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Field theory of nematicity in the spontaneous quantum anomalous Hall effect
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We derive from a microscopic model the effective theory of nematic order in a system with a spontaneous
quantum anomalous Hall effect in two dimensions. Starting with a model of two-component fermions (a spinor
field) with a quadratic band crossing and short-range four-fermion marginally relevant interactions we use 1/N

expansion and bosonization methods to derive the effective field theory for the hydrodynamic modes associated
with the conserved currents and with the local fluctuations of the nematic order parameter. We focus on the
vicinity of the quantum phase transition from the isotropic Mott Chern insulating phase to a phase in which
time-reversal symmetry breaking coexists with nematic order, the nematic Chern insulator. The topological
sector of the effective field theory is a background field (BF)/Chern-Simons gauge theory. We show that the
nematic order parameter field couples with the Maxwell-type terms of the gauge fields as the space components
of a locally fluctuating metric tensor. The nematic field has z = 2 dynamic scaling exponent. The low-energy
dynamics of the nematic order parameter is found to be governed by a Berry phase term. By means of a detailed
analysis of the coupling of the spinor field of the fermions to the changes of their local frames originating from
long-wavelength lattice deformations, we calculate the Hall viscosity of this system and show that in this system
it is not the same as the Berry phase term in the effective action of the nematic field, but both are related to the
concept of torque Hall viscosity, which we introduce here.
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I. INTRODUCTION AND MOTIVATION

The theory of topological phases of matter has been a central
problem in condensed matter physics since the discovery
of the quantum Hall effects1,2 in two-dimensional electron
gases (2DEG) in large magnetic fields. The precisely observed
(quantized or fractional) values of the Hall conductance is
a manifestation of the fact that it is a topological invariant
of the incompressible fluid.3–5 The fractional quantum Hall
fluids, on the other hand, are explained by the universal
properties encoded in the structure of their wave functions6

whose excitations (vortices) carry fractional charge and
fractional statistics.6–8 The robustness of these properties is
a consequence of their topological character. In addition to
having fractionalized excitations, these topological fluids have
a ground-state degeneracy that depends on the topology of the
surface on which they reside, which is not a consequence of the
spontaneous breaking of any global symmetry.9 The universal
behavior of these topological fluids is encoded in an effective
low-energy, the Chern-Simons, gauge theory.10–14

There is now a growing body of (mostly theoretical)
evidence that such topological phases of matter exist in
several models of frustrated quantum antiferromagnets15 and
in quantum dimer models.16,17 The recent discovery of
topological insulators18–22 has opened a new arena in which
these ideas play out. Interacting versions of simple models
of topological Chern insulators, such as the Haldane model,23

have topological phases with fractionalized excitations.24–27

An interesting question is the interlay and possible co-
existence of topological order and spontaneous symmetry
breaking. For some filling fraction, the 2DEG is known to
have a ferromagnetic quantum Hall ground state,28,29 in which
spin rotational symmetry is spontaneously broken. Also, a state
with a nematic “valley” order has also been seen in quantum
Hall fluids on misoriented samples.30,31 On the other hand,

experiments in the 2DEG in the second Landau level found a
nematic state in a regime in which the fractional (and integer)
quantum Hall effect is absent.32–34 In this phase, the 2DEG is
a uniform gapless electron fluid with a spontaneously broken
spatial rotational symmetry.35,36

Recent experiments by Xia and coworkers found that the
2DEG in the first Landau level in tilted magnetic fields has
a strong tendency to break rotational invariance inside an
incompressible fractional quantum Hall Laughlin state.37,38

Although in the experiments rotational invariance is bro-
ken explicitly by the tilted magnetic field, the temperature
dependence of the transport anisotropy suggest that this
state has a large nematic susceptibility and may be close
to a phase transition to a nematic state. These experiments
motivated Mulligan, Kachru and Nayak to develop a theory in
which nematic order coexists with a fractional quantum Hall
fluid.39,40 The possible existence of such states was anticipated
by two early proposals of wave functions for anisotropic
quantum Hall fluids.41,42

The experiments of Xia and coworkers have also motivated
the inquiry of the role of more microscopic, “geometrical,”
degrees of freedom in the physics of these topological
fluids.43–45 Recently, Maciejko and coworkers proposed an
effective field theory of the anisotropic fractional quantum
Hall state.46 Using mainly symmetry arguments, they found
that the nematic order parameter couples to the fractional
quantum Hall fluid in the same way as the space components
of a metric tensor. A similar effect was found earlier in a theory
of a nematic charge 4e superconductor47 involving, instead,
the order parameter field of the superconductor. A key result of
Ref. 46 is that the dynamics of the nematic degrees of freedom
is governed by a Berry phase term in the effective action whose
coefficient is the Hall viscosity of the topological fluid.48–52

There are many aspects of this problem that remain unclear.
In the case of the 2DEG, the existence of a compressible
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nematic phase (in the second Landau level) suggests that it
must be related to the anisotropy seen in the first Landau
level, albeit in the incompressible phase. The theory of Ref. 39
suggests a possible mechanism (and an identification of the
nematic degrees of freedom) solely in terms of the low-energy
degrees of freedom of the quantum Hall fluid, but runs into
difficulties in systems with Galilean invariance. In addition,
that theory should also apply to the case of the integer quantum
Hall effect. Although it is possible to write down a wave
function for an anisotropic quantum Hall state by breaking
rotational invariance explicitly at the microscopic level,44 such
an approach does not explain how it may come about from an
isotropic incompressible state.

In this paper, we will investigate these problems by deriving
an effective field theory for a Mott Chern insulator in a
nematic phase in a a simple microscopic lattice model recently
proposed in by Sun and coworkers.53 We will discuss in
detail the case of the 2DEG in magnetic fields in a separate
publication.54 The model of Ref. 53 describes a correlated two-
dimensional system of spinless fermions on a checkerboard
square lattice in which two bands have a quadratic crossing at
the corners of the (square) Brillouin zone. In the noninteracting
system, the quadratic band crossing is protected by the C4

point group symmetry of square lattice and by time-reversal
invariance.

Due to the quadratic band crossing, this electronic system
has a dynamical scaling exponent z = 2 (i.e., the energy
scales with the square of the momentum). As a direct
consequence of the z = 2 scaling, four fermion operators
are naively marginal operators. This free-fermion system,
which can be regarded as a fermionic version of a quantum
Lifshitz model,55 is at an infrared unstable fixed point of the
renormalization group (RG). This semimetal fixed point is
unstable to infinitesimal repulsive interactions to (a) a gapped
phase with a spontaneously broker time-reversal invariance,
i.e., a topological Mott Chern insulator with a spontaneous
quantum anomalous Hall state,56 (b) to a gapless semimetal
nematic phase in which the point group symmetry breaks
spontaneously from C4 down to C2, and (c) to a gapped phase
in which both time reversal symmetry breaking and the point
group symmetry breaking coexist.53

Models with quadratic band crossings describe the low-
energy description of graphene bilayers,57–59 where there are
two such crossings, and in the topologically protected surface
states of 3D topological crystalline insulators.60,61 We discuss
below some caveats on the relevance of this model to such
systems. In particular, a (Mott) Chern insulating state has been
conjectured to exist in bilayer graphene.57

Due to the marginal relevance of local interactions, the
behavior of the system in these phases can be investigated
using controlled approximations, such as 1/N expansions and
perturbative RG calculations. In contrast, in the case of the
massless Dirac fermion, local interactions are irrelevant and
a finite (and typically large) critical value of the coupling
constant is needed to drive the system into a Mott Chern
insulating phase.56 Here, we will use the 1/N expansion and
bosonization methods to derive an effective field theory of the
Mott Chern insulator and of its quantum phase transition to a
nematic Chern insulator in the context of the model of Ref. 53.
The effective field theory includes the hydrodynamic degrees

of freedom of the conserved currents of the fermions, in the
form of a background field (BF)/Chern-Simons gauge theory,
and the local fluctuations of the nematic order parameter.
In particular, in this theory, the nematic fluctuations are
present at low energies, which is required to describe a
continuous quantum phase transition to a nematic Mott Chern
insulator.

We will also show that the effective low-energy dynamics
of the nematic order parameter is indeed a Berry phase term,
with a structure similar to that proposed by Maciejko and
collaborators. We also find that the nematic fields can be
regarded as providing a local fluctuating spatial metric for
the hydrodynamic gauge fields of the Mott Chern insulator.
However, we will also show that the nematic degrees of
freedom do not couple to the fermionic degrees of freedom
as a local frame field and hence, they cannot be identified with
a local geometry. We show that the Hall viscosity, which in
a system of spinors is the response of the system to a change
of the local frames50 (i.e., a long-wavelength distortion of the
lattice), is not equal to the Berry phase of the nematic modes.
Instead, the Berry phase is related to the concept of torque Hall
viscosity which we introduce here. In addition, we find that in
this system the Hall viscosity is not given by the coefficient
of the q2 term in the Hall conductance. Recently, Hoyos
and Son showed that in Galilean-invariant one-component
quantum Hall fluids systems these two coefficients should
be equal to each other.52 These assumptions do not apply to
multicomponent fermionic (spinor) systems as in the present
case. We also find that the Hall viscosity and the Berry phase
coefficient are related to the Hall torque viscosity.

This paper is organized as follows. In Sec. II, we present
the model of interacting fermions in two dimensions with a
quadratic band crossing and we discuss its phase diagram. In
Sec. III, we develop an effective field theory of the interplay
of nematic order and of the hydrodynamic gauge theory. In
Sec. IV, we use the 1/N expansion to derive the effective action
in the vicinity of the nematic transition inside the spontaneous
quantum anomalous Hall phase, and use it to discuss briefly
the nature of the two phases and the quantum and thermal
critical behavior. In Sec. V, we present the effective field theory
of the nematic fields in the presence of broken time-reversal
invariance. Here, we discuss in detail the role played by the
Hall viscosity in the effective field theory. In Sec. VI, we
introduce the concept of Hall torque viscosity and discuss its
relation with the Hall viscosity and with the Berry phase.
Our conclusions are presented in Sec. VII. Details of the
calculations, including the proofs of gauge invariance, are
given in several Appendices.

II. THE QUADRATIC BAND-CROSSING MODEL
AND ITS PHASES

In this paper, we will use the following simple model for
a quadratic band crossing (QBC), introduced by Sun and
collaborators.53 We begin with a summary of the results of
their work that will be useful for our analysis. One of the
cases discussed by Sun et al. is a system of spinless fermions
on a checkerboard lattice. This lattice has two sublattices,
and the single-particle states are two-component spinors. The
band structure of this system is described by the tight-binding
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one-particle Hamiltonian

h0(k) = t(cos k1 − cos k2)σ3 + 4t ′ cos

(
k1

2

)
cos

(
k2

2

)
σ1,

(2.1)

where k = (k1,k2) are vectors of the first Brillouin zone (BZ),
|ki | � π (with i = 1,2), and σ1 and σ3 are two (real symmetric,
2 × 2) Pauli matrices. The lattice model also has a contribution
proportional to the 2 × 2 identity matrix which, for a range of
parameters, can be ignored.62 Tsai and coworkers63 discussed
a similar problem on the Lieb lattice.

In this system, the two bands cross at the Fermi energy at
the corners of the BZ, (π,π ) (and its symmetry related points).
For a half-filled system, the Fermi energy is exactly at the
band crossing points, and the ground state of the noninteracting
system describes a semimetal with a quadratic band dispersion.
Similar problems have been discussed in the context of bilayer
graphene.57,58,64

The band structure of this semimetal has a nontrivial Berry
phase

i

∮
�

dk · 〈k|∇k|k〉 = nπ, (2.2)

where |k〉 is a Bloch state at momentum k of the BZ, and
� is a closed curve on the BZ that encloses the quadratic
band crossing point, (π,π ). For a two-band system with a
QBC, the integer n = 2 (n = ±1 for Dirac fermions). In this
case, the changes of the Chern number of the two bands
are carried entirely by the (single) quadratic crossing. At the
noninteracting level, the Berry phase here is protected by both
discrete lattice symmetries and by time reversal invariance.

