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Phase transitions in three-dimensional topological lattice models with surface anyons
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We study the phase diagrams of a family of three-dimensional Walker-Wang–type lattice models, which are not
topologically ordered but have deconfined anyonic excitations confined to their surfaces. We add a perturbation
(analogous to that which drives the confining transition in Zp lattice gauge theories) to the Walker-Wang
Hamiltonians, driving a transition in which all or some of the variables associated with the loop-gas or string-net
ground states of these models become confined. We show that in many cases the location and nature of the phase
transitions involved is exactly that of a generalized Zp lattice gauge theory, and use this to deduce the basic
structure of the phase diagram. We further show that the relationship between the phases on opposite sides of the
transition is fundamentally different than in conventional gauge theories: in the Walker-Wang case, the number
of species of excitations that are deconfined in the bulk can increase across a transition that confines only some
of the species of loops or string nets. The analog of the confining transition in the Walker-Wang models can
therefore lead to bulk deconfinement and topological order.
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I. INTRODUCTION

Critical phenomena beyond the standard Landau-Ginzburg
paradigm have been an active area of interest in condensed
matter physics over the past decade. One area that has drawn
significant interest of late is the subject of transitions between
phases of different topological order.1–10

By definition, topological order can not be diagnosed by any
local order parameter.11 Typical hallmarks of this type of order
include a finite ground-state degeneracy that changes with the
topology of the manifold, topological entanglement entropy,12

and excitations with anyonic statistics. For phase transitions
that alter the topological order, there is no known analog
of the Landau-Ginzburg approach that correctly describes
the critical properties.13 However, in two dimensions (2D)
there are a number of examples where these transitions are
well understood.1,2,4–7,14–20 Here, we will extend this body
of work to investigate the phase diagram of a family of
three-dimensional (3D) models21 with interesting topological
properties.

In discussing the phase diagram of a topologically ordered
system, there are two elements of interest: the nature of the
phase transitions, and the topological orders of the phases
themselves. Early progress on the former front was made
in Refs. 22 and 23 where, amongst other things, it was
shown that the confining transition of Z2 gauge theory is
in the Ising universality class. (A body of later numerical
work has followed up on this result,1,24,25 confirming their
analytical description of the phase diagram.) Much later, Refs.
4 and 8 used similar methods to show that a large family of
transitions in 2D Levin-Wen models26 fall into the Ising or
Potts universality class.27

On the second front, Slingerland and Bais14–16 provided a
comprehensive criterion, which we use throughout this work,
for which topological orders can be connected by a (potentially
second-order) phase transition: two phases can be “naturally”
connected by a direct phase transition if one of the phases can
arise as the result of forming a condensate in the other. Two
familiar examples are the Higgs transition (Bose condensation

of charges) and the confining transitions (Bose condensation
of vortices or vortex loops) familiar in gauge theories. Beyond
this, however, their method gives a useful paradigm in 2D for
studying condensation transitions in any anyon model. It is
worth emphasizing that the problem is not trivial: the low-
energy excitations in the condensed phase need not be simply
a subset of those of the uncondensed phase.

In this work, we will address both the question of the
nature of the phase transition and the relationship between
the topological orders before and after condensation, in a
family of 3D Walker-Wang21–type models. These models are
not topologically ordered in the conventional sense:28 on a
system with no boundaries, they always have a unique ground
state, and admit no deconfined pointlike excitations. However,
on a 3D system with a 2D boundary, they exhibit surface states
with chiral topological order (analogous to that of a fractional
quantum Hall system) and deconfined anyonic excitations.
Commensurate with these topological characteristics, their
ground-state wave functions are 3D cousins of the loop gas or
string-net ground states of Levin-Wen models. We refer to this
set of characteristics as surface topological order, to contrast
it with bulk topological order, in which there is a topological
ground-state degeneracy on a system with periodic boundary
conditions (i.e., in the absence of surfaces). This distinction
is important: unlike bulk topological order, a system’s surface
topological order can change without a bulk phase transition.

Although the methodology we use here is similar to that
employed in Ref. 4 to study condensation transitions in Levin-
Wen models (the 2D cousins of our 3D models), there are some
striking differences between the 2D and 3D systems. Notably,
in many cases these models admit condensation transitions
from phases with surface topological order to phases with
3D bulk topological order. This is in stark contrast to the
situation in 3D gauge theories: the transitions we describe are
analogous to confining transitions, involving the proliferation
of vortex loops; in a gauge theory, these can only decrease the
topological ground-state degeneracy, and can never produce a
phase with bulk topological order from one with none. (This is
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because the Higgs transition necessarily reduces the size of the
gauge group; for a gapped system, the topological ground-state
degeneracy vanishes only if the gauge group is trivial.)

Our key results are as follows. We identify a family of
condensation transitions which have the same low-energy
theory as confining transitions in a Potts gauge theory.
These transitions have been studied both numerically29,30 and
theoretically,31,32 and are generically first order. Our main
interest is in exposing the relationship between the pairs
of 3D phases related by condensation. We give examples
of condensation transitions between Walker-Wang models of
trivial bulk topological order and (i) the trivial phase, which
has neither bulk nor surface topological order; (ii) another
Walker-Wang model with only surface topological order;
(iii) a discrete gauge theory, with only bulk topological order;
and (iv) a phase with both bulk and surface topological order.
We will show that whenever bulk topological order emerges,
the phase also has deconfined pointlike excitations, which
can be either bosons or fermions, depending on the nature
of the condensed phase. In contrast, in scenarios (ii) and (iv),
we find that if the lattice has boundaries, the models have
chiral anyonic excitations confined to these surfaces. Scenario
(iv) thus describes a phase with bosonic or fermionic point
particles deconfined in the bulk, as well as anyons confined to
the surface.

We begin in Sec. II by introducing the Potts gauge theory,
which is a useful stepping stone for understanding the Walker-
Wang models which we introduce in Sec. III. We first discuss
condensation transitions in the Abelian Walker-Wang models,
whose Hamiltonians differ from those of the Potts gauge
models only by additional phase factors. These models admit
transitions in all of the cases (i)–(iv) above with a minimum
of complexity.

