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Dimensional crossover in layered f -electron superlattices
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Motivated by the remarkable experimental realizations of f -electron superlattices, e.g., CeIn3/LaIn3 and
CeCoIn5/YbCoIn5 superlattices, we analyze the formation of heavy electrons in layered f -electron superlattices
by means of the dynamical mean field theory. We show that the spectral function exhibits formation of heavy
electrons in the entire system below a temperature scale T0. However, in terms of transport, two different
coherence temperatures Tx and Tz are identified in the in-plane and the out-of-plane resistivity, respectively.
Remarkably, we find Tz < Tx ∼ T0 due to scatterings between different reduced Brillouin zones. The existence
of these two distinct energy scales implies a crossover in the dimensionality of the heavy electrons between
two and three dimensions as temperature or layer geometry is tuned. This dimensional crossover would be
responsible for the characteristic behaviors in the magnetic and superconducting properties observed in the
experiments.
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I. INTRODUCTION

Dimensionality plays a crucial role in condensed matter
physics, especially in systems with strong interactions. In most
systems the dimensionality is determined by the structure of
the material and cannot be changed. However, in order to
study the effects of dimensionality, it would be desirable to
control it. Layered structures provide such an opportunity and
make it possible to observe effects of reduced dimensionality
and crossover behavior between two and three dimensions.
In particular, recent successful fabrications of the layered
superlattices of CeIn3/LaIn3

1 and CeCoIn5/YbCoIn5
2,3 have

opened new possibilities for investigating such phenomena
in f -electron systems. In these systems, the f electrons are
present only in the Ce layers, which are two-dimensional (2D).
However, if the f electrons are coupled through the conduction
electrons of La or Yb layers, the f electrons effectively become
three-dimensional (3D).

This question is also relevant for possible long range order
of the f electrons. In the CeIn3(n)/LaIn3(4) superlattice,1 it
was reported that, when the Ce layer thickness n is reduced to
n = 2, the Néel temperature TN is decreased to zero and the
resistivity ρxx shows linear temperature dependence ρxx ∼ T .
This non-Fermi-liquid like behavior, which is also found in
cuprates with 2D character, is in contrast to the Fermi-liquid
like behavior, ρxx ∼ T 2, found for large n. This suggests that
the Ce layers are coupled and exhibit 3D antiferromagnetism
(AF) when n is large, while the coupling between the Ce
layers is suppressed for smaller n and the Ce layers retain 2D
character.

Furthermore, superconductivity (SC) is reported for the
CeCoIn5(n)/YbCoIn5(5) superlattice.2,3 For CeCoIn5(n)-layer
thickness n � 3, clear SC transitions are found. In particular,
for n = 5, the field angle dependence of the upper critical field
Hc2 slightly below the transition temperature can be well fitted
by the 3D anisotropic mass model. In contrast, for n = 3, the
3D anisotropic mass model can no longer explain Hc2, and Hc2

is well fitted by the Tinkham model for thin superconductors,
in which the thickness of the system is smaller than the z-axis
SC coherence length.4 This implies that the superconducting

Ce layers are coupled to form a 3D superconductor when n is
large, while the coupling is suppressed for smaller n so that
the Ce layers remain 2D superconductors.

Magnetism and SC in these layered f -electron superlattices
discussed above are interesting problems, many aspects of
which are still open. At the same time, these experimental
results raise an even more fundamental question of the dimen-
sionality of the heavy electron states due to the f electrons,
even in the absence of any order. Theoretical approaches to
this problem so far have been based on an implicit assumption
that the f electrons, separated by the spacer layers, are
almost decoupled, which results in essentially 2D heavy
electron states.5,6 However, whether the heavy electrons in
the superlattice are actually 2D or not is a nontrivial issue.
Understanding this issue would also be essential in tackling
questions about magnetism and SC.

In this paper, we study the formation of the heavy electrons
through the Kondo effect and their properties in layered
f -electron superlattices. We clarify the dimensionality of the
heavy electrons in the superlattice and discuss qualitatively the
experimental observations of the AF properties in CeIn3/LaIn3

and the anomalous Hc2 in CeCoIn5/YbCoIn5 based on dimen-
sional crossover.