For momenta k = (π,π ) − q close to the crossing points
(the corners of the BZ) we can approximate the one-particle
Hamiltonian by expanding Eq. (2.1) about the crossing point.
Let us denote by ψα(q) (with α = 1,2) a two-component Fermi
field with wave vectors q [measured from the (π,π ) point].
The effective free fermion Hamiltonian, in momentum and in
position space, is

H0 =
∫

d2q

(2π )2
ψ†

α(q)
[(

q2
1 − q2

2

)
σ3 + 2q1q2σ1

]
αβ

ψβ(q)

= −
∫

d2x ψ†
α(x)

[
σ3

(
∂2

1 − ∂2
2

) + σ1 2∂1∂2
]
αβ

ψβ(x).

(2.3)

Here, and from now on, we have set t = t ′ for simplicity (and
rescaled the energy scale so that t = 1). This is a special point
of high (rotational) symmetry, which does not qualitatively
change the results. In the case of bilayer graphene, one has
two “valleys” (or species) of fermions whose free-fermion
Hamiltonians are given by Eq. (2.3), with a different sign of t ′,
which plays the role of a chirality that distinguishes one valley
from the other. Thus, for bilayer graphene, one has |t | = |t ′|.

For a system of (spinless) fermions with a QBC with short-
range repulsive microscopic interactions, the effective low-
energy Hamiltonian is the sum of the free-fermion Hamiltonian
H0 of Eq. (2.3) and an interaction term Hint, which can be

succinctly written in the form

Hint = −
∫

d2x
1

2

[
g0	

2
0(x) + g�2(x)

]
, (2.4)

where g0 and g are two (positive) coupling constants. The
operators 	0(x) and �(x) in Eq. (2.4) are, respectively, given
by the (Hermitian) bilinears of fermion operators,

	0(x) = ψ†(x)σ2ψ(x), (2.5)

�(x) = ψ†(x)σψ(x). (2.6)

Here, σ = (σ1,σ3), and, for clarity, we have suppressed the
spinor indices. For t = t ′, the full Hamiltonian, H = H0 +
Hint is invariant under time reversal and under arbitrary
rotations. However, for t �= t ′, it is only invariant under the
(discrete) point group C4.

The operator 	0(x) of Eq. (2.5) breaks time-reversal invari-
ance and is the order parameter for time-reversal symmetry
breaking. If 〈	〉 �= 0, the system would have a gap and
exhibit a zero-field quantum Hall effect with σxy = e2/h (i.e.,
an anomalous quantum Hall effect). The operator �(x) of
Eq. (2.6) breaks rotational invariance and it is the nematic order
parameter. In fact, � is invariant under a rotation by π and
hence it is not a vector but a director, as it should be. Moreover,
if we were to add terms proportional to the operators 	0 and �

to the free-fermion Hamiltonian of Eq. (2.3), the QBC either
gets gapped (if 〈	0〉 �= 0) or splits into two massless Dirac
fermions which are separated either along the x (or y) axis
[is 〈	1〉 �= 0)] or along a diagonal (if 〈	2〉 �= 0). Hence this
state breaks rotational invariance (or C4 or C6 down to C2).
Hence a state with 〈	0〉 �= 0 is a topological Chern insulator,
while a state with 〈�〉 �= 0 is a nematic semimetal. If spin and
other degrees of freedom are also considered, other operators
(and hence possible phases) that transform nontrivially under
other symmetries must be considered, leading, for instance, to
a state with a spin Hall effect, a ferromagnet, triplet nematic
order, and others.53,57–59,64

In the case of the theory of massless Dirac fermions (e.g.,
graphene), short-range interactions are irrelevant operators,
rendering the semimetallic phase stable, and can only trigger a
(quantum) phase transition if the coupling constants are larger
than a critical value.65 However, in the case of a theory of
fermions with a QBC, short-range interactions of the form
of Eq. (2.4) are marginally relevant and destabilize the QBC
semimetal even for arbitrarily weak interactions53 (see also the
prescient work of Abrikosov and coworkers).66

The kinematic differences between the two systems, Dirac
and the QBC, lead to a change in the scaling behavior of the
operators.53 In particular, the Hamiltonian H0 of Eq. (2.3)
describes a quantum critical system of free fermions with
dynamical exponent z = 2 and, hence, in this system, time
scales as the square of a length, L2. For this reason, it has some
similarities with systems in the quantum Lifshitz universality
class.55 Consequently, in a system with z = 2 dynamic scaling,
in two space dimensions the fermion operator has scaling
dimension 
ψ = 1, [ψ] = L−1, and all four-fermion operators
have scaling dimension 4.

In two (space) dimensions, this means that all four fermion
operators are marginal [in the renormalization group (RG)
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sense] since here d + z = 4. Therefore the stability (or
instability) of the free-fermion QBC semimetal, such as the
surface states of the three-dimensional crystalline topological
insulators,60,67,68 such as Pb1−xSnxTe, is determined by
quantum corrections. In contrast, systems with a QBC in three
dimensions, such as the pyrochlore iridates A2Ir2O7 (where
A is a lanthanide or yttrium),69–71 short-range interactions are
perturbatively irrelevant and the QBC semimetal is stable (up
to a critical value of the coupling constants) (see, once again,
Ref. 66).

One-loop renormalization group calculations show that,
in two dimensions, in a system with microscopic repulsive
interactions, and hence g0 > 0 and g > 0, four-fermion oper-
ators of the form of Eq. (2.4) are marginally relevant,53,58,64

and, hence, weak repulsive interactions render the semimetal
free-fermion ground state unstable. Several phases can occur
depending on the details of the microscopic interactions. In
Ref. 53, it was shown that in the case of the QBC of the checker-
board lattice a weak (infinitesimal) repulsive interaction drives
the system into a state with a spontaneous anomalous quantum
Hall effect (i.e., a Chern insulator with a spontaneously-broken
time-reversal symmetry), with a subsequent phase transition to
a nematic semimetal state. Sun and coworkers53 also found a
regime in which the nematic state and the Chern insulating state
coexist. Thus, in this phase, the system has a spontaneously
broken time-reversal invariance and also a spontaneously
broken rotational invariance, and is a nematic Chern insulator.
Such topological Mott insulators were proposed earlier on by
Raghu, Qi, Honerkamp, and Zhang in the context of Dirac-type
systems where they can only occur at relatively large values
of the interactions.56

III. EFFECTIVE GAUGE THEORY FOR
THE ANISOTROPIC QAH STATE

Our goal is to derive an effective action for the spontaneous
QAH phase and to describe the transition to a nematic QAH
phase. To this end, we will generalize our system to one in
which there are N “flavors” of fermions and to drive the
effective field theory using a large-N expansion. Sun and
coworkers have shown that, unlike the familiar case of the
Luttinger liquids in one space dimensions, the renormalization
group β function(s) for the N = 1 case has the same structure
as the N > 1 case.53 The resulting effective Lagrangian density
for the spinor fermionic field ψa(x) [with a = 1, . . . ,N ,
x = (x0,�x), and x0 is the time coordinate] (here we are omitting
the spinor indices):

LF [ψ̄,ψ,aμ] = ψ̄a(x)
[
iγ0D0 − γ1

(
D2

1 − D2
2

)
− γ2(D1D2 + D2D1)

]
ψa(x)

+ g0

2N
	0(x)2 + g

2N
�2(x), (3.1)

where 	0(x) and �(x) are the fermion bilinears defined in
Eqs. (2.5) and (2.6), respectively, suitably generalized for a
system with N flavors of fermions. Minimal coupling of the
fermions to the gauge field requires that we change of the
Hamiltonian of the system to ensure its Hermiticity and gauge
invariance.

In Eq. (3.1), we have used the standard 2 × 2 Dirac gamma
matrices, given in terms of the three Pauli matrices

γ0 = σ2, γ1 = iσ1, γ2 = −iσ3 (3.2)

and satisfy the Dirac (Clifford) algebra (with μ = 0,1,2)

{γμ,γν} = 2ημνI, (3.3)

where I is the 2 × 2 identity matrix and ημν = diag(1,−1,−1)
is the Minkowski metric in 2 + 1 space-time dimensions.

In the Lagrangian of Eq. (3.1), we introduced the coupling
to a gauge field aμ through the covariant derivatives

Dμ = ∂μ − iaμ. (3.4)

The coupling to a gauge field is needed both to describe the
interactions with an external electromagnetic field Aμ and also
to express the charge currents of the fermions in terms of a dual
gauge field. This latter procedure leads to a hydrodynamic
theory of the Chern insulating phase.72

The hydrodynamic theory is derived using the procedure
of functional bosonization of Ref. 73 and expanded in Ref. 74
(see also Ref. 75). Following the work of Chan et al.,72 we will
derive the effective hydrodynamic theory by considering the
partition function of the fermionic theory with the Lagrangian
of Eq. (3.1) coupled to a dynamical gauge field aμ whose field
strength Fμν = ∂μaν − ∂νaμ vanishes everywhere (in space
and time), and hence is a gauge transformation. For a system
with periodic boundary conditions, integrating the partition
function over all gauge transformations (including large gauge
transformations) amounts to averaging the partition function
(and hence all its observables) over the torus of boundary
conditions.

The averaged partition function is

Z[Aμ] =
∫

Dψ̄DψDaμ

∏
x,μ,ν

δ(Fμν)

× exp

(
i

∫
d3xLF [ψ̄,ψ,Aμ + aμ]

)
, (3.5)

where Aμ is a weak external electromagnetic field (used
a s source), LF is the Lagrangian of Eq. (3.1). Using the
representation of the δ function∏

x,μ,ν

δ(Fμν) =
∫

Dbμ exp

(
i

∫
d3x bμεμνλ∂νaλ

)
(3.6)

and the invariance of the measure under shifts aμ → aμ − Aμ,
we find that the averaged partition function can be written in
the equivalent form

Z[Aμ] =
∫

Dψ̄DψDaμDbμ

× exp

(
i

∫
d3xL[ψ̄,ψ,Aμ,aμ,bμ]

)
. (3.7)

The Lagrangian in the exponent of Eq. (3.7) is given by

L[ψ̄,ψ,Aμ,aμ,bμ] = bμεμνλ∂ν(aλ − Aλ) + LF [ψ̄,ψ,aμ],

(3.8)

where the Lagrangian LF on the right-hand side of Eq. (3.8)
is given in Eq. (3.1). In the Chern insulating phase, this
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expression leads to the BF topological field theory form of
the hydrodynamic theory.72,76

It is now straightforward to show72–74 that the fermionic
currents jμ can be expressed in terms of the dual hydrodynamic
field jμ ≡ εμνλ∂

νbλ as an operator identity. This hydrody-
namic identity is the starting point of the effective field theory
of the fractional quantum Hall fluids.77,13,14

On the other hand, the conserved and gauge-invariant
fermionic currents jμ have the explicit form

j0 = δLF

δa0
= ψ̄aγ0ψa = ψ†

aψa, (3.9)

j1 = δLF

δa1
= iψ̄a(γ1D1 + γ2D2)ψa + H.c., (3.10)

j2 = δLF

δa2
= iψ̄a(−γ1D2 + γ2D1)ψa + H.c., (3.11)

where D1 and D2 denote the spatial components of the
covariant derivative and where the summation over the index
a has been assumed. Notice that unlike the relativistic Dirac
theory but in close resemblance to the nonrelativistic case, the
spatial components of the fermionic current depend explicitly
on the gauge field aμ, as expected for a theory with dynamical
exponent z = 2.