Having understood the phase diagram of these Abelian
models, we turn our attention to the non-Abelian case. We
begin in Sec. V by discussing a family of models with the
surface topological order of SU(2)k Chern-Simons theories.
We show that these exhibit transitions analogous to those of
an Ising gauge theory, as well as other types of transitions
which do not have such simple analogs. In Sec. VI, we
describe in more technical language the status of transitions
in general Walker-Wang models, giving a general prescription
for determining the topological order of the condensed phase.

II. REVIEW: CONDENSATION IN ABELIAN LATTICE
GAUGE THEORIES

We begin by examining condensation transitions in “Potts
gauge theories”31(ZPotts

p models, for short), which are vari-
ations of the well-known discrete Zp gauge theories, and
which give a natural point of departure from which to discuss
transitions in the related Walker-Wang models.33 We first
review the models and their essential features, and then discuss
a simple condensation transition which will be our point of
reference for understanding all condensation transitions within
these models. We then examine how the topological order
changes after the condensation. Expert readers may wish to
skim this section for our notation; we will rely heavily on
the framework outlined in this section both to understand the

Walker-Wang Hamiltonians in later sections, and to describe
the transitions in the resulting phase diagrams.

A. Z p “Potts gauge theory” Hamiltonians

The models we describe are a generalization of the 3D Ising
gauge theory,22 or 3D toric code,34 to Potts spins. The Hilbert
space of our model thus consists of a p-state system (a Potts
spin s) on every edge of a 3D cubic lattice. To define the
Hamiltonian we require two types of operators which act on
each edge: Ŝ, which measures the spin, and Ŵ, which raises
it. We will generally work in the spin basis, where a state in
the Hilbert space is specified by the value of the spin on each
edge. In this basis, on each edge we require the four unitary
operators

Ŝe,±|se〉 = e±i2πse/p|se〉, se = 0,1, . . . ,p − 1
(1)

Ŵe,±|se〉 = |se ± 1(modp)〉,
which obey

Ŝe1,+Ŵe2,+ = exp
[
i2π/p δe1,e2

]
Ŵe2,+Ŝe1,+,

Ŝe1,−Ŵe2,+ = exp
[ − i2π/p δe1,e2

]
Ŵe2,+Ŝe1,−, (2)

(Ŝe,ν)p = (Ŵe,ν)p = 1̂.

We require four operators on each edge, rather than two, in
order to be able to associate our spin variables with fluxes: in
what follows, we may view Ŝ+ as measuring the electric flux
in the x̂,ŷ, or ẑ directions, and Ŝ− as measuring flux in the
−x̂, − ŷ, or −ẑ directions; similarly Ŵe,± measures e±i

∫
e

A·dl,
with dl oriented in the x̂,ŷ, or ẑ direction.

The Hamiltonian we will study has the form

H = λ
∑
P

(1 − B̂P ) − �
∑

e

ĥe − M
∑
V

Q̂V . (3)

The three operators are defined as follows. The edge operator
ĥ is

ĥe = 1

p

p−1∑
m=0

(Ŝe,+)m. (4)

ĥe is diagonal in the spin basis, with eigenvalue 1 if se = 0,
and 0 otherwise. This term therefore assigns an energy penalty
of � to all edges with nonzero spin.

The operator B̂P acts on a plaquette P according to

B̂P = 1

p

p−1∑
m=0

(�̂P )m, �̂P =
∏
e∈∂P

Ŵe,νe
. (5)

Here, ∂P is the set of edges in the boundary of P , oriented
clockwise relative to the x̂,ŷ, or ẑ normal, and νe is positive for
edges in ∂P oriented in the x̂,ŷ, or ẑ directions, and negative
for edges oriented in the −x̂, − ŷ, or −ẑ directions (see Fig. 1).
The relations (2) imply that (�̂P )m simultaneously raises
(lowers) the spin on every edge of P traversed in a positive
(negative) direction by m units. It follows that (�̂P )p = 1,
and the flux (or eigenvalue of �̂P ) through the plaquette has
p distinct values e2πiφP /p, φP = 0, . . . ,p − 1. Moreover, B̂P

assigns an energy penalty of 1 to states with nonzero flux
φP �= 0, thus favoring plaquettes with zero flux.
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FIG. 1. Action of the plaquette operator on a plaquette in the xy

plane. On edges 1 and 2, where the arrow points along the x̂ and ŷ

directions, respectively, we act with Ŵe,+; on edges 3 and 4, where
the arrow points along −x̂ −ŷ, we act with Ŵe,−.

Finally, the vertex operator is

Q̂V ≡ 1

p

p−1∑
m=0

( ∏
e∈∗V

Ŝe,ν

)m

, (6)

where ∗V is the set of all edges entering the vertex V . Here, ν is
negative for edges whose separation from V is in the −x̂, − ŷ,
or −ẑ directions, and positive otherwise. Q̂ assigns an energy
penalty of 1 for each vertex at which

∑
e∈∗V (νese) �= 0

(mod p).
The Hamiltonian (3) has a few key features worth empha-

sizing. First,

[Q̂V ,B̂P ] = [Q̂V ,ĥe] = [Q̂V ,Q̂V ′] = 0 (7)

and Q̂V is conserved separately at each vertex. We may
therefore restrict our Hilbert space to states for which Q̂V = 1,
which is equivalent to studying the pure gauge theory analyzed
in Refs. 31 and 32. This imposes a constraint on the values of
se about a vertex, illustrated in Fig. 2. For p = 2, for example,
edges with se = 1 must form closed loops. If we include
configurations that violate this constraint, the model (3) is

se = 1

se = 1

se = 1

se = 2

FIG. 2. (Color online) This figure gives a selection of the
configurations satisfying the vertex condition

∑
e∈∗V (νese) = 0 in a

p = 3 Potts gauge theory. Configurations are represented by making
edges with se = 1 (blue), se = 2 (red), and those with se = 0 (dotted).
The orientation of each edge is indicated by an arrow: on edges where
the arrow is entering (leaving) the vertex, we take ν = −1 (ν = 1).

equivalent to a gauge theory with Potts-spin matter sources
that cost energy M at each vertex.

