, other nontrivial exciton
density profiles may occur when one considers a density
imbalance between the electrons and holes. Semiconductor
imbalanced systems are predicted to exhibit Fulde-Ferrell-
Larkin-Ovchinnikov density modulated phases.62,63 It is
worthwhile to investigate whether such phase can exist in
strongly correlated electron systems.

Next to an improvement of the phase diagram, we can
also improve the susceptibilities by including the effect of
exciton-spin interactions. Similar to our earlier work21,22 on
the interaction between excitons and spins in the limit of a
single exciton, one could perform a diagrammatic expansion of
these interactions. We expect that, apart from our earlier results
in the antiferromagnetic phase, inclusion of spin-exciton
interactions will not qualitatively alter the excitation spectra.

Experimentally, the close coupling of p- and n-doped Mott
insulators is still relatively ill explored. However, important
advances in complex oxide thin film growth, by techniques
such as molecular beam epitaxy (MBE) and pulsed laser
deposition (PLD) equipped with in situ monitoring tools such
as reflective high energy electron diffraction (RHEED) are
making it possible now to grow multilayers of perovskite
oxides—of which many are Mott insulators—with unit-cell
precision. A complicating factor in fabricating multilayers of
p- and n-doped perovskites, like the cuprate family from
which also the high-Tc superconductors are derived, are
the often times conflicting (de)-oxygenation requirements.
Optimized deposition and postanneal procedures have made
it possible, however, to make thin film contacts between n-
and p-doped superconducting cuprates,64 which is now further
being explored in our labs to create and study the parallel n-p
combinations resembling the theoretical model.

An interesting additional system that can be included in
this endeavor is the two-dimensional electron gas that is
formed at the interfaces between selected oxide band insulators
such as SrTiO3 and LaAlO3. In this respect, it is noteworthy
that in specific configurations, in particular, a 1-unit-cell
SrTiO3 layer on top of a 2-unit-cell LaAlO3 layer grown
on TiO2-terminated SrTiO3, a system of a closely coupled
two-dimensional electron gas and a two-dimensional hole gas
has been realized.17

Finally, we note that some cuprate high-Tc materials appear
to have an intrinsic stacking of electron-doped and hole-doped
CuO2 layers, such as Ba2Ca3Cu4O8F2,65 where one could look
for excitonic effects.
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APPENDIX A: SU(5) STRUCTURE
OF THE EXCITON T - J MODEL

In this appendix, we will define the operators that compose
the SU(5) dynamical Lie algebra, as described in the beginning
of Sec. II A. From the bilayer Heisenberg, we already have the
SO(4) spin subalgebra:

Sz = |1+〉〈1+| − |1−〉〈1−|, (A1)

S+ =
√

2(|1+〉〈10| + |10〉〈1−|), (A2)

S̃z = −|0〉〈10| − |10〉〈0|, (A3)

S̃+ =
√

2(|1+〉〈0| − |0〉〈1 − |), (A4)

where we use the obvious short-handed notation for the singlet
and triplet kets and bras. The commutation relation between
these operators read

[Sa,Sb] = iεabcSc, (A5)

[Sa,S̃b] = [S̃a,Sb] = iεabcS̃c, (A6)

[S̃a,S̃b] = iεabcSc. (A7)

There are 12 exciton operators in the XY -like part of the
Hamiltonian, which we denote by

E+
sm = |E〉〈s m|, (A8)

Ez
sm = 1

2 (|E〉〈E| − |s m〉〈s m|), (A9)

where s = 0,1 and m = −s · · · + s, with commutation rela-
tions

[E+
sm,E−

sm] = 2Ez
sm, (A10)[

Ez
sm,E+

sm

] = E+
sm. (A11)

If we consider commutators between E operators with differ-
ent sm, then we obtain operators that are fully spin-dependent.
We find that the only nonzero commutators between Esm

operators with ms �= m′s ′,

[E−
sm,E+

s ′m′] = |s m〉〈s ′ m′|, (A12)[
Ez

sm,E+
s ′m′

] = 1
2E+

s ′m′ . (A13)

We need some more operators to close the spin SU(4)
subalgebra, therefore define T and T̃ operators by [note that
(T̃ z)† = −T̃ z]

T + =
√

2(|1+〉〈10| − |10〉〈1−|), (A14)

T̃ z = |0〉〈10| − |10〉〈0|, (A15)

T̃ + =
√

2(|1+〉〈0| + |0〉〈1−|). (A16)

To complete the spin SU(4) subalgebra, we define

M+ = |1+〉〈1−| (A17)

and the corresponding M− = (M+)†. Finally, notice that we
have one operator too much in our listing, since there are only
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24 operators in SU(5). Thus there exists a linear dependency
relation between some operators, which is

1
2Sz + Ez

1+ − Ez
1− = 0. (A18)

So when constructing the Heisenberg equations of motion, we
will exclude one of these three from our formalism. The most
logical step is to throw out the combination Ez

1+ − Ez
1− and

leave the sum

Ez
1m ≡ Ez

1+ + Ez
1−. (A19)

The 24 operators of our dynamical SU(5) algebra are the three
S, three S̃, two T , three T̃ , two M , and eleven E operators.