We will now proceed to derive an effective action which
is accurate in the large N limit (but which is qualitatively
correct for all finite N ). To this end, we will decouple the
four-fermion interactions in the Lagrangian LF by means of
a Hubbard-Stratonovich transformation. In terms of three real
Hubbard-Stratonovich fields M0(x), which couples to the time-
reversal-symmetry-breaking order parameter 	0 [of Eq. (2.5)],
and M1(x) and M2(x), which couple to the components of the
nematic order parameter � [of Eq. (2.6)], the Lagrangian LF

of Eq. (3.1) takes the form

LF [ψ̄,ψ,aμ,M0,M]

= ψ̄a(x)
[
iγ0D0 − γ1

(
D2

1 − D2
2

) − γ2(D1D2 + D2D1)

+M0(x) + M(x) · γ
]
ψa(x)

− N

2g0
M0(x)2 − N

2g
M2(x). (3.12)

Upon integrating-out the fermionic fields, we obtain the
following expression for the averaged partition function

Z[Aμ] =
∫

DaμDbμZ[aμ]

× exp

[
i

∫
d3x N bμεμνλ∂ν(aλ − Aλ)

]
, (3.13)

where we scaled the bμ field by a factor of N for future
convenience. The partition function Z[aμ] is given by

Z[aμ] =
∫

DM0DM exp(iNS[aμ,M0,M]), (3.14)

where

S[aμ,M0,M] = −
∫

d3x

[
1

2g0
M2

0 (x) + 1

2g
M(x)2

]
− iTr lnM[aμ,M0,M] (3.15)

and M is the differential operator

M[aμ,M0,M] = iγ0D0 − γ1
(
D2

1 − D2
2

)
− γ2(D1D2 + D2D1) + M0(x) + M(x) · γ

(3.16)

is the action used in Eq. (3.14). Notice that the Hubbard-
Stratonovich fields M0 and M have units of (momentum)2 ≡
energy (which is consistent since z = 2.)

Putting it all together we find that the partition function of
the full problem is

Z[Aμ] =
∫

DbμDaμDM0DMeiNSeff [aμ,M0,M,Aμ], (3.17)

where the effective action is

Seff = S[aμ,M0,M] +
∫

d3x bμεμνλ∂ν (aλ − Aλ) . (3.18)

Here, S[aμ,M0,M] is given by Eq. (3.15). Notice that from
Eq. (3.12) the following identities hold:

	0

N
= M0

g0
,

�

N
= M

g
. (3.19)

As usual, the correlation functions of the Hubbard-
Stratonovich fields are (essentially) the same as those of the
order parameters.

We can now proceed to solve this theory in the large N

limit. The effective action we are seeking will be obtained in
the leading order of the 1/N expansion which is equivalent to
a one-loop approximation. [For a general discussion of large
N (“vector”) field theories see, e.g., the extensive review of
Ref. 78.]

In the large N limit, the partition function Z[aμ] [of
Eq. (3.14)] is well approximated by an expansion about the
saddle points of the effective action Seff of Eq. (3.15). Here,
we will seek translationally invariant states, such as the phases
with spontaneously broken time-reversal invariance, with
〈	0〉 �= 0, and/or spontaneously broken rotational invariance,
with 〈�〉 �= 0. In what follows, the gauge field aμ can be
taken to be a weak perturbation (and hence it will not affect
the saddle-point equations). Hence we will set aμ = 0 in the
saddle-point equations. The effects of quantum fluctuations of
the gauge field aμ will appear in the 1/N corrections.

The saddle-point equations (the “gap equations”) are

δSeff

δM0(x)
= 0 ⇒ m

g0
= −i trG(x,x; m,M), (3.20)

δSeff

δM(x)
= 0 ⇒ M

g
= −i tr [G(x,x; m,M)γ ] , (3.21)

where a sum over repeated indices is assumed and the trace
runs over the spinor indices. Sαβ(x,x ′; m,M) (with α,β = 1,2
being the spinor indices) is the Feynman (time-ordered)
propagator of a fermionic field with z = 2 with constant values
of the fields M0 ≡ m and M,

Gαβ(x,x ′; m,M) = −i〈T (ψα(x)ψ̄β(x ′))〉
= 〈x,α|[iγ0∂0 − γ1

(
∂2

1 − ∂2
2

) − γ22∂1∂2

+m + M · γ
]−1|x ′,β〉. (3.22)
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In frequency and momentum space qμ = (q0,q), the Feynman
propagator is (dropping the spinor indices)

G(p; m,M)

= 1

p0γ0 − (
p2

1 − p2
2

)
γ1 − 2p1p2γ2 − m − M · γ − iε

(3.23)

from where we read off the spectrum of (one-particle)
fermionic excitations

E±(q; m,M) = ±E(q; m,M) (3.24)

and

E(q; m,M) =
√(

q2
1 − q2

2 + M1
)2 + (2q1q2 + M2)2 + m2.

(3.25)

Clearly, M0 = m is a (time-reversal symmetry breaking) mass
gap, and M breaks rotational invariance, by splitting the QBC
into two Dirac cones, along a direction and by an amount set
by M.

Upon computing the traces over the spinor indices and after
an integration over frequencies, the “gap” equations (3.21) can
be put in the form

m

g0
=

∫
d2q

(2π )2

m

E(q; m,M)
, (3.26)

M1

g
=

∫
d2q

(2π )2

q2
1 − q2

2 + M1

E(q; m,M)
, (3.27)

M2

g
=

∫
d2q

(2π )2

2q1q2 + M2

E(q; m,M)
, (3.28)

where E(q; m,M) is given in Eq. (3.25). The integrals in
Eqs. (3.26)–(3.28) are logarithmically divergent at large
momenta q and require a UV momentum cutoff � ∼ π/a,
where a is the lattice spacing. This logarithmic divergence
is a consequence of the marginally relevant nature of the
interactions.

In the N → ∞ limit, the ground-state energy density of the
system E(m,M) is

E(m,M) = N

2g0
m2 + N

2g
M2 − N

∫
d2q

(2π )2
E(q; m,M),

(3.29)

where we have filled up the negative energy states. This
ground-state energy density has extrema at the values of m and
M which are the simultaneous solutions of Eqs. (3.26)–(3.28).

The saddle-point equations, Eqs. (3.26)–(3.28), have three
types of uniform solutions: (a) an isotropic (or C4 invariant)
phase with m �= 0 and M = 0 in which time reversal invariance
is spontaneously broken which is an insulating (Mott) phase
with a spontaneous QAH effect, (b) a phase with m = 0 but
with M �= 0 with a spontaneously broken rotational (or C4)
invariance, which is a nematic semimetal with a spectrum of
two massless Dirac fermions, and (c) a coexistence phase with
m �= 0 and M �= 0, in which both time-reversal and rotational
invariance are spontaneously broken, i.e., this is an insulating
nematic QAH phase.

In Ref. 53, it was found that, for certain range of parameters
the quantum phase transition from the QAH phase to the
nematic QAH phase is continuous while the subsequent
transition to a the nematic semimetal is first order. The details
of the phase diagram depend also on the parameters t and t ′,
defined in the free fermion Hamiltonian of Eq. (2.1), which
break the continuous symmetry under rotations down to the
C4 point-group symmetry (for the case of the checkerboard
lattice).

In this paper, we will focus on the (isotropic or C4-
symmetric) QAH phase and its continuous quantum phase
transition to the nematic QAH phase in which both orders are
present. In the N → ∞ limit, the ground-state energy density
of the QAH phase is

E(m,M) = E0 + m2

2g0
− m2

8π
ln

(
2�2

|m|
)

, (3.30)

where E0 = −�2/(8π ) (here and below � is a momentum
cutoff, � ∼ π/a) is the ground-state energy density of free
fermions with a QBC and where we have kept the leading
(divergent) terms in �2/|m| → ∞. In Eq. (3.30), we have
omitted an overall factor of N .

The ground-state energy of Eq. (3.30) is minimized if
the saddle-point equation Eq. (3.26) is satisfied, which now
becomes

1

g0
= 1

4π
ln

(
2�2

|m|
)

. (3.31)

The solution of this equation is

|m| = 2�2 exp

(
−4π

g0

)
, (3.32)

which has the characteristic form of a marginally relevant
perturbation. From now on, we will assume that the leading
instability of the system is to the QAH phase, which opens the
finite gap m is the fermion spectrum and breaks spontaneously
time-reversal invariance.

We will consider the case in which the onset of nematic
order takes place inside the QAH phase. In this situation,
the nematic order will be weak and its onset will not
affect appreciably, to lowest order, the time-reversal-symmetry
breaking mass gap m. With these assumptions, we can expand
the ground-state energy of Eq. (3.29) in powers of the nematic
order parameter M up to quartic order, which has the form

E(m,M) = EQAH + r(m)M2 + u(m)M4 + O(M6), (3.33)

where EQAH is the ground-state energy of the nematic phase,
and the parameters r(m) and u(m) are

r(m) = 1

2g
− 1

8π
ln

(
2�2

|m|
)

, u = 21

256π

1

m2
. (3.34)

From here we find that there is a (quantum) phase transition
to a nematic QAH phase at a critical value gc,

1

gc

= 1

4π
ln

(
2�2

|m|
)

. (3.35)

Within these approximations, the transition takes place at gc =
g0. For g > gc, nematic order parameter M has a nonvanishing
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expectation value,

¯|M| =
(−r(m)

2u(m)

)1/2

= A |m|
(

1

gc

− 1

g

)1/2

, (3.36)

where A2 = 64π/21. Further, inside the nematic QAH phase,
the QAH order parameter, m, becomes progressively sup-
pressed until a first-order quantum phase transition to a nematic
semimetal phase is reached.53

IV. EFFECTIVE ACTION AND 1/N EXPANSION

We will now derive the effective field theory for the
quantum fluctuations in the QAH phase close to the nematic
quantum phase transition. To this end, we will compute the
effects of quantum fluctuations to the lowest order in the
1/N expansion. In the QAH phase, the only field with a
nonvanishing expectation value is the field M0, whereas the
nematic field M has a vanishing expectation value in the QAH
phase (but not in the nematic phase). By gauge invariance the
gauge fields aμ and bμ cannot have a nonvanishing expectation
value (although their fluxes could).

The fluctuations of the time-reversal symmetry-breaking
field M0 are massive in the QAH phase (and in the nematic
QAH phase). Since we are interested in the effective field
theory close to the transition to the nematic QAH phase,
we will not be interested in the fluctuations of this massive
field, whose main effect is a renormalization of the effec-
tive parameters. Thus in what follows, we will ignore the
fluctuations of the field M0 about the N = ∞ expectation
value M0 = m.

We will now expand the effective action of Eq. (3.15)
to lowest orders in the 1/N expansion. Let us denote by
G0(x,x ′; m)

G0(x,x ′; m) ≡ 〈x|M−1
0 |x ′〉 (4.1)

the Feynman propagator of the fermions in the QAH phase
given by Eq. (3.22). Here, we implicit the spinor indices and set
the expectation value of the nematic field M to zero and M0 =
m. In Eq. (4.1), M0 is the differential operator of Eq. (3.16)
in the symmetric phase with broken time-reversal symmetry.