Second, the Hamiltonian (3) has two solvable points. If we
take λ = 0, then the Hamiltonian is diagonal in the spin basis,
with ĥe assigning an energy cost to any edge with nontrivial
spin. In this limit, the ground state is the product state with
all se ≡ 0; loops with se = m are low-lying excitations, whose
energy scales linearly with the loop length.

The model can also be solved exactly for � = 0 since

[B̂P ,B̂P ′ ] = [Q̂V ,Q̂V ′] = 0 (8)

and the Hamiltonian consists only of commuting operators.
Here, the ground state satisfies the condition �̂P = 0 on every
plaquette; low-lying excitations are plaquettes for which φP =
1,2, . . . ,p − 1. Because B̂P raises the edge spins, for � = 0
each edge has an equal probability of being in any one of
the p different spin eigenstates. These ground states, which
are superpositions over all spin configurations for which Q̂V

has eigenvalue 1 at every vertex, are one example of what is
generally called a loop gas for p = 2, or a string net for p > 2.

Between these two solvable points, the model undergoes a
single phase transition, in which the nonzero spins are confined
by the proliferation of vortex loop defects. To understand the
two phases, let us begin with the � = 0 exactly solvable point.
Here, the ground state |
0〉�=0 satisfies

B̂P |
0〉�=0 = |
0〉�=0, i.e., �̂P |
0〉�=0 = |
0〉�=0. (9)

Using the relations in Eq. (2), it is easy to show that ĥe and B̂P

fail to commute whenever e ∈ ∂P . Indeed,

�̂P |
〉 = |
〉 ⇒ �̂P Ŝe,+|
〉 = e−i2πνe/pŜe,+|
〉. (10)

This implies that acting on |
0〉�=0 with (Ŝe)m creates a small
vortex loop of flux −2πmνe/p around the edge e, thus exciting
all plaquettes bordered by e. In the deconfined phase, these
vortex loops, though present microscopically in the ground
state for � �= 0, remain short. As �/λ grows, eventually these
vortex loops proliferate, and the system undergoes a transition
into the confined phase.

Because theZPotts
p models are self-dual and undergo a single

transition as a function of �/λ,31 one can formulate a similar,
dual description of the same transition starting from the λ =
0 exactly solvable point. Here, the ground state has se ≡ 0,
satisfying

ĥe|
0〉λ=0 = |
0〉λ=0, i.e., Ŝe,+|
0〉λ=0 = |
0〉λ=0. (11)

Acting on the ground state for λ = 0 with (�̂P )m creates an
excited state in which a small loop of edges bordering the
plaquette P carry nonzero Potts spin m. In the confined phase,
these loops (or nets, for p > 2) of spins remain small. As �/λ

shrinks, eventually these loops (or nets) proliferate, and the
system undergoes a transition into the deconfined phase.

Thus, the phase transition separating the confined and
deconfined phases can be viewed either as a proliferation of
vortex loops (for �/λ increasing) or a proliferation of nonzero
spins (for �/λ decreasing). This transition is an example
of a transition that is outside of the scope of the standard
Landau-Ginzburg paradigm: there is no local order parameter
that takes on a nonzero expectation value as we cross the
transition.22 Rather, we may probe the onset of confinement
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by the (nonlocal) Wilson loop operator.23 To understand this
order parameter, we must consider states in which Q̂Vi

|
〉 = 0
at a pair of vertices V1,V2. In the gauge theory language, we
can think of these states as having a pair of test charges at V1

and V2, which we can create by acting with

Ŵ(q)
1,2 =

∏
ek∈C12

Ŵq
ek,νk

, (12)

where C12 is a curve connecting vertices V1 and V2.35 (Here,
νk = 1 if C12 crosses the kth edge in the x̂,ŷ, or ẑ direction,
and −1 otherwise; the p − 1 possible choices of q correspond
to the possible charges 1, . . . ,p − 1 of the discrete gauge
theory.) In the limit � = 0, the energy for creating a pair
of charges is always 2M , irrespective of their separation;
throughout the deconfined phase their energy scales like
|r12|0 at large separations. Conversely, as �/λ → ∞, the
energy of separating the charges clearly grows linearly with
|r12|; this scaling holds at large separations throughout the
condensed phase. In other words, the Potts gauge theory has
p distinct charges (including 0), which are deconfined in the
uncondensed phase, and confined in the condensed phase. The
Wilson loop operator diagnoses this change in energy cost.

For our purposes, a closely related diagnostic (the topo-
logical orders of the two phases) will prove more practical.
For λ = 0,� > 0, the ground state is the unique spin-polarized
state with se = 0, in which ĥe has eigenvalue 1 on each edge. In
contrast, we will soon see that when λ > 0,� = 0, the ground
state has a degeneracy of p3 for periodic boundary conditions.
This change in the ground-state degeneracy indicates that
the uncondensed phase is topologically ordered, while the
condensed phase (in which edge spins are confined) is not.
Topological order can not change without a phase transition,36

so the system must undergo a phase transition as �/λ increases
from 0 to ∞.

The phase diagram of the Zp models has been studied
in detail both numerically29 and through large-p series
expansions.31,32 These results confirm that there are indeed
two phases, each of which is adiabatically connected to one
of the solvable points discussed above; for p � 2, in 3D these
are separated by a first-order transition.

It is worth noting that in 2D these models are dual to
the more familiar transverse-field Potts model.37 In this dual
description, the phase with large �/λ is paramagnetic, with
spins tending to align with the transverse field. Large �/λ

corresponds to the ferromagnetic phase. Edges with se �= 0
correspond to domain walls in the Potts ferromagnet. This
relationship, and its relevance to the 2D cousins of the
topological lattice models we will treat in the next section,
are discussed in detail in Ref. 4.