II. MODEL

In order to capture the essential points of layered f -electron
superlattices, we use a model which describes a system with
two kinds of layers. One kind of layers includes both c and f

electrons (corresponding to Ce layers), and the other kind of
layers includes only c electrons (corresponding to La or Yb
layers). We call the former type of layers “A layers,” and the
latter type of spacer layers “B layers.” It is noted that the density
of states around the Fermi energy in a CeCoIn5/YbCoIn5

superlattice is almost completely determined by the electrons
on the Ce sites and the Yb sites,2 which validates our model
for the superlattices. The numbers of A layers and B layers
within the unit cell are given by LA and LB , respectively, and
L ≡ LA + LB is the thickness of the unit cell. Each layer is
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represented by a square lattice. The Hamiltonian, which is a
variant of the periodic Anderson model (PAM), reads

H = − tc
∑
izjz′σ

c
†
izσ cjz′σ − tf

∑
izjz′∈A,σ

f
†
izσ fjz′σ

+ V
∑

iz∈A,σ

[c†izσ fizσ + f
†
izσ cizσ ]

+ U
∑
iz∈A

[
n

f

iz↑ − 1/2
][

n
f

iz↓ − 1/2
]
, (1)

where i,j = (x,y) correspond to in-plane sites, z is the layer
index, and σ is the spin index. Hopping is only allowed
between nearest neighbor sites. We set the chemical potentials
such that the particle-hole symmetry is conserved. Because
tf < V < tc is satisfied for the bare parameters in many
f -electron systems, we fix them as tf = 0.2, V = 0.4 as a
typical set of values, taking tc = 1 as the energy unit. We
also fix U = 2.4 = 15V 2/tc, which leads to a renormalized
hopping t∗f = tf /[1 − ∂�ff (0)/∂ω] ∼ 0.03 − 0.04tc in 3D
PAM. For these parameters, the resistivities show pronounced
peaks when the temperature is changed, as observed in the
experiments for bulk CeIn3 and CeCoIn5. The qualitative
physics described in this paper is unchanged for different
parameters as long as tf < V < tc and U is large enough.
Note that, due to nonzero tf , the system is metallic even
at half filling. We emphasize that our model is based on a
standard model for f -electron systems, PAM, and fully incor-
porates the superlattice structure. In this respect, the present
model is a minimal microscopic Hamiltonian for f -electron
superlattices, including both essential ingredients. Because the
materials used for different layers in the experimental setup
are charge neutral, we do not consider any effects of charge
redistribution in this study.

For our Hamiltonian, we have imposed periodic boundary
conditions in all directions, so that we can perform Fourier
transformation. The Fourier transformation is given by

cjzσ =
∑
k‖kzl

Uc
j z̃1 z̃2,k‖kzl

ck‖kzlσ , (2)

fjzσ =
∑
k‖kzl

U
f

jz̃1 z̃2,k‖kzl
fk‖kzlσ , (3)

where the unitary matrices Uc and Uf are defined as

Uc
jz̃1 z̃2,k‖kzl

= eik‖Rj‖√
N‖

eikzz+iqc
l z̃2

√
Nz

, (4)

U
f

jz̃1 z̃2,k‖kzl
= eik‖Rj‖√

N‖

eikzz+iq
f

l z̃2

√
NzLA/L

. (5)

Here k‖ = (kx,ky) and Rj‖ = (xj ,yj ). The layer index z is
parametrized as z = Lz̃1 + z̃2 with 0 � z̃2 < L for Uc and
0 � z̃2 < LA for Uf . The “orbital” index l is 0 � l < L(LA)
for Uc(Uf ), and qc

l = 2πl/L,q
f

l = 2πl/LA. The momentum
along the z axis is defined in the reduced Brillouin zone
(RBZ), 0 � kz < 2π/L. N‖ is the total number of the sites
within a layer and Nz is the total number of the layers.
The total number of sites is N = N‖Nz. We note that the

orbital index l arises from the superlattice structure through the
Fourier transformation. Roughly speaking, it specifies where
the momentum Kz = kz + qc

l is located in the unfolded RBZ
[0,2π ) = ∪L

l=1[2π (l − 1)/L,2πl/L). We note that only kz is
conserved while Kz is generally not conserved. In the new
basis, the Hamiltonian becomes