In momentum space, the propagator of Eq. (4.2) becomes

G0(p) = p0γ0 − (
p2

1 − p2
2

)
γ1 − 2p1p2γ2 + m

p2
0 − (

p2
1 + p2

2

)2 − m2 − iε
. (4.2)

The expansion in powers of 1/N can now be determined
by using the expansion of the logarithm

tr lnM = tr ln(M0 + δM)

= tr lnM0 + tr ln
(
I + M−1

0 δM
)
, (4.3)

where

tr ln
(
I + M−1

0 δM
) = tr

(
M−1

0 δM
) − 1

2 tr
(
M−1

0 δM
)2

+ 1
3 tr

(
M−1

0 δM
)3 + · · · , (4.4)

where M0 and δM are the operators

M0 = iγ0∂0 − γ1
(
∂2

1 − ∂2
2

) − γ22∂1∂2 + m,
(4.5)

δM = M(x) · γ + aμJ μ − T ij aiaj ,

with the vertices Jμ and given by

J0 = γ0, (4.6)

J1 = iγ1∂1 + iγ2∂2 + H.c., (4.7)

J2 = −iγ1∂2 + iγ2∂1 + H.c., (4.8)

where i,j = 1,2 label the two spatial components of the gauge
field aμ, and the matrix T is

T =
(

γ1 γ2

γ2 −γ1

)
, (4.9)

where γ1 and γ2 are the two spatial Dirac gamma matrices.
The terms in the expansion of Eq. (4.4) that are quadratic in

the nematic fields M and on the hydrodynamic gauge field aμ

represent the leading quantum fluctuations about the N = ∞
limit. The effective action for the quantum fluctuations of the
hydrodynamic gauge field aμ and the nematic fields M have
the form

Seff[aμ,M] = Seff[aμ] + Seff[M] + Seff[aμ,M]. (4.10)

Here, S[M] describes the dynamics of the nematic field,
and will be studied in detail in the next section. In this
section, we focus on the effective action of the hydrodynamic
gauge fields and on their coupling to the nematic fields,
Seff[aμ] + Seff[aμ,M]. The details of the Feynman diagrams
and of the calculations included in this section can be found in
Appendix A. The resulting effective Lagrangian is

Leff[aμ] + Leff[aμ,M]

= N

4π
εμνρaμ∂νaρ + Nbμεμνρ∂ν(aρ − Aρ)

+ N

8π

(
1

m
+ M1

2m2

)
(∂0a1 − ∂1a0)2

+ N

8π

(
1

m
− M1

2m2

)
(∂0a2 − ∂2a0)2

+ N

8π

M2

m2
(∂0a1 − ∂1a0)(∂0a2 − ∂2a0)

− N

4π
(∂2a1 − ∂1a2)2. (4.11)

The effective gauge theory is a Maxwell-Chern-Simons theory.
The first term is the Chern-Simons term from the nontrivial
fermion band, the second term is the BF term obtained
from the functional bosonization technique we used. It is
straightforward to see that this effective action predicts that the
QAH phase has a quantized Hall conductivity σxy = Ne2/h,
as expected for the quadratic band crossing case.53

The rest of the terms in the effective action of Eq. (4.11)
are the parity-even Maxwell terms and the local coupling
of the fluctuation of the nematic fields to the hydrodynamic
gauge field. The latter has the form of an effective spatial
anisotropy. Hence, it is apparent from Eq. (4.11) that the
nematic order parameters couple to the gauge fields as an
effective spatial metric. To make this more clear, let us rewrite
the Maxwell terms LMaxwell in the form (for comparison, see
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Ref. 47)

LMaxwell = − N

8π
√

2m
fμνg

μαfαβgβν, (4.12)

fμν = ∂μaν − ∂νaμ, (4.13)

gμν = ημν + 1

2m
Qμν, (4.14)

where we have rescaled the time coordinate and temporal
component of the gauge field x0 → 1√

2m
x0,a0 → √

2ma′
0 so

as to renormalize the dielectric constant and make the “speed
of light” be 1. The modified metric in the Maxwell term
are composed of a regular flat metric of 2 + 1-dimensional
Minkowski space-time, ημν = diag(1,−1,−1), locally modi-
fied by a traceless metric Qμν induced by the local spatial
anisotropy. The traceless symmetric tensor Qμν only has
nonvanishing spatial components,

Qμν =

⎛
⎜⎝

0 0 0

0 M1 M2

0 M2 −M1

⎞
⎟⎠, (4.15)

From the expression of Qμν , it is clear that this is the
hydrodynamic theory of a gauge field on a manifold with
a fluctuating nontrivial (purely spatial) metric due to the
coupling to the nematic field. As the fluctuation of the nematic
field modifies the local metric, in the anisotropic phase, where
the tensor Qij (or, equivalently, M) acquires an nonzero
expectation value, the Maxwell term becomes anisotropic.
This leads to anisotropic transport (at finite wave vector q)
in the nematic QAH. This phenomenon is equivalent to having
an anisotropic dielectric dielectric tensor that plays the role of
the metric tensor we introduced here.

V. EFFECTIVE THEORY OF THE NEMATICITY

Let us now derive the effective theory of the nematic field
M. The effective action Seff(M), obtained for the integration
of the fermions and from the Hubbard-Stratonovich fields, has
the form

Seff(M) = N ln det
(
G−1

0 − M · γ
) −

∫
d3x

N

2g
M2. (5.1)

By expanding the effective action to the quadratic order, we
get

Seff = −N

2
tr(G0γ · MG0γ · M) −

∫
d3x

N

2g
M2

= −N

2

∫
d3p

(2π )3
Mi(−p)�ij (p)Mj (p)

− N

2g

∫
d3p

(2π )3
|M(p)|2, (5.2)

where �ij (p) is the one-loop kernel

�ij (p) =
∫

d3k

(2π )3
tr[γiG0(p + k)γjG0(k)], (5.3)

which is given by the self-energy diagram discussed in
Appendix B.

Let us now define a 2 × 2 traceless symmetric tensor field
Q, which is natural to describe a nematic phase79,80

Q =
(

M1 M2

M2 −M1

)
. (5.4)

At long wavelengths and low frequencies, the effective
Lagrangian of the nematic order parameter L[ Q] is

1

N
Leff[ Q] = −χ (m)εbcQab∂0Qac − r(m)tr( Q Q)

+ κ1tr( Q K Q) + κ2tr(σ1 Q K ′ Q)

−u(m)tr( Q Q Q Q), (5.5)

where K and K ′ are the 2 × 2 symmetric matrix differential
operators

K =
(

∂2
1 ∂1∂2

∂2∂1 ∂2
2

)
, K ′ =

(
∂2∂1 ∂2

2

∂2
1 ∂2∂1

)
, (5.6)

and σ1 is the (symmetric and real) Pauli matrix.
The coefficients r(m) and u(m) in Eq. (5.5) were given

already in Eq. (3.34). The coefficient χ (m) shown in Eq. (5.5),
is given by

χ (m) = 1

64π

1

m
. (5.7)

The coefficient coefficient χ (m) depends on both the magni-
tude and the sign of the parameter m, i.e., on the expectation
value of the order parameter that measures the spontaneous
breaking of time-reversal invariance in the Mott Chern insu-
lator. This behavior is reminiscent of the parity anomaly of a
Dirac fermion in 2 + 1 dimensions.81,82 In the next section,
we will see shortly that χ (m) is related to the Hall viscosity
and hall torque viscosity of the spontaneous QAH phase.
Moreover, the presence of this Berry phase term makes the
dynamic critical exponent of the effective theory of the nematic
fields to be z = 2.

The first term of the effective action Leff[ Q] of Eq. (5.5)
is of first order in time derivatives, reflecting the spontaneous
breaking of time-reversal invariance in the (spontaneous) QAH
phase and, hence, is odd under time reversal. This term can
be regarded as a Berry phase of the time evolution of the
nematic order parameter field. Maciejko and collaborators46

have shown that it is possible to rewrite the effective field
theory of the nematic order parameter field as a nonlinear
sigma model whose target space is a hyperbolic space, a coset
of SO(2,1). The form of our Berry phase term is consistent
with the one discussed by Maciejko and collaborators46 in the
limit Q � 1, which we have used here.

Before we discuss the phases of this theory and the behavior
of the nematic degrees of freedom, it is worth to comment on
the symmetries of the effective Lagrangian of Eq. (5.5). As
it is apparent, this effective Lagrangian is invariant under a
global rotation of the nematic order parameter field (modulo
π ). This symmetry is the result of setting t = t ′ in the lattice
Hamiltonian of Eq. (2.1) and of the fact that we kept only
the lowest terms in momenta in the long wavelength theory
of the fermions of Eq. (2.3). On the other hand, if t �= t ′,
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the effective low-energy theory has a lower C4 symmetry. At
the level of the nematic order parameter, this is equivalent to
an Ising symmetry (of rotations by π/2). The same type of
symmetry breaking is obtained in the corrections to Eq. (2.3)
of order p4 (or higher) in the effective low-energy Hamiltonian
of the fermions. The net effect of these corrections is
nominally irrelevant operators which break the continuous
O(2) symmetry down to a discrete (Ising) symmetry.

A. The isotropic QAH phase

In the isotropic QAH phase and to lowest order in the 1/N

expansion, we find that the stiffnesses are

κ1 = 1

12π |m| , κ2 = 0. (5.8)

Hence, in the isotropic phase, the terms of the effective action
that depend on the spatial gradients, after an integration by
parts, can be written in the form

− κ1Tr[ Q K Q] = κ1[(∇ · M)2 + (∇ × M)2]. (5.9)

Hence the two Frank constants are equal in the isotropic phase.
It is straightforward to see that the nematic modes are

gapped in the isotropic phase and that their gap vanishes at
the quantum phase transition. Again, provided the explicit
lattice symmetry breaking effects, we discussed above can be
neglected, the spectrum of nematic modes will ge gapped but
degenerate.

B. The nematic QAH phase

However, in the nematic QAH phase where, the rotational
symmetry is spontaneously broken. This has two conse-
quences. One is that instead of a single Frank constant
(stiffness) we now find two:

κ1 = 1

12π |m| , κ2 = |M̄|
16πm2

, (5.10)

where Q represents now the fluctuations of the nematic order
parameter in the nematic QAH phase, |M̄| is the expectation
value of the nematic field in the N → ∞ limit and is given
in Eq. (3.36). By symmetry, the Frank stiffness κ2 is an odd
function of the magnitude of the nematic order parameter |M̄|.
Thus, provided we restrict ourselves to the vicinity of the
transition, in Eq. (5.10) we may keep only the leading (linear)
term.

Hence, as expected, in the nematic QAH phase there are
two Frank constants, and the spatial terms of the effective
Lagrangian for the nematic fluctuations now becomes (also
after an integration by parts)

−κ1tr( Q K Q) − κ2tr(σ1 Q K ′ Q)

= (κ1 + κ2)(∇ · M)2 + (κ1 − κ2)(∇ × M)2, (5.11)

which is the generally expected form for the energy of nematic
fluctuations.80,83 A similar result generally holds in other
electronic nematic phases.79

The other consequence is that there is a gapless Goldstone
mode of the spontaneously broken symmetry. Again, if the
microscopic theory only has a discrete C4 invariance the

Goldstone modes is gapped but the gap can be small if the
explicit symmetry breaking is weak.

C. Critical behavior

We will now discuss briefly the critical behavior. By
examining the effective Lagrangian of Eq. (5.5), we see that
the nematic order parameter field has scaling dimension 1,
i.e., [Q] = l−1 (where l is a length scale) or 
Q = 1. This
scaling follows from the presence of the Berry phase term in
the effective Lagrangian. Incidentally, the main effect of the
Berry phase term is to make the two components of the nematic
order parameter field to be canonically conjugate pairs. From
the fact that the order parameter has scaling dimension 
1 = 1,
it follows that the scaling dimension of the quartic term of
the effective Lagrangian has dimension 
4 = 4 and that the
effective coupling constant can be made dimensionless [by
absorbing the Berry phase χ (m) in a rescaling of the nematic
field]. This is consistent with the fact that the dynamical
exponent is z = 2 and the dimensionality of space is d = 2.
Hence the effective dimension is d + z = 4, hence the quartic
term of the Lagrangian is superficially marginal at the nematic
quantum critical free field point, r = 0. Thus this theory
appears to behave much in the same way as conventional
(relativistically invariant) φ4 quantum field theory of four
space-time dimensions.

Just as in conventional φ4 theory, the quartic term is
also marginally irrelevant at the free field fixed point with
z = 2. Provided this assumption (which we have not verified)
is correct, we deduce that the quantum critical behavior
is that of the effective classical theory, of Eq. (5.5), with
logarithmic corrections to scaling. On the other hand, if the
quartic term were to be marginally relevant, it would turn this
quantum phase transition in to a fluctuation-induced first-order
transition.

Finally, this theory has a finite-temperature thermodynamic
phase transition at a Tc at which the nematic order is lost.
If the symmetry is O(2), then we expect a conventional
nematic continuous (Kosterlitz-Thouless) phase transition. On
the other hand, if the symmetry is broken (microscopically)
down to a discrete Ising (Z2) symmetry, the finite-temperature
transition would be in the 2D ising universality class.