B. Topological order in the Potts gauge theory

Hamiltonians exhibiting different topological orders nec-
essarily represent distinct phases of matter.36 Throughout this
work, we will shed light on the phase diagrams of various
systems by distinguishing the topological orders at exactly
solvable points in the phase diagrams. Our primary test of
topological order is the ground-state degeneracy on nonsimply
connected manifolds, which we now calculate for the Potts
gauge theory.

Cz

Cz

z 1

z 0

FIG. 3. (Color online) Ground-state degeneracy in the presence
of periodic boundary conditions: With periodic boundary conditions,
there exist operators ŴCμ

that raise spins on all edges along a
noncontractible curve Cμ, and commute with the Hamiltonian. (The
path Cz is shown in figure.) Acting with ŴCμ

changes the ground-state
sector. The operators ν̂C̃μ

, which measure all the edges cutting a plane
perpendicular to the μ̂ direction, comprise a complete set of labels
for the resulting ground states. In the figure, μ = z and the edges
between z = 0 and z = 1 are measured.

Let us begin in a ground state at the exactly solvable point
� = 0, and consider the effect of the operator

ŴCμ
≡

∏
e∈Cμ

Ŵe,+, (13)

where Cμ is a closed curve encircling the system in the μ =
x̂,ŷ,ẑ direction (see Fig. 3). For � = 0, ŴCμ

commutes with
the Hamiltonian. Thus, for any ground state, we must have

ŴCμ
|
0〉 = |
 ′

0〉 (14)

with |
 ′
0〉 also a ground state. We will find that the system

is topologically ordered because these ground states are
physically distinct.

To see this, consider the operator

ν̂C̃z
=

∏
e∈C̃z

Ŝe,+, (15)

where C̃z contains all edges connecting the planes z = 0 and
z = 1. ν̂C̃z

commutes with �̂P for every P : if the latter raises
the spin on one edge in C̃, it simultaneously lowers it on an
adjacent edge, preserving the value of the product. However,

ν̂C̃z
ŴCz

= ei2π/pŴCz
ν̂C̃z

(16)

as there is exactly one edge on which both operators act.
The states (ŴCz

)m|
0〉, m = 0, . . . ,p − 1, therefore all have
distinct eigenvalues under ν̂C̃z

(and similarly for x and y).
We will call the ground state for which ν̂C̃x

,ν̂C̃y
,ν̂C̃z

all have
eigenvalue 1 the trivial ground state.

The topological ground-state degeneracy is n
NC

free, where nfree

is the number of deconfined charges, and NC the number of
noncontractible curves. Indeed, the operator ŴCz

defined in
Eq. (13) can be understood as Ŵ(1)

11 , where Ŵ(n)
ij is given in
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Eq. (12), and the curve from V1 to V1 winds around the system
in the z direction.

What is the fate of this ground-state degeneracy as the
system crosses the phase transition? As λ → 0, configurations
which have any overlap with the original nontrivial ground
states ν̂C̃α

�= 1 (for α = x, y,or z) become highly excited
states with energy �Lz, which diverges in the thermodynamic
limit. This is because any such configuration has a noncon-
tractible cycle (one which winds around the system in the x̂, ŷ,

or ẑ direction) on which se �= 1. Thus, as soon as the phase
boundary is crossed, these configurations are eliminated from
the low-energy Hilbert space, and the model has no topological
order.

C. Relation to Z p lattice gauge theory

It is worth noting that for p > 3 the operators (4) and (5)
differ slightly from their counterparts in the conventional Zp

gauge theory, which are given by

ĥe = 1
2 (Ŝe,+ + Ŝe,−), B̂P = 1

2 (�̂P + �̂
†
P ), (17)

where �̂
†
P = �̂

p−1
P .

Far from the transition, this model has the same physical
properties as the ZPotts

p model: for � = 0, the ground state
is flux free (φP ≡ 0), and at small �/λ there is a phase
with p deconfined “charge”-type excitations and a topological
ground-state degeneracy of p3 in periodic boundary condi-
tions. For �/λ very large, similarly, the ground state is a
product state se ≡ 0, in which all spin labels are confined
and there is no topological order.

The main difference between these models and the ZPotts
p

models we focus on here is at intermediate �/λ: for p � 5, in
addition to the two phases of theZPotts

p , theZp gauge theory has
a third phase with gapless gauge excitations; this becomes the
Coulomb phase of electromagnetism in the limit p → ∞.38–40

These early analyses further suggest that the two transitions
into this gapless phase are second order.41 For p � 4, the phase
diagrams of the two systems are qualitatively similar.

III. CONDENSATION IN 3D CONFINED ABELIAN
WALKER-WANG MODELS

In this section, we will discuss a transition similar to the
confining transition of the Zp models of the previous section
in a very different family of 3D topological spin models: the
confined Abelian Walker-Wang (CAWW) models discussed in
Refs. 21 and 28. Before entering into the details, it is useful
to compare CAWW models to those found in the previous
section. Like the Potts gauge theories of the previous section,
the CAWW models have two phases separated by a first-order
transition, which can be viewed as a condensation of vortex
loops. In the uncondensed phase, the models have loop gas
(for p = 2) or string-net (for p > 2) type ground states, with
deconfined edge spins; in the condensed phase, the nontrivial
spins are confined, and (in the limit � → ∞) ground states are
product states with se = 0 on every edge.

Unlike in the previous section, we will find that neither
phase has conventional topological order. In order to distin-
guish them using criteria such as Wilson loops or ground-state
degeneracy, we will have to study the models in the presence

FIG. 4. This figure illustrates how the 6-valent vertices on a cubic
lattice are split into a collection of trivalent vertices. The spin degrees
of freedom living on each edge are represented by black dots.

of boundaries. This is a consequence of the fundamentally
different type of topological order found in the Walker-Wang
models, which we will call surface topological order.

A. Walker-Wang Hamiltonians

We begin with a brief review of the Walker-Wang Hamilto-
nians discussed in depth in Refs. 21 and 28. In this section, we
will focus on a subset of these, which we call confined Abelian
Walker-Wang (CAWW) models as they are closely related to
the Abelian lattice gauge theories discussed in the previous
section, but do not have any deconfined bulk excitations (even
if we allow vertex defects). For technical reasons, the models
are most easily discussed on a lattice for which all of the
vertices are trivalent; we thus deform the cubic lattice by
separating each of its hexavalent vertices into three trivalent
ones, as shown in Fig. 4. This deformation has little impact on
the physics, so readers may safely imagine that the lattice is
cubic unless otherwise notified.