APPENDIX B: THE HEISENBERG EQUATIONS
OF MOTION METHOD

In this Appendix, we elaborate a bit further on the
Heisenberg equations of motion method, as introduced in
Sec. II C. The aim of this method is to find the spectrum
of excitations, building on the foundations given by the
mean-field approximation. Given a full set of local operators
A�

i , we can construct the Heisenberg equations of motion

i∂tA�
i = [

A�
i ,H

]
, (B1)

which is in general impossible to solve. We employ the notation
that i indicates the lattice site, and � is the index denoting the
type of operator. The right-hand side of this equation contains
products of operators at different lattice sites. Such products
can be decoupled within the mean-field approximation as52,53

A�
iA�′

j → 〈
A�

i

〉
A�′

j + A�
i

〈
A�′

j

〉
, (B2)

where i and j are different lattice sites. Upon Fourier
transforming lattice position into momentum and time into
energy, we thus obtain a set of linear equations for the
operators,

ωqA�(q,ω) = M��′
(q)A�′

(q,ω). (B3)

The spectrum of excitations is simply found by solving this
eigenvalue equation for the matrix M(q).

In order to find the matrix elements 〈n|A�(q)|0〉 that enter in
susceptibilities we need, will introduce the following scheme.
Assume that the Hamiltonian is of the form

H =
∑
qn

ωqnα
†
qnαqn, (B4)

where the sum over q runs over momenta and n indicates
the different excited states. Now α

†
qn is a creation operator,

and irrespective of whether we are dealing with fermions or
bosons, we have the following equations of motion:

i∂tα
†
qn = −ωqnα

†
qn. (B5)

That is, every eigenvector of M��′
(q) corresponding to a nega-

tive eigenvalue can be identified as a creation operator for one
of the elementary excitations. However, the eigenvalue equa-
tion itself is not enough because it does not yield the proper
normalization of α†. Since we have the eigenvector solution

α†
qn = Un�A�(q), (B6)

we can write out the (anti)commutation relation for α
†
qn in

terms of the (anti)commutation relations for the A�(q). Upon
requiring that on the mean-field level, the operators α

†
qn obey

canonical commutation relations, that is, for bosons

〈[αqn,α
†
qn′ ]〉 = δnn′ , (B7)

we obtain a proper normalization for the new creation
operators. We can invert the normalized matrix Un� to express
A�(q) in terms of the creation operators α

†
qn. Finally, using

〈n′|α†
qn|0〉 = δnn′ , we can compute the wanted matrix element

for A�(q).
As an example of this technique, we can compute the matrix

element |〈n|S+(q)|0〉|2 for the antiferromagnetic Heisenberg
model on a square lattice. The mean-field ground state is the
Néel state, which leads to the following equations of motion:

i∂t

(
S+

qA

S+
qB

)
= 1

2
Jz

(
1 γq

−γq −1

)(
S+

qA

S+
qB

)
, (B8)

where the subscript A and B denote the two different
sublattices and γq = 1

2 (cos qx + cos qy). We quite easily infer
that the eigenvalues are

ωq = ± 1
2Jz

√
1 − γ 2

q , (B9)

and thus we have one eigenvector corresponding to a creation
operator, and one to an annihilation operator. If we define

(
α†

β

)
= U

(
S+

qA

S+
qB

)
, (B10)

then the commutation relations tell us that the eigenvector
matrix U must satisfy

1 = 〈[α,α†]〉 = −2u2
11

〈
Sz

A

〉 − 2u2
12

〈
Sz

B

〉 = −u2
11 + u2

12. (B11)

The initial S+
q operator, which enters in the spin susceptibility,

can be expressed in terms of the eigenvector matrix as

S+
q = 1√

2
(1 1) U−1

(
α†

β

)
. (B12)

Some straightforward algebra now yields

|〈n|S+(q)|0〉|2 = 1

2

√
1 − γq

1 + γq

, (B13)

which is the same susceptibility one can obtain by using
the Holstein-Primakoff linear spin wave approximation. The
approximation scheme we introduced here can therefore
be viewed as a generalization of the linear spin wave
approximation.
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an Ising antiferromagnet. However, one should not confuse this
with the actual antiferromagnetism present in the spin sector
of the full exciton t-J model. To avoid confusion, from now
on we will use the term “antiferromagnetism” only when re-
ferring to the spin degrees of freedom in the full exciton t-J
model.

68By setting θ = φ = 0, we restrict the spin vectors to be pointing in
the ±z direction only. Since we anticipate magnetic ordering, we
have the freedom to choose the direction of the ordering. Similar
arguments hold for the choice ψ = 0; when breaking the U (1)
symmetry associated with exciton condensation, we are free to
choose the phase direction.
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