VI. TRANSVERSE DISSIPATIONLESS RESPONSE
TO SHEAR STRESS: HALL TORQUE VISCOSITY
IN THE QUANTUM ANOMALOUS HALL STATE

Quantum Hall fluids and other two-dimensional systems
with broken time-reversal invariance such as Chern insulators,
show a variety of dissipationless responses to external fields
which do not exist in normal fluids. In a system with broken
time-reversal invariance due either to an external perpendicular
magnetic field or to topologically nontrivial band structures,
an in-plane electric field induces a Hall current which is
perpendicular to the applied field and has a Hall conductance,
which is precisely determined by the topological properties
of these fluids. Similarly, in a two-dimensional system with
broken time reversal invariance and parity, by shearing the
system in one direction a momentum transfer is induced
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in the perpendicular direction. As a result, the stress tensor
has an antisymmetric component that is proportional to the
shear rate. The associated transport coefficient is the Hall
viscosity.48–50,52,84

While the resulting Hall conductance is dimensionless and
universal (in units of e2/h), the Hall viscosity has units of
length−2. If the system is Galilean invariant (which is the
case, to a good approximation, in the 2DEG in AlAs-GaAs
heterostructures and quantum wells) then the length scale is
supplied by the magnetic length and, in this sense, the Hall
viscosity is also universal.52 On the other hand, in the case
of topological Chern insulators, although there is a finite
Hall viscosity in general it is the sums of a nonuniversal
term (which is determined by microscopic physics) and an
essentially universal term.50

In this section, we will first derive an expression of the Hall
viscosity for the system at hand, a Chern insulator originating
from an instability of a system with a quadratic band crossing.
Here, we will show that the Hall viscosity is related to both the
Hall conductivity of the QAH phase and with the coefficient
χ of he Berry phase term obtained in Eq. (4.11). We will also
see how this is related to the concept of Hall torque viscosity
which we introduce below.

For a parity violating system, such as the quantum Hall
fluids of 2DEGs, a change in the background metric gij of
the surface on which the electron fluid resides modifies the
definition of the momentum of the electrons through their
coupling to the metric. A consequence of the breaking of time
reversal and parity (either explicit or spontaneous) the effective
field theory of the weak perturbation of the metric contains
a term which is odd under parity and time reversal. Such
Chern-Simons-type terms are first order in time derivatives,
and their coefficient is the Hall viscosity.

On the other hand, the fermion field of the system we are
interested in is a theory of two-component spinors and it is not
Galilean invariant. A system of spinors, such as the one given
in the effective long wavelength Hamiltonian of Eq. (2.3), is
defined with respect to a frame of orthonormal two-component
vectors ea (with a = 1,2) tangent to the two-dimensional
space. Microscopically, these vectors are tied to the local
geometry of the underlying two-dimensional lattice. Thus,
under a lattice deformation (which includes local rotations),
these local frames, which following tradition we will call
zweibeins, accordingly change slowly.

Let us now suppose that we rotate the “spinor frame” of the
fermion field, i.e., that we make a local change of basis of the
spinors. A global change of basis with a rotation axis normal
to the plane is a symmetry since it is equivalent to a rotation
of the space axis. However, spinor rotations about arbitrary
axis and/or under a local change of basis, i.e., a change of
the local frame, are not symmetries of the system. As a result
of such transformations the system generally experiences a
torque viscosity that is perpendicular to the axis of rotation.
In what follows, we will be interested in adiabatic changes in
the frames of the spinors and in the Berry phase terms they
induce.

We will now show that the coefficient χ (m) of the effective
action of the nematic order parameter fields is related to
the Hall viscosity in the QAH phase.48–50,52 An excellent
discussion of the Hall viscosity can be found in the recent

work of Hughes, Leigh, and Parrikar84 whose methods we use
here.

In order to represent the local deformations of the space,
one couples the frames (the zweibiens) directly to the covariant
derivative. However, in our case, there is an orbital degree
of freedom and an analog of a spin connection is required.
The long-wavelength Lagrangian for the free fermions on the
undistorted lattice is

L = ψ̄a(x)
[
iγ0∂0 − γ1

(
∂2

1 − ∂2
2

) − γ22∂1∂2 + M0
]
ψa(x).

(6.1)

In this section, we will discuss the behavior of the Hall
viscosity and the Hall torque viscosity in the isotropic QAH in
the N → ∞ limit. In this limit, and in this phase, the nematic
order parameter field has vanishing expectation value and does
not contribute. However, its fluctuations do contribute (to order
1/N) to the corrections at small but finite momenta of these
quantities.

By adding the background distortion connecting between
real space (or momentum) and orbital space, the new La-
grangian, which now depends explicitly on the frame fields
ea(x), becomes

L = ψ̄α(x)
(
iγ0∂0 − T ij

a ea
k γk∂i∂j + M0

)
α,β

ψβ(x), (6.2)

where a = 1,2, α,β = 1,2, and i,j,k = 1,2. As before, we
have set T1 = σz and T2 = σx . The metric tensor of the 2D
distorted space is gij = ea

i e
a
j . For a system on a flat metric,

i.e., an undistorted lattice, the frame vectors are ea
i = δa

i and,
in this case, gij = δij , and the Lagrangian of Eq. (6.2) reduces
to our original free fermion Lagrangian of Eq. (6.1).

Here, we will be interested in shear distortions and
rotations, which are area-preserving diffeomorphisms. We can
parametrize the frame fields ea as follows:

e1
1 − 1 = −(

e2
2 − 1

) = e1, e1
2 = e2

1 = e2. (6.3)

Under this distortion, the free-fermion Lagrangian becomes

L = ψ̄(x)
[
iγ0∂0 − γ1

(
∂2

1 − ∂2
2

) − γ22∂1∂2 − M0
]
ψ(x)

+ ψ̄(x)
[−e1γ1

(
∂2

1 − ∂2
2

) + e1γ22∂1∂2
]
ψ(x)

+ ψ̄(x)
[−e2γ2

(
∂2

1 − ∂2
2

) − e2γ1∂1∂2
]
ψ(x), (6.4)

where e1(x) and e2(x) are two slowly varying functions of
space and time.

After integrating-out the fermion field, the effective theory
of the frame fields ea contains a parity-violating term, which
appears to the first order time derivatives. In momentum and
frequency space, it has the form

Seff[ei] =
∫

dω

2π

d2p

(2π )2
iη( p,ω)ω εij ei( p,ω)ej (− p,−ω)

+ · · · , (6.5)

where η( p,ω) is given by

η( p,ω) = 1

iω
εij δ2S

δei( p,ω)δej (− p,−ω)
. (6.6)

In what follows, we will only be interested in the adiabatic
regime. Thus we will take the limit ω → 0. In this limit, w can
expand η( p,0) = η( p) in powers of the momentum p. In the
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isotropic QAH phase, η( p) can only be a function of p2. To
lowest orders, we obtain

η( p) = η(0) + η1 p2 + η2 p4 + · · · , (6.7)

where p4 = ( p2)2, etc. For symmetry reasons, only powers
even powers of the momentum are allowed to enter in this
expansion.

On the other hand, in the nematic QAH insulating phase,
in addition to an isotropic component of the form of Eq. (6.7)
there is an anisotropic piece. Close to the quantum critical
point the anisotropic piece of the term quadratic in momenta
is a linear function of the expectation value of the nematic
order parameters and has the form (up to a constant prefactor)
(p2

1 − p2
2)M1 + 2p1p2M2. Similar considerations apply to the

higher-order terms in the expansion in momenta.
The zeroth-order coefficient η(0) in Eq. (6.7) is the Hall

viscosity η,

η =
∫

d2k

(2π )2

m
(
k2

1 + k2
2

)2[
k2

0 − (
k2

1 + k2
2

)2 − m2 − iε
]2

= m

16π
ln

(
2�2

m

)
− m

16π
, (6.8)

which depends both on the magnitude and the sign of the mass
m. Notice that the Hall viscosity, as expected, has units of
m, or what is the same units of length−2. The Hall viscosity
η = η(0) can also be computed from the correlation function
of the stress tensor, 〈T a

i T b
j 〉.50

The coefficient η2 for the term O( p4) in the expansion of
Eq. (6.7) is proportional to the coefficient χ (m) appearing in
the Berry phase term in effective nematic theory,

η2 = εij 1

iω

δ2S

δ[p2ei(p)]δ[p2ej (−p)]

∝
∫

d3k

(2π )3

m[
k2

0 − (
k2

1 + k2
2

)2 − m2 − iε
]2 . (6.9)

Hence we find that

η2 ∝ lim
ω→0

lim
p→0

εbc 1

iω

δ2Seff(M)

δQab(p)δQac(−p)

= χ (m). (6.10)

Actually, the coefficient of the p2 term of the expansion is
proportional to the Hall conductance,

η1 = εij 1

iω

δ2S

δ[pei(p)]δ[pej (−p)]

∝
∫

d3k

(2π )3

m
(
k2

1 + k2
2

)
[
k2

0 − (
k2

1 + k2
2

)2 − m2 − iε
]2 . (6.11)

Hence, we also find that

η1 ∝ lim
ω→0

lim
p→0

εij 1

iω

δ2Seff(M)

δAi(p)δAj (−p)
= 1

4
σxy. (6.12)

Unlike the Hall conductivity, the Hall viscosity is not a
topological response as it does depend on microscopic details
of the fermionic system. Furthermore, if we were to include
the nematic field in Eq. (6.1), even in the isotropic phase its

fluctuations to order 1/N modify the values of η1 and η2 but
do not affect the value of the Hall viscosity η. In this sense,
the relationship between χ , σxy and η1,η2 is not universal.
Moreover, in the nematic phase, the coefficients η1 and η2

become tensors, reflecting the nematic nature of the phase.
Now we come to the Hall torque viscosity. As in most (but

not all) Chern insulators, the fermion field of the quadratic band
crossing model is a two component spinor which labels the two
different bands. In the case of the checkerboard model, the
spinor labels can be traced back to the two-sublattice structure
of the lattice. Suppose we now rotate the “spinor frame” of the
fermion by an SU(2) unitary transformation of the form

� ′
α(x) = [ei(−θ2σx+θ1σz)]αβ�β(x). (6.13)

The rotation axis of this transformation lies on the xz plane.
Suppose now that we consider an infinitesimal rotation angle
so that we can expand the rotation matrix to lowest order in θ ,

� ′ = ��, � =
(

1 − iθ2 iθ1

iθ1 1 + iθ2

)
. (6.14)

This is not a symmetry transformation of the Lagrangian.
Indeed, upon this rotation of the spinor frame, the Lagrangian
Eq. (6.1) changes as follows:

L = ψ̄ ′(x)
[
iγ0∂0 − γ1

(
∂2

1 − ∂2
2

) − γ22∂1∂2 − m
]
ψ ′(x)

− ψ̄ ′(x)
[
θ1

(
∂2

1 − ∂2
2

) + θ22∂1∂2 + mθ1γ1

+mθ2γ2
]
ψ ′(x). (6.15)

As we can see, the last two terms generated by a rotation of the
spinor frame have exactly the same form as the nematic order
parameter. in addition, the spinor rotation also mixes with the
time-reversal symmetry breaking mass term (albeit with terms
which are quadratic in spatial derivatives).

It is straightforward to obtain the effective action for the
spinor rotation angles in the adiabatic regime. Similarly to the
calculation that we did for the Hall viscosity, here too, we find
an antisymmetric term which is first order in time derivatives,

L(θ ) = −ηsεij θi∂0θj + · · · , (6.16)

where ηs is the torque viscosity and we find it to be

ηs = − m

16π
ln

(
2�2

m

)
+ m

8π
. (6.17)

This result shows the existence of a dissipationless transport
property, namely, the Hall torque viscosity, which is the
response of the action under an adiabatic rotation of the spinor
frame.

By analogy with the stress-energy tensor for a metric
distortion, here we can define the torque 〈S〉 for the rotation
of the spinor frame,

〈Si〉 = δS

δθi

= Aij ∂0θj + Bij θj + · · · . (6.18)

The second term yields the linear response between the torque
and the time derivative of the rotation angle (the angular
velocity). The rank tensor Aij is the torque viscosity. In a
time-reversal and parity invariant fluid, this viscosity tensor is
symmetric, indicating the rotation entails an energy cost and,
furthermore, in general it is a dissipative response. However,
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in a system of spinors with broken parity and time-reversal
invariance, such as QAH phase of our system, the tensor Aij

must have an antisymmetric part which is odd under parity.
Thus, when we rotate the spinor frame in the QAH phase, there
is a torque viscosity ηs , which is not parallel but perpendicular
to the direction of the rotation. This dissipationless rotation
response is a unique signature of parity-violating phase of a
system with spinor degrees of freedom.