Like the Potts gauge models of Sec. II, the CAWW models
begin with a Potts spin s = 0,1, . . . ,p on each edge of a
3D lattice. Schematically, the Hamiltonian has the same form
as (3):

H = λ
∑
P

(1 − B̂P ) − �
∑

e

ĥe − M
∑
V

Q̂V , (18)

with

[B̂P ,B̂p′ ] = [Q̂V ,Q̂V ′] = [B̂P ,Q̂V ] = 0 (19)

and

[ĥe,ĥe′ ] = [ĥe,Q̂V ] = 0. (20)

This guarantees CAWW models share two key features with
Potts gauge theories. First, as Q̂V commutes with all operators
in the Hamiltonian, we may consider the limit M → ∞,
in which the constraint Q̂V = 1 is imposed at each vertex.
Second, the model can be solved exactly both for �/λ = 0 and
for ∞. Using these two limits, we will be able to characterize
exactly the topological order of the two phases of this system.

For the CAWW Hamiltonian, we take Q̂V to be given by
Eq. (6), and ĥe to be given by Eq. (4). The only difference
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between these models and those of Sec. II is in the definition
of the plaquette operator. For the Walker-Wang models,

B̂P = 1

p

p−1∑
m=0

(�̂P )m�̂P,m, (21)

where �̂P is the operator that raises all spins on the edges of
P , exactly as in Eq. (5). The difference between B̂P as given
in Eqs. (5) and (22) is the presence of the additional operator
�̂P,m. This operator is diagonal in the spin basis, with possible
eigenvalues eiπn/p, n = 0, . . . ,2p − 1; its value depends only
the values of the spin variables on certain edges of P , and
those on the “legs” of the plaquette (i.e., edges that share a
vertex with a pair of edges of P ).

The precise form of the operator �̂P,m for general p is not
central to our discussion, but it is given in Appendix A. For
our purposes, it suffices to note that, as shown in Appendix A,

[(�̂P )m�̂P,m]p = 1, [�̂P �̂P,1]m = (�̂P )m�̂P,m. (22)

The spectrum of B̂P is therefore identical to that of the plaque-
tte term in the ZPotts

p gauge theory: Since (�̂P �̂P,1)p = 1, the
eigenvalues of (�̂P �̂P,1) are λ = eiφP , φP = 2π n/p, 0 �
n < p. Further,

B̂P = 1

p

∑
m

[�̂P �̂P,1]m. (23)

B̂P therefore has eigenvalue 1 on states where φP = 0 (which
we can interpret as states with trivial magnetic flux), and
eigenvalue 0 on states with φP �= 0 (which are thus states
carrying nontrivial flux), exactly as in the Potts gauge theory.

1. Example: p = 2

For concreteness, consider the example of p = 2. This
describes a system with an Ising spin σ z = ±1 on each edge.
We may represent

Q̂V =
∏
i∈∗V

σ z
i . (24)

States that satisfy the condition

Q̂V |
〉 = |
〉 (25)

are thus states with down spins (in the σ z basis) on either 0 or
2 of the three edges entering each vertex. In other words, for
M → ∞, we keep only configurations for which down spins
form closed loops on the lattice.

The plaquette operator for the ZPotts
2 (or Ising gauge)

Hamiltonian is

B̂Potts
P = 1

2

[
1̂ +

∏
e∈∂P

σ x
e

]
. (26)

Since the nonidentity term acts by simultaneously flipping all
of the spins around a plaquette, the product over all plaquettes∏

P B̂P contains matrix elements (of equal amplitude) con-
necting every possible configuration of closed loops with every
other. [Here, we are excluding loops encircling noncontractible
curves, such as those mentioned in Eq. (13), from our definition
of “closed” loops.] The ground states satisfy

B̂P |
〉 = |
〉 , (27)

(c)
R

R R
R

R

B
B

 B

B

B

B

R

(b)(a)

FIG. 5. (Color online) The plaquette operator for the p = 2
CAWW Hamiltonian, illustrated for the three different plaquette
orientations of the point-split cubic lattice. The choice of red and
blue edges used in Eq. (28) is indicated by the colors (and the letters
R and B). All edges shown in the figure enter into the plaquette
operator: edges in the plaquette boundary ∂P are shown in bold; the
remaining 10 “external” edges are in ∗P .

and are therefore equal-amplitude superpositions over all
possible closed-loop configurations on the lattice, with relative
coefficient 1. Excited states can be formed by acting with
Ŝe,+ = σ z

e on some number of edges, changing the sign of the
coefficients of configurations in which σ z

e = −1.
The plaquette operator for the Walker-Wang Hamiltonian

is28

B̂WW
P = 1

2

⎡⎣1̂ −
( ∏

e∈∂P

σ x
e

) ⎛⎝ ∏
j∈∗P

isj

⎞⎠ isr+sr′ −sb−sb′

⎤⎦ , (28)

where ∗P is the set of all “legs” of the plaquette P , and r,r ′,
b,b′ are edges in the boundary of P , as shown in Fig. 5. Here,
se = 1

2 (1 − σ z
e ) = 0,1 is the value of the Potts spin on edge

e. It is not hard to check that (B̂WW
P )2 = B̂WW

P , provided that
Eq. (25) is satisfied at every vertex. This implies that B̂WW

P is
a projector with eigenvalues 0 and 1.

The nonidentity component of B̂WW
P acts by simultaneously

flipping all of the spins around a plaquette, and multiplying the
resulting configuration by a phase of ±1, ± i which depends
on the spin configuration in ∗P and ∂P . The ground state is
thus a superposition over all possible configurations of closed
loops, with coefficients equal in amplitude but with different
relative phases ±1, ± i. As for the ZPotts

2 model, we can create
plaquette excitations by changing the relative phases of these
loop configurations.