H =
∑
kσ

∑
aa′,ll′

A
a†
klσHaa′

ll′ (k)Aa′
kl′σ

+ U

2NLA/L

∑
{ki ,li }σ

f
†
k1l1σ

fk2l2σ f
†
k3l3σ̄

fk4l4σ̄

× δk1+k3,k2+k4δl1+l3,l2+l4 , (6)

where Aa=c = c, Aa=f = f , and k = (k‖,kz). The elements
of the Hamiltonian are

Hcc
ll′ = −2tc

[
cos kx + cos ky + cos

(
kz + qc

l

)]
δll′

(0 � l,l′ < L), (7)

H
ff

ll′ = −2tf [cos kx + cos ky]δll′

− tf S
ff

ll′
[
e−i(kz+q

f

l ) + ei(kz+q
f

l′ )
]

(0 � l,l′ < LA),

(8)

H
cf

ll′ = V S
cf

ll′ (0 � l < L,0 � l′ < LA), (9)

H
f c

ll′ = H
cf ∗
l′l , (10)

where

S
ff

ll′ = 1

LA

z0∑
z=0

e−i(qf

l −q
f

l′ )z, (11)

S
cf

ll′ = 1√
LLA

LA−1∑
z=0

e−i(qc
l −q

f

l′ )z, (12)

with z0 = LA − 2 for LB �= 0 and z0 = LA − 1 for LB = 0.
We note that none of the elements of H

cf,f c

ll′ vanishes, and
therefore all the c electrons are coupled to the f electrons
as long as V �= 0. This suggests that all states on the Fermi
surface at very low temperature should be composite states of
the c electrons and the f electrons.

The Green’s functions in this basis are given by

Gaa′
ll′ (iωn,k) = −

∫ 1/T

0
dτ

〈
TτA

a
klσ (τ )Aa′†

kl′σ (0)
〉
eiωnτ . (13)

We note that off-diagonal elements Gll′ (l �= l′) do not vanish
and that these “interorbital” elements include scattering
processes between different RBZs. This point is essentially
important for understanding the anisotropic behavior in the
resistivity, as will be discussed in the next section.

Correlation effects are taken into account by means of
the inhomogeneous dynamical mean field theory (DMFT)7–11

combined with the numerical renormalization group (NRG)
as an impurity solver.12–16 Although the self-energy � is site-
diagonal, � differs for each A layer �izjz′ (ω) = �z(ω)δij δzz′

in this approximation. Because DMFT + NRG appropriately
takes local correlations into account, the formation of heavy
electrons through the Kondo effect is well described by this
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method. The self-consistent equation reads

Gz(ω) =
⎡
⎣ 1

N‖

∑
k‖

Gzz(ω,k‖)

⎤
⎦

−1

+ �z(ω), (14)

where G and G are the cavity Green’s function and the lattice
Green’s function, respectively. The lattice Green’s function
Gzz′ (ω,k‖) is obtained by the inverse Fourier transformation
with respect to kz,l from Gll′ (ω,k).

III. CALCULATION RESULTS

As was discussed in the previous sections, dimensionality
of a superlattice in the paramagnetic normal states is a
fundamental property and is a key for understanding the
experiments. In this section, we discuss the dimensionality
of the system based on our numerical results within the
DMFT calculations. In order to clarify the dimensionality, we
investigate two measures of dimensionality: band structures of
the system and resistivities in different directions.