In Chern insulators, the spinor and orbital degrees of
freedom are locked to each other. In the case of a Dirac (Weyl)
fermion, the spinor polarization is locked with the direction
of propagation of the state (the momentum). In our case, the
spinor polarization is locked instead with quadrupole moment
of the momentum of the state. In this way, a rotation in spinor
space induces a momentum current and vice versa.

A consequence of these observations is that there must be a
relation between the Hall viscosity and Hall torque viscosity.
To see what the relation is, let us compare the stress tensor
with the spinor torque. Let us compute the rate of change of
the action under an infinitesimal change of the frame fields,
parametrized by e1 and e2, respectively [defined in Eq. (6.3)],
and compare that with the torque. We obtain

Tij + Tji = δS

δe1
= −ψ̄

[
2∂1∂2γ1 + (

∂2
1 − ∂2

2

)
γ2

]
ψ,

Tii − Tjj = δS

δe2
= −ψ̄

[−2∂1∂2γ2 + (
∂2

1 − ∂2
2

)
γ1

]
ψ,

(6.19)

and

S1 = δS

δθ1
= ψ̄

[(
∂2

1 − ∂2
2

) + mγ1
]
ψ,

(6.20)

S2 = δS

δθ2
= ψ̄(2∂1∂2 + mγ2)ψ.

After some simple algebra, it is easy to check the equivalence
between spin rotation torque and the stress tensor,

Tij + Tji = −(S1γ2 + S2γ1),
(6.21)

Tii − Tjj = −(S1γ1 − S2γ2).

As a result, if we subtract the antisymmetric parts from both
the stress tensor correlator and of the torque correlator, we
obtain

−
〈

δ2S

δθ1δθ2

〉
+

〈
δ2S

δM1δM2

〉
=

〈
δ2S

δe1δe2

〉
. (6.22)

This identity implies the following linear relation between Hall
viscosity η, the Hall torque viscosity ηs , and the Berry phase
χ coefficient in our effective theory,

− ηs + 4χ = η. (6.23)

Thus the Berry phase term that was obtained from the effective
theory for the nematic order parameter field measures the dif-
ference of Hall viscosity and Hall torque viscosity. We should
note that the expressions for χ , η, and ηs given, respectively,
in Eqs. (5.7), (6.8), and (6.17), obey this relation exactly.

The validity of these results is not restricted to the particular
Chern insulator we studied here. The Hall torque viscosity is
a universal property in all kinds of QAH phases. In systems

in which the fermions arise from several orbitals, the fermion
operator in the effective action is a multicomponent spinor.
Suppose that the system has a nonvanishing Chern number,
and hence that it is in a QAH state. If we rotate the spinor
frame, the torque viscosity tensor, which is the linear response
coefficient between torque and the angular velocity of the
spinor rotation, must always include an antisymmetric part
resulting from the parity violation in the fermion system.

As an example, let us choose the case of a Dirac (Weyl)
fermion. Suppose we rotate the spinor frame in a similar way as
in Eq. (6.14). After this rotation which, again is not a symmetry
transformation, the Lagrangian changes to

L = ψ̄ ′(x)(iγ0p0 − γ1p1 − γ2p2 − m)ψ ′(x)

+ ψ̄ ′(x)(θ1p1 + θ2p2 + mθ1γ1 + mθ2γ2)ψ ′(x). (6.24)

In the case of a Dirac (Weyl) fermion, the rotation metric
couples both with the current and momentum. If we integrate-
out the fermion, we would also get a Hall torque viscosity
term

L(θ ) = (−m� + 4m2)

8π
εij θi∂0θj + · · · . (6.25)

For a Dirac fermion, the spin is locked with linear momentum.
Therefore the equivalence between a spinor rotation and
momentum current is expected and, hence, there is a similar
relation between Hall viscosity and Hall torque viscosity.

VII. CONCLUSIONS

In this paper, we presented a theory of the Mott quantum
anomalous Hall state in the vicinity of its transition to a nematic
QAH state. Our theory was developed in the context of a theory
of spinless fermions, which, at the free fermion level, has a
quadratic band crossing. A main result of this work is the
effective field theory of Secs. IV and V in which we derived
the effective action for the hydrodynamic gauge fields aμ and
bμ (which represent the charge currents) and the nematic order
parameter field M. The gauge theory sector is dominated by
two topological terms, the BF term and the Chern-Simons
term. The effective action of the nematic fields was found to
contain a Berry phase term whose parity and time-reversal odd
coefficient χ controls the dynamics. In particular, the effective
dynamical exponent of the nematic fields is z = 2, consistent
with the results of Maciejko et al. developed in the context
of the fractional quantum Hall states.46 We also found that
the nematic fields couple to the gauge field aμ as a spatial
metric. Our results clarify the role of geometric degrees of
freedom in systems that exhibit the quantum Hall effect. We
expect that these results should also apply to the case of the
fractional quantum Hall effect and we will discuss these results
elsewhere.54

In this work, we considered the transition from the QAH
phase to a nematic QAH phase (which is a continuous
transition). It is is also possible to instead consider different
regime of coupling constants in which the leading instability
from the QBC is to a nematic semimetal followed by a first
order transition to the nematic QAH.53 However, in this case,
the theory that we presented here does not strictly apply
since the transition would now be first order. Nevertheless, the
structure of our main results will still hold. A direct instability

235124-12



FIELD THEORY OF NEMATICITY IN THE SPONTANEOUS . . . PHYSICAL REVIEW B 88, 235124 (2013)

from the free QBC system to a nematic QAH phase does not
seem to occur naturally.

In Sec. VI, we investigated the relation between the
coefficient χ of the Berry phase of the nematic fields and the
Hall viscosity η of the spinors, which measures the transverse
response to a local change of the spinor frame. Here, we found
that the complete picture requires the introduction of the
concept of the torque Hall viscosity ηs , which is related to the
fact that for s system of spinors a deformation of the underlying
space requires the introduction of a spin connection. This
effect is associated with the kinematics of spinors. Although
it is always present multicomponent fermionic systems, it
takes a different form for Dirac fermions and in this model
with a quadratic band crossing (with unit Chern number).
In particular, we found that these three coefficients obey a
universal linear relation given in Eq. (6.23). Nevertheless, these
features are generic properties.

Our results are of interest in several systems accessible
to experiment. One such system is bilayer graphene, which
has two (almost exact) quadratic band crossings in the
Brillouin zone. They are almost exact in that their quadratic
band crossing is not protected by symmetry. However, it is
“protected” by the chemistry (and physics) of the orbitals of
carbon, which renders their parity-even gaps extremely small
(and negligible in practice). This is a point that has been
investigated at length in the literature.57–59 However, in the
case of bilayer graphene, it is necessary to include the spin
degrees of freedom (which we suppressed here). This leads
to a more complex (and interesting!) phase diagram,53,58,64

which deserves further exploration.
In the transport experiments of Xia et al.37 on the 2DEG,

in the first Landau level, a large nematic susceptibility is
seen in the longitudinal resistivities at finite temperature
with a weak in-plane magnetic field. The results presented
elsewhere in this paper predict a similar behavior for the lon-
gitudinal resistivity at finite temperature in the QAH-nematic
phase.

Other systems of great interest for which these results
may be relevant are the topological crystalline insulators.60

Systems of these type have surface states (protected by mirror
symmetry) which to a good approximation are described (at the
level of the band structure) by a low-energy Hamiltonian with
two quadratic band crossings. In materials such as Pb1−xSnxSe
and Pb1−xSnxTe, these crossings which are expected to occur
at the X points on the edges of the surface Brillouin zone
have been seen in ARPES and STM experiments.67,68,85–87

However, each quadratic crossing is found to be split into a pair
of gapless Dirac cones. Although there are material-specific
symmetry breaking effects that can explain these findings,61 it
is also possible that the splittings may be driven by correlation
effects, as in the case of the nematic semimetal phase discussed
in Ref. 53. Nevertheless, it is possible that these materials
(or a close relative of them) may also exhibit a spontaneous
quantum anomalous Hall phase such as the one discussed here
(based on the work of Ref. 53) and that the physics that we
discussed here in detail may apply there too. Other materials
in which these ideas may be relevant are the pyrochlore
iridates.69,70,88

One of the motivations of this work, as we stated above, was
to explore the interplay between the topological sector of these

(a) (b)

FIG. 1. One-loop self-energy diagrams for the hydrodynamic
gauge field aμ.

systems and the more microscopic “geometric” degrees of
freedom. This issue was raised originally in the context of the
experiments of Xia et al. in fractional quantum Hall states in
the first Landau level of the 2DEG37 and has motivated several
important theoretical developments.39,40,43,46 Much of that
work (see, e.g. Ref. 44) has focused on the role of geometric
changes at the microscopic level (i.e., at the length scale of
the magnetic length). However, as we showed in this paper,
these “geometric” degrees of freedom can be self-organized
into nematic order parameter fields whose fluctuations may
manifest at even long length scales and hence may trigger a
quantum phase transition of a nematic topological phase. In a
separate publication,54 we will show how the ideas presented
here extend to the case of the 2DEG in the fractional quantum
Hall regime.

ACKNOWLEDGMENTS

We would like to thanks Kai Sun, Taylor Hughes, Rob
Leigh, Joseph Maciejko, Mike Mulligan, Chetan Nayak, Steve
Kivelson, Benjamin Hsu, Shivaji Sondhi, Chen Fang, Gil Cho,
and Matthew Gilbert for helpful discussions. Y-Z would like
to thank Bo Yang for intuitive advice. This work is supported
in part by the National Science Foundation through the Grant
DMR-1064319 at the University of Illinois.

APPENDIX A: THE CALCULATION OF THE EFFECTIVE
GAUGE THEORY

To obtain the effective action of the gauge fields S[aμ], we
need to compute the one loop self-energy diagrams shown in
Figs. 1(a) and 1(b). Let G(p) be the fermion propagator of the
quadratic band dispersion Chern insulator with mass m, i.e.,
in the isotropic QAH phase given in Eq. (3.23) with M = 0,
we can write the one-loop correction to the action S(2)[aμ] of
the gauge fields in the standard form

S(2)[aμ] = N

2

∫
d3p

(2π )3
aμ(−p)�μν(p)aν(p). (A1)

�μν(p) is the polarization operator, which is the sum of two
contributions:

�μν(p) = �(1)
μν(p) + �(2)

μν(p). (A2)
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�(1)
μν(p) is the diagram shown in Fig. 1(a) and is given by

�(1)
μν(p) = i

∫
d3k

(2π )3
tr[G0(p + k)Jμ(2k + p)G0(k)Jν(2k + p)], (A3)

J0(2k + p) = γ0, (A4)

J1(2k + p) = γ1(2k1 + p1) + γ2(2k2 + p2), (A5)

J2(2k + p) = −γ1(2k2 + p2) + γ2(2k1 + p1). (A6)

So the polarization tensor �(1)
μν(p) has the expression

�(1)
μν(p) = i

∫
d3k

(2π )3
tr

{
(p0 + k0)γ0 − [(p1 + k1)2 − (p2 + k2)2]γ1 − 2(p1 + k1)(p2 + k2)γ2 + m

(p0 + k0)2 − [(p1 + k1)2 + (p2 + k2)2]2 − m2 − iε

×Jμ(2k + p)
k0γ0 − (

k2
1 − k2

2

)
γ1 − 2k1k2γ2 + m

k2
0 − (

k2
1 + k2

2

)2 − m2 − iε
Jν(2k + p)

}
. (A7)

As we are only concerned with the long-wave-length behavior,
we expand momentum p in G0(p + k) by order and only keep
O(p2).

�(2)
μν(p) is given by the diagram shown in Fig. 1(b) and is

given by

�(2)
μν(p) = −i

∫
d3k

(2π )3
tr[G0(k)T ij ], (A8)

where G0(p) is the Feynman propagator of the isotropic QAH
phase given in Eq. (4.2) and

T11 = γ1, T22 = −γ1 T12 = γ2, T21 = γ2. (A9)

In Eq. (A8), the indices μ,ν = i,j act only on the spatial
components. Here, we have to trace over all the matrix indices
involved. Since there is either γ1 or γ2 in the expression for Tij

[see Eq. (A9)], the only nonvanishing contribution to the trace
of

G0(k) = k0γ0 − (
k2

1 − k2
2

)
γ1 − 2k1k2γ2 + m

k2
0 − (

k2
1 + k2

2

)2 − m2 − iε
(A10)

should also include γ1 or γ2. However, these contributions have
factors of k2

1 − k2
2 or k1k2 in the numerator and hence cancel

out when we perform the after momentum integration. Thus
we have

�(2)
μν(p) = 0. (A11)

The full one-loop polarization �μν(p) is explicitly trans-
verse. The resulting action S[aμ] is gauge-invariant and is
a sum of a parity-odd Chern-Simons term and a parity-even
Maxwell term. The proof of gauge invariance is presented in
Appendix C.