B. Topological order in the confined Abelian
Walker-Wang models

We begin by reviewing the defining features of the CAWW
models for � = 0. Since B̂WW

P commutes with Q̂V , in this
limit the models are exactly solvable. The resulting spectrum
is discussed rigorously in Ref. 28; our discussion here is more
qualitative, and we refer readers to that work for a detailed
treatment.

The presence of �̂ in the plaquette term of the CAWW
model [Eq. (21)] fundamentally changes the nature of the
low-lying excitations, as well as the model’s topological
order. Unlike the ZPotts

p gauge theories, these models have

235120-6



PHASE TRANSITIONS IN THREE-DIMENSIONAL . . . PHYSICAL REVIEW B 88, 235120 (2013)

no deconfined excitations in the bulk, even in phases where
the spin labels are deconfined and the ground state is a
string net. Commensurate with this, these 3D models have
a nondegenerate ground state, even for periodic boundary
conditions, as well as a vanishing topological entanglement
entropy. However, on a lattice with boundaries, the models
do have deconfined point particles on the surface and a
ground-state degeneracy sensitive to the topology of the
surface. Hence, the models do exhibit topological order,
but it is associated with their surfaces, rather than with
the bulk.

It is worth noting that in CAWW models, generically
the surfaces are described by topological orders that can be
realized by a purely 2D system, suggesting that the surface
topological order can be destroyed without undergoing a bulk
phase transition. In the absence of extra symmetries, therefore,
in most cases we know of no criterion which can differentiate
the CAWW model from the topologically trivial confined
phase. We will return to this point in Sec. VII.

Let us briefly review why the bulk ground states and
spectrum differ from those of theZPotts

p models. Essentially, the
CAWW models have a unique ground state in the presence of
periodic boundary conditions because there is no analog of the
operator ŴC [Eq. (13)] that commutes with B̂

(WW)
P for every

plaquette P and toggles between the different topological
sectors.

The origin of the differences in the low-lying excitations
between the CAWW and ZPotts

p models is similar. For � = 0,
Eq. (18) indicates that excitations in the CAWW model can
violate either the vertex term (as for the charge excitations in
the ZPotts

p model), the plaquette term (as for vortex loops in the
ZPotts

p model), or both. Plaquette violations behave essentially
identically in both models: they must form closed vortex loops,
with an energy cost proportional to the loop length. In the
CAWW models, however, it is not possible to create a pure
vertex violation (see Appendix A). Rather, the low-lying bulk
excitations in the CAWW models consist of vortex loops (aka
closed loops of plaquette defects), and open flux tubes with
electric charges at their end points (literally, a pair of vertex
violations separated by a line of plaquette defects).

For instance, in the p = 2 CAWW discussed above, an
operator that raises the spins on two legs of the plaquette
P changes the eigenvalue of �̂ ≡ (

∏
j∈∗P isj )isr+sr′ −sb−sb′

[Eq. (28)]. (Specifically, it is changed by −1 or ±i, depending
on whether any of the r, r ′, b, or b′ edges are also flipped.)
Thus, any operator that only raises the spins on these edges
fails to commute with B̂P . More generally, we might consider
a modified operator, which both raises the spins and multiplies
the result by a configuration-dependent phase. It can be
shown28 that no such operator commutes with B̂P for all P

(with periodic boundary conditions). This means both that
there is no operator ŴC that commutes with the Hamiltonian,
and that vertex defects are confined. The latter follows because
creating a pair of vertex defects at vertices v1 and v2 requires
raising the spin by 1 along a continuous set of edges connecting
v1 to v2, and this raising operator necessarily leaves a string
of violated plaquettes in its wake. In other words, the operator
that creates a pair of “charges” (vertex violations) also creates
a string of plaquette violations separating these charges, which
we interpret as a magnetic flux tube.

The previous discussion is relevant to systems with (for
example) periodic boundary conditions. In systems with open
boundaries, the CAWW models have additional excitations
that are localized at the surfaces, and a ground-state degeneracy
that depends on the surface topology. A useful intuitive picture
of this is that the flux tube connecting the pair of charges
can sit just above the surface, where it does not cost energy.
(In technical terms, it is possible to define an operator which
creates a pair of vertex defects on the surface without violating
any plaquettes. This operator acts by a combination of raising
the spin along a series of edges on the surface, and multiplying
by a configuration-dependent phase.) These surface “charges”
in fact behave like 2D charge-flux bound states, in the sense
that their mutual statistics are those of a ν = 1/p Laughlin
state. (In more technical terms, these surface states have the
topological order of an Abelian Chern-Simons theory.)

Since the charges are deconfined, a process that creates a
pair of charges, moves them along the surface, and reanni-
hilates them does not change the system’s energy. It follows
that if there are noncontractible curves on the surface, there is
an operator analogous to ŴC that raises spins along a closed
noncontractible loop and commutes with the Hamiltonian. In
this case, however, such operators do not necessarily commute
with each other. For example, if we impose periodic boundary
conditions in z only, the boundary of the system is a torus with
two noncontractible curves, and we may define the operators
ŴCz

,ŴCy
. However, these two operators do not commute28

and thus are not simultaneously diagonalizable. The ground-
state degeneracy is therefore p. Again, this matches the
ground-state degeneracy of the ν = 1/p bosonic Laughlin
state.

C. Condensation transitions in the confined Abelian
Walker-Wang models

We are now ready to consider the Hamiltonian (18) for
� > 0. In particular, we wish to understand the structure of its
phase diagram, and the nature of any phase transitions. Much
of this information will be inferred from our knowledge of
the phase diagram of the Zp model (3), despite the significant
differences between them for � = 0, the phase portraits of the
two models are very similar.

First, note that the effect of the transverse-field term ĥe is the
same in both models: it penalizes any edge with se �= 0. In the
limit �/λ → ∞, the ground states of both models are simply
the product state se ≡ 0; for large �, the nonzero spins (and
therefore all charges) are confined, and can not form extended
loops or nets. Thus, for sufficiently large �/λ the two models
are in the same (topologically trivial) phase.