We start our discussion by analyzing the spectral function

A(ω,k) = − 1

π
tr[ImGR(ω,k)], (15)

where k = (kx,ky,kz) with 0 � kx,y < 2π and 0 � kz <

2π/L, and GR is the retarded Green’s function. Here, we
focus on a (LA,LB) = (2,5) superlattice which is exemplary
for f -electron superlattices. First, we discuss the shape of
the Fermi surface in the superlattice by looking at A(ω,k) for
ω = 0. In Fig. 1, we show contour plots of A(ω = 0,k) for
(LA,LB) = (2,5) at sufficiently low temperature T = 0.0015.
This temperature is much lower than the coherence
temperature so that heavy quasiparticles are well formed in
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FIG. 1. (Color online) The spectral function A(ω = 0,k) for
(LA,LB ) = (2,5) at (a) kz = 0, (b) kz = π/2L, (c) ky = 0, and
(d) ky = π/2. Temperature is T = 0.0015. Violet corresponds to
high-intensity regions and black corresponds to low-intensity regions.
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FIG. 2. (Color online) The Fermi surface with U = 0, V = 0
for (a) c electrons at Kz = qc

1 + kz = π/2 = 2π/7 + 3π/14, (b) f

electrons, (c) c electrons at ky = π/2, and (d) f electrons at ky = π/2.
The Fermi surfaces in (a) and (c) are the same. Violet corresponds to
high-intensity regions and black corresponds to low-intensity regions.

these figures, as will be discussed later. Violet corresponds to
high-intensity regions and black corresponds to low-intensity
regions. One can compare the Fermi surface in Fig. 1 with
the Fermi surface for V = 0,U = 0 in Fig. 2 where the
c-electron Fermi surface is isotropic and the f electrons have
a two-dimensional Fermi surface. Compared to the Fermi
surface for V = 0, U = 0, the Fermi surface in the superlattice
is strongly anisotropic. However, we can clearly see that the
Fermi surface in the kxkz plane has finite curvatures in Fig. 1.
Therefore, we can state that low-energy quasiparticles in the
superlattice have finite velocity in the z direction.

Indeed, finite curvatures along the z direction are seen
in the dispersions of the superlattice. Before discussing the
dispersions along the z direction, we show contour plots
of A(ω,k) along the x direction for several temperatures
at (ky,kz) = (0,π/2L) for (LA,LB) = (2,5) in Fig. 3, as an
example. In the present study, a part of a band is called a
heavy electron band if its broadening is small enough at low
temperatures while it is strongly smeared at high temperatures.
At T = 0.02, there are no distinguishable heavy electron
bands around the Fermi energy ω = 0. On the other hand,
for T = 0.0015, which is sufficiently lower than the crossover
temperature T0 ∼ 0.01–0.015, the heavy electron bands are
well formed around ω = 0. Note that all the bands especially
around ω ∼ 0 are altered when the temperature is changed in
Fig. 3, which means that the heavy electrons are present in
all bands at low temperatures. Next, in Fig. 4, we show the
spectral function along the z direction at (kx,ky) = (0.55π,0)
with the same parameters as in Fig. 3. The formation of the
heavy electron bands is again observed around T ∼ 0.01.
In order to distinguish the correlation effects in the spectral
function, dispersions for the noninteracting case, U = 0, are
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FIG. 3. (Color online) The spectral function A(ω,k) at (ky,kz) =
(0,π/2L) for several temperatures when (LA,LB ) = (2,5). Tempera-
tures for (a), (b), (c), and (d) are T = 0.02, 0.015, 0.01, and 0.0015,
respectively. Violet corresponds to high-intensity regions and black
corresponds to low-intensity regions.

also shown in Fig. 5 using the same parameters as in Figs. 3 and
4. Interestingly, the correlation effects largely depend on the
bands. For example, in Fig. 3(d), the outermost band at kx =
0 ∼ π/2 is strongly renormalized and broadened compared
to other bands. Similarly, in Fig. 4(d), the nearly flat band
around ω ∼ −0.05 has weaker intensity than those of other
bands around |ω| ∼ 0.05. In the present superlattice structure,
(LA,LB) = (2,5), although there is only one kind of the local
selfenergy �z=Lz̃1 = �z=Lz̃1+1, such band dependence in the
spectral function can indeed arise due to the superlattice
structure.