To obtain the leading coupling between nematic field and
gauge field S[aμ,M], we need to calculate three-leg one-loop

diagrams shown in Figs. 2(a) and 2(b),

S[aμ,M]

= N

3

∫
d3p

(2π )3
�μν,i(p1,p2)aμ(−p1 − p2)aν(p1)Mi(p2).

(A12)

There are two diagrams with nonvanishing value, so �μν,i are
composed of two parts, which are included in Figs. 2(a) and
2(b),

�μν,i(p1,p2) = �
(1)
μν,i(p1,p2) + �

(2)
μν,i(p1), (A13)

where p1 and p2 are, respectively, the energy-momenta of
the gauge field aν and of the nematic field Mi . Notice that
�

(2)
μν,i(p1) is only defined for μ,ν = 1,2.
The one-loop three-legged diagram of Fig. 2(a) is

�
(1)
μν,i = −i

∫
d3k

(2π )3
tr[G0(k − p2)Jμ(2k − p2 + p1)

×G0(k + p1)Jν(2k + p1)G0(k)γi]. (A14)

Note that here the greek symbol index labels the gauge field,
while the latin symbol index labels the nematic field. The latin
symbols only run for spatial index. The one-loop diagram of

(a) (b)

FIG. 2. One-loop contributions to the vertex of the gauge field aμ

and the nematic order parameter field M.
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Fig. 2(b) has the expression (for μ = j and ν = k)

�
(2)
jk,i(p2) = i

∫
d3k

(2π )3
tr[G0(−p2 + k)TjkG0(k)γi], (A15)

where Tjk is given in Eq. (A9).
Here, we expanded the momentum pi by order and found

that the leading coupling term is the interplay between the
nematic field and Maxwell term, which is parity even. This
is quite obvious. Since the gauge field enters quadratically in

these diagrams, the leading gauge-invariant terms can only be
the Chern-Simons term and Maxwell term. Since this theory is
not Lorentz invariant, terms like B∇ · E are allowed. We can
ignore them as they are of higher order in derivatives than the
Maxwell term. The Chern-Simons term is topological and as
such it does not depend on the metric of the space-time. Thus
the only most relevant coupling should be the Maxwell term.
This can also be seen from the polarization tensor.

If we expand derivatives of nematic field p2 in the
polarization tensor by order, to the O(1) order, we have

�
(1)
μν,i(p1) = −i

∫
d3k

(2π )3
tr[G0(k)Jμ(2k + p1)G0(k + p1)Jν(2k + p1)G0(k)γi]

= −i

∫
d3k

(2π )3
tr[Jμ(2k + p1)G0(k + p1)Jν(2k + p1)G0(k)γiG0(k)]. (A16)

If it is odd in p1, the first terms in the products

Jμ(2k + p1)G0(k + p1)Jν(2k + p1)G0(k) (A17)

being even and symmetric in the momentum k, should include a Levi-Civita tensor. In this sense, to obtain a nonvanishing value
after trace, the γiG0(k) term should not contribute any Gamma matrix. As a result, it would involve with k2

1 − k2
2, which makes

the whole polarization tensor vanish after integration.
Upon expanding in derivatives of the nematic field p2 to the O(p2) order, we have

�
(1)
μν,i = −i

∫
d3k

(2π )3
tr[G0(k)Jμ(−p2)G0(k + p1)Jν(2k + p1)G0(k)γi]

− i

∫
d3k

(2π )3
tr

[
F (p2,k)

k2
0 − (

k2
1 + k2

2

)2 − m2 − iε
Jμ(2k + p1)G0(k + p1)Jν(2k + p1)G0(k)γi

]
. (A18)

Here, F (p2,k) is a function that is linear in p2 and odd in k.
If it is odd in p1, the second term of Eq. (A18),

Jμ(2k + p1)G0(k + p1)Jν(2k + p1)G0(k), (A19)

includes a Levi-Civita tensor and is even and symmetric in k.
However, F (p2,k) is odd in k and the integral vanishes. For
the first term of Eq. (A18), if μ = 0, J0(−p2) does not depend
on p2, this term is still of zeroth-order in p2, and vanishes as
we showed before. Otherwise, if it is odd in p1, it is also odd
in k and the integral vanishes. Thus, to lowest order, there is
no parity-odd coupling between the nematic field M and the
gauge field aμ.

APPENDIX B: THE CALCULATION OF THE EFFECTIVE
NEMATIC ACTION

The only one-loop diagram that contributes is the self-
energy of the effective field theory of the nematic order

Mi Mj

FIG. 3. One-loop self-energy diagram for the nematic order
parameter field.

parameter is shown in Fig. 3 and it is given by the expression

Seff(M) = −N

2

∫
d3xd3y tr[G0(x − y)γ · M(y)G0(y − x)γ

·M(x)] −
∫

d3x
N

2g
M2(x)

= −N

2

∫
d3p

(2π )3
Mi(−p)�ij (p)Mj (p)

− N

2g

∫
d3p

(2π )3
|M(p)|2, (B1)

where �ij (p) is the one-loop kernel

�ij (p) =
∫

d3k

(2π )3
tr[γiG0(p + k)γjG0(k)]

= εijp0

∫
d3k

(2π )3

m
(
k2

0 − (
k2

1 + k2
2

)2 − m2 − iε
)2

+ δij

∫
d3k

(2π )3

m2 − k2
0(

k2
0 − (

k2
1 + k2

2

)2 − m2 − iε
)2

+O(p2). (B2)

The first term is odd in the frequency p0 and contributes to
the Berry phase term. The second term, which is even in the
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frequency p0, contributes to the mass term of the nematic
order parameter field and thus contains the information of the

critical coupling constant for the quantum phase transition to
the nematic phase.

APPENDIX C: SHORT PROOF ON GAUGE INVARIANCE OF THE POLARIZATION TENSOR

To verify the gauge invariance of the effective field theory, we sketch here a proof on the gauge invariance of the polarization
tensor. For the one-loop gauge field self-energy diagrams shown in Figs. 1(a) and 1(b). For gauge invariance to hold, the
polarization tensor should obey the transversality (conservation) condition

�μνp
ν = 0. (C1)

Since the theory we start with is not Lorentz-invariant, the polarization tensor here decomposes into two parts, one of which,
called �(1)

μν , comes from the linear terms of the gauge field aμ of the Lagrangian, while �(2)
μν comes from the terms which are

quadratic in this gauge field,

�μν = �(1)
μν + �(2)

μν. (C2)

We already showed in Appendix A that the second piece vanishes, �(2)
μν = 0. Hence we only have to prove that

�(1)
μνp

ν = 0. (C3)

Explicitly, the left-hand side of this equation is equal to

�μνp
ν = tr

[∫
d3k

(2π )3
G0(p + k)Jμ(2k + p)G0(k)Jν(2k + p)pν

]
. (C4)

Using the following Ward identity (whose validity is elementary to check):

Jν(2k + p)pν = p0γ0 + (
p2

1 − p2
1 + 2p1k1 − 2p2k2

)
γ1 + 2(p1p2 + p1k2 + p2k1)γ2 = G−1

0 (p + k) − G−1
0 (k), (C5)

we can write Eq. (C4) in the form

�μνp
ν = = tr

{∫
d3k

(2π )3
G0(p + k)Jμ(2k + p)G0(k)

[
G−1

0 (p + k) − G−1
0 (k)

]}

= tr

[∫
d3k

(2π )3
G0(p + k)Jμ(2k + p)

]
− tr

[∫
d3k

(2π )3
G0(k)Jμ(2k + p)

]
. (C6)

For μ = 0, J0 = γ0, we find

tr

[∫
d3k

(2π )3
G0(p + k)γ0

]
− tr

[∫
d3k

(2π )3
G0(k)γ0

]
= 0, (C7)

and for μ = 1, we get

tr

[∫
d3k

(2π )3
G0(p + k)Jμ(2k + p)

]
− tr

[∫
d3k

(2π )3
G0(k)Jμ(2k + p)

]
= −tr

[∫
d3k

(2π )3
G0(p + k)(pxγ1 + pyγ2)

]

= −tr

[∫
d3k

(2π )3
G0(k)(pxγ1 + pyγ2)

]
= 0. (C8)

Similarly, for μ = 2, we also get

tr

[∫
d3k

(2π )3
G0(p + k)Jμ(2k + p)

]
− tr

[∫
d3k

(2π )3
G0(k)Jμ(2k + p)

]
= −tr

[∫
d3k

(2π )3
G0(p + k)(−pyγ1 + pxγ2)

]

= −tr

[∫
d3k

(2π )3
G0(k)(−pyγ1 + pxγ2)

]
= 0. (C9)

Thus the polarization tensor of the gauge field aμ, the one-loop diagram of Fig. 1(a), is transverse and, hence, the action of aμ is
gauge invariant.

We now turn to the gauge invariance of the coupling between the gauge field aμ and the nematic order parameter field M.
The lowest-order contribution to this coupling in the 1/N expansion is given by the Feynman diagrams shown in Figs. 2(a) and
2(b). These diagrams contribute to the effective action in the form

S[aμ,M] = N

3

∫
d3p

(2π )3
�μνi(p1,p2)aμ(−p1 − p2)aν(p1)Mi(p2). (C10)
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Invariance under a gauge transformation aμ + ∂μθ requires that this new polarization tensor, �μνi(p1,p2), should obey the
following rule:

�1
μν,i(p1,p2)pν

1aμ(−p1 − p2)Mi(p2) + �1
τσ,j (p1,p2)

( − pτ
1 − pτ

2

)
aσ (p1)Mj (p2)

+�2
αβ,k(p1,p2)

( − pα
1 − pα

2

)
Tαβaβ(p1)Mk(p2) + �2

αβ,k(p1,p2)pβ

1 Tαβaα(−p1 − p2)Mk(p2) = 0, (C11)

where �1
μν,i(p1,p2) is given by

�1
μν,i(p1,p2)pν

1 = tr

[∫
d3k

(2π )3
G0(k − p2)JμG0(k + p1)JνpνG0(k)γi

]

= tr

{∫
d3k

(2π )3
G0(k − p2)JμG0(k + p1)

[
G−1

0 (k + p1) − G−1
0 (k)

]
G0(k)γi

}

= tr

[∫
d3k

(2π )3
G0(k − p2)JμG0(k)γi

]
− tr

[∫
d3k

(2π )3
G0(k − p2)JμG0(k + p1)γi

]
. (C12)

For μ = 0, J0 = γ0, we get

�1
μν,i(p1,p2)pν

1 = tr

[∫
d3k

(2π )3
G0(k − p2)γ0G0(k)γi

]
− tr

[∫
d3k

(2π )3
G0(k − p2)γ0G0(k + p1)γi

]

= tr

[∫
d3k

(2π )3
G0(k − p2)γ0G0(k)γi

]
− tr

[∫
d3k

(2π )3
G0(k − p2)γ0G0(k + p1)γi

]

= tr

[∫
d3k

(2π )3
G0(k − p2)γ0G0(k)γi

]
− tr

[∫
d3k

(2π )3
G0(k − p2 − p1)γ0G0(k)γi

]
. (C13)

Likewise, for σ = 0, J0 = γ0, we obtain

�1
τσ,j (p1,p2)

( − pτ
1 − pτ

2

) = tr

[∫
d3k

(2π )3
G0(k − p2)JτpτG0(k + p1)JσG0(k)γj

]

= tr

{∫
d3k

(2π )3
G0(k − p2)

[
G−1

0 (k − p2) − G−1
0 (k + p1)