It is worth pointing out that the mechanism for confinement
in the CAWW models with � = 0 is fundamentally different
from the mechanism for confinement in this trivial phase. To
see this, let us consider the p = 2 model of Sec. III A1. In
the trivial phase, the transverse-field term

∑
e σ z

e penalizes
any edge with σ z = −1, meaning that only short loops of
these spins can occur. In the Walker-Wang phase with � = 0,
conversely, there is no penalty for an edge with σ z = −1, and
indeed the ground state of this model is a superposition over
loops of all sizes. Hence, if we view edges with σ z = −1 as
occupied by nontrivial electric flux, electric flux is deconfined
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in the uncondensed phase and confined in the condensed
phase. However, there are no deconfined pointlike excitations
in the uncondensed phase, as the model does not admit any
excitations that carry only electric charge.

Second, the transition into this trivial phase is identical in
both models. As we show in detail in Appendix C, for the
edge and plaquette degrees of freedom that are not conserved
by (18), all correlation functions must be the same. Essentially,
this stems from the fact that the commutation relations between
the noncommuting operators in Eqs. (3) and (18) are identical.
Specifically, for e ∈ ∂P ,

(�̂P �̂P,1)Ŝe,νe
= e−2πi/pŜe,νe

(�̂P �̂P,1) (29)

so that in both models (Ŝe)n raises the flux eigenvalue of
(�̂P �̂P,1) by 2πn/p, creating one of n distinct types of vortex
loop excitations. This can be used to show that the amplitude
for finding a given configuration of vortex loops in the ground
state at a particular value of �/λ is thus equal in both models
(see Appendix C), which ensures that the transitions are the
same.

An alternative way to understand this result is the following.
The only difference between the two models is the presence
of �̂P,m in the plaquette projector, which changes the relative
phases of different spin configurations in the ground state.
However, these phases do not affect the expectation values
of operators diagonal in the spin basis. (We take different
spin configurations to be orthogonal.) Rather, they are only
sensitive to the probability that se takes on some particular
value, which is the same in both models (provided we work in
the trivial ground-state sector). Put another way, the physical
difference between the two models is in the charge sector, with
charges confined to the ends of flux tubes in the CAWW case.
The transition, on the other hand, is in the purely magnetic
sector, involving a condensation of vortex loops. From this
perspective, it is unsurprising that the nature of the phase
transition is the same in both models.

As in the previous section, for p > 3 we can contemplate
a variant of our Hamiltonian, with ĥe replaced by (17),
and the plaquette operator given by �̂P �̂P,1 + H.c. Because
the arguments given above apply equally well here (see
Appendix C), the thermodynamic properties of the two models
are the same. Hence, for p � 5 in the “clock” variant of
Eq. (18), the two confined phases are separated by a critical,
Coulomb-like phase. In this phase, neither the vortex loops
nor loops of nontrivial spin need have a finite-energy cost,
suggesting that the charge (or vertex-violating) excitations also
become deconfined in this regime.

Before discussing more general transitions in these systems,
it is worth pausing to consider what the results of this section
tell us about the phase portrait of the Hamiltonian (18). In the
Potts gauge model, the phase transition separates systems with
different topological orders, which are therefore necessarily
distinct phases. In the Walker-Wang system, however, the
phase transition connects two systems with trivial bulk
topological order. This raises the question of whether the
confined and deconfined “phases” in the CAWW are truly
distinct or whether, like the liquid-gas transition, this first-order
transition is an artifact of the particular trajectory that our
models take through the phase diagram.

For concreteness, let us focus on the case p = 2. In addition
to topological order, we might identify two distinct phases by
identifying a symmetry that is broken by the CAWW phase
but not by the trivial phase, or vice versa. However, this model
possesses only lattice symmetries and the discrete symmetry
PT , which sends x → −x,y → −y,z → −z and complex
conjugates the Hamiltonian. Because of the nature of the
plaquette operator, both PT and the lattice symmetries are
symmetries of the system for all values of �,λ, while P and T

are individually broken unless λ = 0.
Thus, for p = 2 the CAWW model can not be distinguished

from the trivial confined phase either on the basis of symmetry
or on the basis of topological order. This strongly suggests
that there is a deformation of (18) allowing us to connect
the two limits � = 0 and λ = 0 without undergoing a phase
transition. The arguments in Appendix C ensure that such a
deformation must include terms that create vertex violations,
as otherwise the free energy is identical to that of a model
whose plaquette term contains only the operators �̂n

P , in which
the two limits have different topological orders. Further, as
the phase transition is first order, it will persist for arbitrary
small deformations away from (18), possibly ending at a
second-order point at some finite value of the perturbation
strength.

D. Diagnosing vortex condensation

How do we discern the behavior of the CAWW (� = 0)
from that of the condensed phase (� = ∞)? The condensation
transition does not appear to involve the symmetry breaking of
an order parameter and, while the presence of bulk topological
order distinguished the Potts gauge theories from the trivial
paramagnet, we can not say the same of CAWW models
which have no bulk topological order. One obvious difference
between the phases is in the presence of many vortices, which
can be detected by the operator

OS =
∏
P∈S

�̂P �̂P,1. (30)

OS is formed by acting with the plaquette operators on open
surfaceS, with area A and perimeter L. Near the � = 0 exactly
solvable point, the operator obeys a perimeter law 〈OS〉 ∼
e−γL because vortex loops are short, so can only intersect the
surface if they lie near its boundary. On the other hand, near the
� → ∞ point, 〈OS〉 ∼ e−σA, because vortex loops are larger
and proliferate freely. While the change from area to perimeter
law does not imply that the � = 0 and ∞ points constitute
distinct phases of matter, it does allow us to quantitatively
distinguish the two regimes.