As already mentioned above, the heavy electron bands have
finite curvature along the z direction. The width of the heavy
electron bands along the z direction in Fig. 4 is not negligibly
small compared to that along the x direction in Fig. 3. This
is the typical behavior for general (kx,ky) around the Fermi
surface. If the c electrons in the B layers do not participate
in the formation of the heavy electrons, heavy bands with
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FIG. 4. (Color online) The spectral function A(ω,k) at (kx,ky) =
(0.55π,0) for several temperatures when (LA,LB ) = (2,5). Temper-
atures for (a), (b), (c), and (d) are T = 0.02, 0.015, 0.01, and 0.0015,
respectively.
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FIG. 5. (Color online) The spectral function A(ω,k) for U = 0
(a) at (ky,kz) = (0,π/2) and (b) at (kx,ky) = (0.55π,0) for
(LA,LB ) = (2,5).

such a large curvature for the z direction cannot be observed.
Indeed, the large curvature in the heavy bands is mainly due to
the c-electron hopping which connects separated A layers.
Therefore, the heavy electrons are present with significant
weight even in the B layers, and the corresponding heavy
electron wave functions are extended over the entire system.17

This is in strong contrast to the implicit assumption in the
previous studies3,6 that the heavy electrons exist only in
the Ce layers. We emphasize that the heavy electron bands
become observable at the same temperature T0 both for the
x direction and the z direction, which means that there is
no distinguishable 2D-3D crossover in the dispersion. In
our system, it is expected that any small V > 0 makes the
f electrons three-dimensional at T  T0 (T0 depends on
V ), while they cannot coherently move in any direction at
T � T0. In this sense, looking only at the dispersions, there
is no two-dimensional temperature region in our system with
(LA,LB) = (2,5). For other superlattice structures (LA,LB) =
(4,1), (3,1), (2,1), (2,2), and (2,3) analyzed in the present
study, the dispersions are qualitatively the same as that for
(LA,LB) = (2,5), although effect of the interaction becomes
smaller as a “f -electron layer density” LA/L is decreased.

However, the formation of the heavy electrons does not
directly imply metallic character of the system, which is exper-
imentally defined through transport properties. Theoretically,
this is because the former is a one-particle property while the
latter is related to two-particle correlations. We thus investigate
the resistivity along the x and z directions to clarify the metallic
character of the superlattice, which is a direct measure of the
dimensionality of the electron motions.

We calculate the resistivity using the Kubo formula. The
conductivity in arbitrary units is given by

σμμ = lim
ω→0

1

iω

[
KR

μμ(ω) − KR
μμ(0)

]
, (16)

Kμμ(iωn) =
∫ 1/T

0
dτ 〈TτJμ(τ )Jμ(0)〉eiωnτ , (17)

Jμ =
∑
kσ

∑
aa′ll′

A
a†
klσ vaa′

ll′ (k)Aa′
kl′σ , (18)

vaa′
ll′,μ(k) = ∂Haa′

ll′ (k)

∂kμ

. (19)

The resistivity is simply calculated by ρμμ = 1/σμμ. In the
present study, we neglect the vertex corrections in Kμμ because
it is known that effects of the vertex corrections on the
resistivity are small.18,19 Under this approximation, Kμμ is
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FIG. 6. (Color online) Temperature dependence of the resistivity
for the x direction, ρxx (left panel), and the z direction, ρzz (right
panel). The numbers (LA,LB ) in the figure denote corresponding
layer configurations. For a comparison, the resistivities for the 3D
PAM (LA,LB ) = (1,0) are also shown with red curves.

evaluated as

Kμμ(iωn) = − T

N

∑
aa′=c,f

∑
εmk,{li }

vaa
l1l2μ

va′a′
l3l4μ

Ga′a
l3l2

(iεm,k)

× Gaa′
l1l4

(iεm + iωn,k). (20)

After an analytic continuation, we have three terms propor-
tional to GRGR , GAGA, and GAGR , by using the retarded
(advanced) Green’s functions GR(A).18 Since it is seen that
the GR(A)GR(A) terms are much smaller than the GAGR term
in the present study, we safely neglect them in the numerical
calculations.