]
G0(k + p1)JσG0(k)γj

}

= tr

[∫
d3k

(2π )3
G0(k + p1)JνG0(k)γj

]
− tr

[∫
d3k

(2π )3
G0(k − p2)JσG0(k)γj

]
. (C14)

Hence

�1
τσ,j (p1,p2)

( − pτ
1 − pτ

2

) = tr

[∫
d3k

(2π )3
G0(k + p1)γ0G0(k)γj

]
− tr

[∫
d3k

(2π )3
G0(k − p2)γ0G0(k)γj

]
. (C15)

It is easy to check that for each ν = τ , μ = σ = 0,

�1
μν,i(p1,p2)pν

1aμ(−p1 − p2)Mi(p2) = −�1
τσ,j (p1,p2)

( − pτ
1 − pτ

2

)
aσ (p1)Mj (p2). (C16)

For μ = 1, we get

�1
μν,i(p1,p2)pν

1 = tr

[∫
d3k

(2π )3
G0(k − p2)J1(2k − p2 + p1)G0(k)γi

]

− tr

[∫
d3k

(2π )3
G0(k − p2)J1(2k − p2 + p1)G0(k + p1)γi

]

= tr

[∫
d3k

(2π )3
G0(k − p2)J1(2k − p2 + p1)G0(k)γi

]

− tr

[∫
d3k

(2π )3
G0(k − p2 − p1)J1(2k − p2 − p1)G0(k)γi

]

= tr

[∫
d3k

(2π )3
G0(k − p2)J1(2k − p2)G0(k)γi

]
+ tr

[∫
d3k

(2π )3
G0(k − p2)J1(p1)G0(k)γi

]

− tr

[∫
d3k

(2π )3
G0(k − p2 − p1)J1(2k − p2 − p1)G0(k)γi

]
(C17)
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and for σ = 1,

�1
τσ,j (p1,p2)

( − pτ
1 − pτ

2

) = tr

[∫
d3k

(2π )3
G0(k + p1)J1(2k + p1)G0(k)γj

]
− tr

[∫
d3k

(2π )3
G0(k − p2)J1(2k + p1)G0(k)γj

]

= tr

[∫
d3k

(2π )3
G0(k + p1)J1(2k + p1)G0(k)γj

]

− tr

[∫
d3k

(2π )3
G0(k − p2)J1(2k − p2 + p2 + p1)G0(k)γj

]

= tr

[∫
d3k

(2π )3
G0(k + p1)J1(2k + p1)G0(k)γj

]
− tr

[∫
d3k

(2π )3
G0(k − p2)J1(2k − p2)G0(k)γj

]

+ tr

[∫
d3k

(2π )3
G0(k − p2)J1(−p2 − p1)G0(k)γj

]
. (C18)

After some algebra, it could be checked that the rest of the terms after a gauge transformation are

�1
1ν,i(p1,p2)pν

1a1(−p1 − p2)Mi(p2) + �1
τ1,i(p1,p2)

( − pτ
1 − pτ

2

)
a1(p1)Mi(p2)

= 2 tr

[∫
d3k

(2π )3
G0(k − p2)J1(−p2 − p1)G0(k)γi

]
a1(p1)Mi(p2). (C19)

This contribution is canceled by the “tadpole+nematic” diagram of Fig. 2(b). Indeed, up to a gauge transformation, the extra
terms generated in this diagram are

�2
α1,k(p1,p2)

( − pα
1 − pα

2

)
Tα1a1(p1)Mk(p2) + �2

1β,k(p1,p2)pβ

1 T1βa1(−p1 − p2)Mk(p2)

= −2 tr

[∫
d3k

(2π )3
G0(k − p)(γ1p

′
x + γ2p

′
y)G0(k)γk

]
a1(−p − p′)Mk(p)

= −2 tr

[∫
d3k

(2π )3
G0(k − p)J1(p′)G0(k)γk

]
a1(−p − p′)Mk(p), (C20)

which exactly cancels the offending terms.
In the case of the three-legged diagram, which defines the tensor �1

2ν,i(p1,p2), we also obtain the same condition for
μ = σ = 2. The remaining terms, after a gauge transformation, are

�1
2ν,i(p1,p2)pν

1a2(−p1 − p2)Mi(p2) + �1
τ2,i(p1,p2)

( − pτ
1 − pτ

2

)
a2(p1)Mi(p2)

= 2 tr

[∫
d3k

(2π )3
G0(k − p2)J2(−p2 − p1)G0(k)γi

]
a2(p1)Mi(p2). (C21)

This contribution is canceled by the extra terms in the tadpole+nematic diagram, Fig. 2(b), after the gauge transformation

−2 tr

[∫
d3k

(2π )3
G0(k − p)(γ2p

′
x − γ1p

′
y)G0(k)γk

]
a2(p′)Mk(p)

= −2 tr

[∫
d3k

(2π )3
G0(k − p)J2(p′)G0(k)γk

]
a2(−p − p′)Mk(p). (C22)

So the polarization tensor is transverse and the action is gauge-invariant (as it should be).
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12J. Fröhlich and T. Kerler, Nucl. Phys. B 354, 369 (1991).

235124-18

http://dx.doi.org/10.1103/PhysRevLett.45.494
http://dx.doi.org/10.1103/PhysRevLett.45.494
http://dx.doi.org/10.1103/PhysRevLett.45.494
http://dx.doi.org/10.1103/PhysRevLett.45.494
http://dx.doi.org/10.1103/PhysRevLett.48.1559
http://dx.doi.org/10.1103/PhysRevLett.48.1559
http://dx.doi.org/10.1103/PhysRevLett.48.1559
http://dx.doi.org/10.1103/PhysRevLett.48.1559
http://dx.doi.org/10.1103/PhysRevB.23.5632
http://dx.doi.org/10.1103/PhysRevB.23.5632
http://dx.doi.org/10.1103/PhysRevB.23.5632
http://dx.doi.org/10.1103/PhysRevB.23.5632
http://dx.doi.org/10.1103/PhysRevLett.49.405
http://dx.doi.org/10.1103/PhysRevLett.49.405
http://dx.doi.org/10.1103/PhysRevLett.49.405
http://dx.doi.org/10.1103/PhysRevLett.49.405
http://dx.doi.org/10.1103/PhysRevB.31.3372
http://dx.doi.org/10.1103/PhysRevB.31.3372
http://dx.doi.org/10.1103/PhysRevB.31.3372
http://dx.doi.org/10.1103/PhysRevB.31.3372
http://dx.doi.org/10.1103/PhysRevLett.50.1395
http://dx.doi.org/10.1103/PhysRevLett.50.1395
http://dx.doi.org/10.1103/PhysRevLett.50.1395
http://dx.doi.org/10.1103/PhysRevLett.50.1395
http://dx.doi.org/10.1103/PhysRevLett.51.605
http://dx.doi.org/10.1103/PhysRevLett.51.605
http://dx.doi.org/10.1103/PhysRevLett.51.605
http://dx.doi.org/10.1103/PhysRevLett.51.605
http://dx.doi.org/10.1103/PhysRevLett.52.1583
http://dx.doi.org/10.1103/PhysRevLett.52.1583
http://dx.doi.org/10.1103/PhysRevLett.52.1583
http://dx.doi.org/10.1103/PhysRevLett.52.1583
http://dx.doi.org/10.1103/PhysRevB.41.9377
http://dx.doi.org/10.1103/PhysRevB.41.9377
http://dx.doi.org/10.1103/PhysRevB.41.9377
http://dx.doi.org/10.1103/PhysRevB.41.9377
http://dx.doi.org/10.1103/PhysRevLett.62.82
http://dx.doi.org/10.1103/PhysRevLett.62.82
http://dx.doi.org/10.1103/PhysRevLett.62.82
http://dx.doi.org/10.1103/PhysRevLett.62.82
http://dx.doi.org/10.1103/PhysRevB.44.5246
http://dx.doi.org/10.1103/PhysRevB.44.5246
http://dx.doi.org/10.1103/PhysRevB.44.5246
http://dx.doi.org/10.1103/PhysRevB.44.5246
http://dx.doi.org/10.1016/0550-3213(91)90360-A
http://dx.doi.org/10.1016/0550-3213(91)90360-A
http://dx.doi.org/10.1016/0550-3213(91)90360-A
http://dx.doi.org/10.1016/0550-3213(91)90360-A


FIELD THEORY OF NEMATICITY IN THE SPONTANEOUS . . . PHYSICAL REVIEW B 88, 235124 (2013)

13X.-G. Wen and A. Zee, Phys. Rev. B 46, 2290 (1992).
14X. G. Wen, Adv. Phys. 44, 405 (1995).
15H. C. Jiang, H. Yao, and L. Balents, Phys. Rev. B 86, 024424

(2012).
16D. S. Rokhsar and S. A. Kivelson, Phys. Rev. Lett. 61, 2376

(1988).
17R. Moessner and S. L. Sondhi, Phys. Rev. Lett. 86, 1881 (2001).
18B. A. Bernevig, T. L. Hughes, and S. C. Zhang, Science 314, 1757

(2006).
19M. König, S. Steffen, C. Brüne, A. Roth, H. Buhmann, L. W.

Molenkamp, X. L. Qi, and S. C. Zhang, Science 318, 766 (2007).
20L. Fu, C. L. Kane, and E. J. Mele, Phys. Rev. Lett. 98, 106803

(2007).
21M. Z. Hasan and C. L. Kane, Rev. Mod. Phys. 82, 3045 (2010).
22M. Z. Hasan and J. E. Moore, Annu. Rev. Condens. Matter Phys. 2,

55 (2011).
23F. D. M. Haldane, Phys. Rev. Lett. 61, 2015 (1988).
24T. Neupert, L. Santos, C. Chamon, and C. Mudry, Phys. Rev. Lett.

106, 236804 (2011).
25D. N. Sheng, Z. C. Gu, K. Sun, and L. Sheng, Nat. Commun. 2, 389

(2011).
26N. Regnault and B. A. Bernevig, Phys. Rev. X 1, 021014 (2011).
27L. Cincio and G. Vidal, Phys. Rev. Lett. 110, 067208 (2013).
28S. L. Sondhi, A. Karlhede, S. A. Kivelson, and E. H. Rezayi, Phys.

Rev. B 47, 16419 (1993).
29T.-L. Ho, Phys. Rev. Lett. 73, 874 (1994).
30Y. P. Shkolnikov, S. Misra, N. C. Bishop, E. P. De Poortere, and

M. Shayegan, Phys. Rev. Lett. 95, 066809 (2005).
31D. A. Abanin, S. A. Parameswaran, S. A. Kivelson, and S. L. Sondhi,

Phys. Rev. B 82, 035428 (2010).
32M. P. Lilly, K. B. Cooper, J. P. Eisenstein, L. N. Pfeiffer, and K. W.

West, Phys. Rev. Lett. 82, 394 (1999).
33W. Pan, R. R. Du, H. L. Stormer, D. C. Tsui, L. N. Pfeiffer, K. W.

Baldwin, and K. W. West, Phys. Rev. Lett. 83, 820 (1999).
34K. B. Cooper, M. P. Lilly, J. P. Eisenstein, L. N. Pfeiffer, and K. W.

West, Phys. Rev. B 65, 241313 (2002).
35E. Fradkin and S. A. Kivelson, Phys. Rev. B 59, 8065 (1999).
36E. Fradkin, S. A. Kivelson, E. Manousakis, and K. Nho, Phys. Rev.

Lett. 84, 1982 (2000).
37J. Xia, V. Cvicek, J. P. Eisenstein, L. N. Pfeiffer, and K. W. West,

Phys. Rev. Lett. 105, 176807 (2010).
38J. Xia, J. P. Eisenstein, L. N. Pfeiffer, and K. W. West, Nat. Phys.

7, 845 (2011).
39M. Mulligan, C. Nayak, and S. Kachru, Phys. Rev. B 82, 085102

(2010).
40M. Mulligan, C. Nayak, and S. Kachru, Phys. Rev. B 84, 195124

(2011).
41L. Balents, Europhys. Lett. 33, 291 (1996).
42K. Musaelian and R. Joynt, J. Phys.: Condens. Matter 8, L105

(1996).
43F. D. M. Haldane, Phys. Rev. Lett. 107, 116801 (2011).
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