In Fig. 6, we show calculation results of the resistivities
in the x direction, ρxx , and in the z direction, ρzz. For a
comparison, the resistivities for the bulk 3D PAM (LA,LB) =
(1,0) are also shown as red curves. The numbers in the
figure (LA,LB) represent layer configurations. Similar to the
3D PAM, the resistivities in the superlattice exhibit peak
structures at the coherence temperatures below which the
electron motions become coherent. For decreasing f -electron
layer density LA/L, the peak height of the in-plane resistivity
ρxx is suppressed and its positions Tx are shifted to lower
temperatures compared with those of the bulk 3D PAM, which
would be consistent with the experiments.1,2 In the limit
LA/L  1, the conductivity becomes dominated by the c

electrons and effects of the interaction between the f electrons
get masked. The qualitative agreement with the experiments
supports that our model calculations capture the essential
physics of f -electron superlattices. If the superlattice is
regarded as a junction of a light metal and a heavy metal
with largely different Fermi velocities, as in the previous
study,6 the in-plane resistivity is supposed to be determined
only by the light metal region resulting in a monotonic
temperature dependence,20 which is in strong contrast to the
experiments.1,2 Qualitatively similar LA/L dependence of the
peak positions Tz is also seen in the z-axis resistivity ρzz.
However, quantitatively, ρzz much more strongly depends on
LA/L. Furthermore, the coherence temperature for the z axis
is lower than that for the x axis in the superlattice, and the
difference between both coherence temperatures grows as
LA/L is reduced.

The difference between Tx and Tz can be explained,
once the conductivity is divided into “intraorbital” and
“interorbital” contributions, σμμ = σμμ,intra + σμμ,inter. The
former is defined by restricting l1 = l2 = l3 = l4 in Eq. (20),
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FIG. 7. (Color online) Temperature dependence of the x-axis
conductivity (left panel) and z-axis conductivity (right panel) for
(LA,LB ) = (2,5).

and the latter is defined by a sum of all other terms. If we define
constituent currents by jμ,ll′ ≡ ∑

kσ

∑
aa′ A

a†
klσ vaa′

ll′,μAa′
kl′ , the

separate contributions can be expressed in a simplified notation
as σintra ∼ ∑

l〈jlljll〉 and σinter ∼ ∑′
l1,l2,l3,l4

〈jl1l2jl3l4〉, where∑′
l1,l2,l3,l4

is defined as a summation over l1 ∼ l4 except for l1 =
l2 = l3 = l4. The two contributions describe different transport
processes, and each of them alone is not an observable. We note
that σintra must be non-negative, since it is written by a sum of
correlation functions of the constituent currents jll with itself.
On the other hand, σinter does not need to be non-negative, since
it is not written only by self-correlations of the constituent
currents and it includes other terms like 〈j11j23〉.

Figure 7 shows σμμ, σμμ,intra, and σμμ,inter for μ = x,z

when (LA,LB) = (2,5) as an example. At high temperature
T > Tx , the conductivities are determined by the intraorbital
contributions. We note that σxx,intra and σzz,intra exhibit a
minimum at the same temperature scale Tx � T0, below which
the heavy electrons are well defined. On the other hand, at low
temperatures T < Tx , the interorbital contributions become
important. While σxx,inter is positive, σzz,inter is negative at low
temperatures, so that it strongly suppresses σzz for the present
parameters. The negative contribution to the total conductivity
means that the transport processes corresponding to σzz,inter

increase resistivity. Since σμμ,inter is mainly determined by
Gll′ (l �= l′), we conclude that the reduction of the z axis
conductivity is due to scattering between different RBZs.
Such transport processes give positive contributions to σxx ,
because the kz dependence is not important for the x-direction
transport. Namely, the heavy electrons are scattered by the
superlattice structures along the z axis resulting in the reduced
conductivity σzz, while such scattering does not affect the
in-plane conductivity σxx .

We now summarize the dependence of the coherence
temperatures Tx,z on the f -electron layer density LA/L in
Fig. 8. These temperatures correspond to the energy scales
for the coherent motion of the heavy electrons in different
(x and z) directions. From those, we can draw conclusions
about the dimensionality of the heavy electron motions.
The LA/L - T phase diagram has three distinct regions:
a high-temperature region (T > Tx), a 2D-like region
(Tz < T < Tx), and an anisotropic 3D-like region (T < Tz).
In the high-temperature region, the heavy electrons are not
well defined. On the other hand, when T < Tz, the system
is an anisotropic 3D Fermi-liquid metal and the heavy
electrons can move coherently in any direction. The most
remarkable region, however, is the 2D-like region where
coherence is only well developed in the xy plane, while for
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FIG. 8. (Color online) Coherence temperatures vs LA/L for
(LA,LB ) = (1,0), (4,1), (3,1), (2,1), (2,2), (2,3), and (2,5).

the z direction coherent movement is strongly suppressed. In
this region, the heavy electron motions are two-dimensional.
As the temperature is lowered for fixed LA/L, or LA/L

is reduced for fixed temperature, a crossover from two to
three dimensions in the behavior of the heavy electrons takes
place. In the limit LA/L → 0 the resistivities are completely
dominated by the c electrons and the peaks are smeared, which
suggests the system behaves nearly as a 3D free-electron
system and there is no longer a clear dimensional crossover.

We emphasize that the dimensional crossover is intrinsic
in the superlattice. This can be compared to layered systems
without superlattice structures. While σxx and σzz differ in
magnitude in such systems, their temperature dependence is
essentially the same, and Tx,Tz are supposed to coincide.21

This holds true if the momentum dependence of the self-energy
is weak, as in a case of formation of the canonical Fermi
liquid.22 Our results suggest that the superlattice structure
is important for observing the dimensional crossover. As
far as we know, the present study is the first demonstration
of dimensional crossover in f -electron systems. We have
revealed the nature of the heavy electrons, which is essential in
understanding many physical properties, in layered f -electron
superlattices. While most of the present analyses are directly
applicable only to the paramagnetic states, they serve as a basis
for understanding the intriguing experiments on the ordered
states.

IV. DISCUSSION AND SUMMARY

Finally, we give a qualitative discussion on the experiments,
based on the dimensional crossover as a possible explanation.
For this discussion, we have to keep in mind that Tx and Tz are
defined by the resistivities in the normal paramagnetic state,
and both of the c,f -electron contributions are important in
the transport while f -electron contributions would be crucial

in itinerant magnetism and superconductivity. However, the
dimensionality in the transport which is a direct measure of
the metallic character of the system could be closely related to
the z-axis coherence length of the experimentally observed
ordered states. When LA/L is small, magnetic coupling
between separated Ce layers is supposed to be suppressed.
This leads to low Néel temperatures, which is consistent
with the experiments in CeIn3/LaIn3.1 In such a case, spin
fluctuations can exhibit 2D character in some temperature
regions.23,24 Furthermore, the dimensionality of the heavy
electrons would also be relevant for Hc2 of the supercon-
ductivity in CeCoIn5/YbCoIn5 when the orbital depairing is
dominant. For small LA/L, 2D-like movement of the heavy
electrons would result in strong field-angle dependence of Hc2

around the zero-field transition temperature Tc0 as found in the
experiments.2,3 We point out that this is in sharp contrast to the
previously studied normal-metal-superconductor superlattices
such as Ni/Cu and V/Ag25–29 where the anomalous angle
dependence of Hc2 is seen for sufficiently lower temperatures
than Tc0. Although the present results and the experiments have
common tendencies concerning dimensionality and tempera-
ture dependence, the discussions of the experiments presented
here are merely qualitative. Itinerant magnetic properties and
superconducting properties cannot be described within the
DMFT + NRG which is used in the present study. Detailed
investigations of these properties are left for future studies.

In summary, we have investigated the f -electron layered
superlattice within DMFT + NRG. The heavy electrons are
formed in the entire system below T0 as seen in the spectral
function. However, we have identified in the resistivity two
distinct energy scales for the coherent motion of the heavy
electrons satisfying Tz < Tx � T0. The results of ρxx are
qualitatively consistent with the experiments, which supports
our model calculations. We find that the heavy electron
motions show a dimensional crossover between two- and three-
dimensional character. This dimensional crossover would
be responsible for the behaviors of the AF and SC in the
CeIn3/LaIn3 and CeCoIn5/YbCoIn5 superlattices. Our present
results thus build the basis for understanding the f -electron
superlattice and the related experiments.
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