In the Potts gauge theory, the fundamental Wilson loop
along ∂S, which can be written as OPotts

S = ∏
P∈S �̂P , plays

the same role as OS in tracking vortex condensation. However,
if used in the CAWW case, this operator will exhibit area law
behavior in both the uncondensed and condensed regimes. This
is because, even at � = 0, the magnetic flux measurement
�̂P fluctuates wildly; a defining feature of CAWW models
is that only the special combination �̂P �̂P,1 of electric
and magnetic flux measurements is stationary on the ground
state.
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IV. OTHER TRANSITIONS IN ABELIAN MODELS

Thus far, we have identified a set of first-order transitions
in the ZPotts

p and CAWW models which connect a given 3D
string-net state to a trivial phase, in which all spin labels are
confined. We now turn to a rather more interesting situation,
in which only some of the spin labels are confined in the
condensed phase. Here, we will find a surprising difference
between the ZPotts

p and CAWW models. In the ZPotts
p case, a

transition that confines spin labels is a confining transition: the
number of deconfined charges in the gauge theory decreases,
as does the ground-state degeneracy; at long wavelengths, the
confined phase may be described by an Abelian lattice gauge
theory with a smaller gauge group than the deconfined phase.
For the CAWW models, however, in the uncondensed phase
there are no deconfined charges, and we might guess that
the transitions are necessarily between two phases with trivial
bulk topological order and no deconfined pointlike excitations.
We will find, somewhat counterintuitively, that this guess is
incorrect: a phase transition which confines a subset of the
spin labels in an CAWW model can lead to deconfinement
in the charge sector. Correspondingly, we will find that the
ground-state degeneracy grows as we cross the transition into
the confined phase. We will give a physical interpretation of
this in Sec. IV B.

How do we obtain transitions that confine only some of the
labels? The key is that Eq. (4) is not the only possible choice
of ĥe. More generally, if p is divisible by m, we can take

ĥ(m)
e = m

p

p/m−1∑
n=0

(Ŝe,+)nm, (31)

which has the effect of proliferating vortices with fluxes
2π/p × {m,2m, . . . ,p − m}. (Here, we restrict our attention
to the case where the coefficient � of this operator is positive,
such that the relevant vortex types are energetically favored
rather than energetically penalized.) The operator ĥ(m)

e has
eigenvalue 1 on edges where se is a multiple of p/m, and 0
otherwise, and therefore assigns an energy penalty � for every
spin that is not a multiple of p/m. Thus, even as � → ∞, some
spins remain deconfined. The result for the ZPotts

p models is a
condensed phase that has the bulk topological order of a Zp/m

gauge theory. For the CAWW models, depending on the values
of p and m, we find that the condensed phase can have bulk
topological order, surface topological order, or both. A table
classifying the topological orders of these phases can be found
at the end of Sec. IV B.

As in the previous sections, “clocklike” versions of the
Hamiltonians that we discuss also exist, and for m � 5 these
will exhibit gapless phases at intermediate values of �/λ.
Although this possibility is certainly intriguing, our focus here
will be on the possible phases at large �, where the two models
are in the same phase.

For readers familiar with TQFTs, we note that not all
Abelian Walker-Wang models are completely confining at
� = 0. In Appendix D, we classify the possible condensed
phases in arbitrary Abelian Walker-Wang models. Like the
CAWW models discussed here, the structure of their phase
diagrams is identical to that of an appropriate ZPotts

p gauge
theory.

A. Variants on the 3D Potts gauge transition

For pedagogical reasons, we will first describe these
transitions in the ZPotts

p models. If we replace ĥe by ĥ(m)
e in

Eq. (3) and study the resulting phase diagram, we again find
two phases separated by a first-order phase transition. We will
show momentarily that an effective Hamiltonian describing
the transition can be mapped onto that of a system with p/m

spin states and a transverse field ĥ(1)
e , such that these transitions

are always first order. However, the topological order of the
phase at large �/λ is different for every m: it is that of an
m-state Potts gauge theory. Thus, with a Hamiltonian of the
form (3) and the modified definition of ĥ(m)

e , we can describe
a family of transitions between our p-state Potts gauge theory
and an m-state Potts gauge theory, for any m that divides p.

We now explain why the phase transition is still of the type
described in the previous section. Since

(Ŝe,+)m�̂P = ei2πm/p�̂P (Ŝe,+)m (32)

we have [
ĥ(m)

e ,(�̂P )p/m
] = 0. (33)

Because (�̂P )p/m commutes with all other terms in the
Hamiltonian, we may restrict our attention to states |
〉 for
which

1

m

m−1∑
n=0

(�̂P )np/m|
〉 = |
〉. (34)

To ensure that this condition is satisfied by all ground states
even for λ = 0, it is convenient to modify the plaquette
projector somewhat:

λB̂P = m

p

[
� + λ

p/m−1∑
i=0

(�̂P )i
] (

1

m

m−1∑
n=0

(�̂P )np/m

)
. (35)

The term proportional to � commutes with all operators in the
Hamiltonian; thus, we may consider the limit � → ∞, where
the condition (34) is always satisfied.43 On states satisfying
Eq. (34), we have

B̂P |
〉 = m

p

p/m−1∑
i=0

(�̂P )i |
〉. (36)

Within this subspace, then, the Hamiltonian for the transition
is equivalent to a Hamiltonian of the form (3) for a p/m state
spin.

Thus, the energetics of the transition are clearly those of a
transition with p/m-state spins and ĥ(1)

e . The only remaining
subtlety is whether the number of states at each energy is the
same in both systems. We show in Appendix B that although
the total number of spin configurations at any energy is of
course larger in the p-state system, this multiplicity merely
alters the normalization of the ground-state wave function, and
plays no role in the thermodynamics of the phase transition (at
any temperature).

Next, let us verify that the topological order of the phase
for large �/λ is indeed that of an m-state Potts gauge theory.
From Eq. (33), we see that spins with se = n p/m carry no
energy cost. It follows, from arguments similar to those given
in Eqs. (13) to (16), that the system has an m3 ground-state
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degeneracy in periodic boundary conditions.44 Similarly, there
are m deconfined charges in the system, which lie at the end
points of string operators corresponding to the m deconfined
spins.

B. Variants on the transition in Abelian Walker-Wang models

We now consider transitions in the CAWW models where
the edge term is given by ĥ(m) [Eq. (31)], for m a divisor of
p. Again, this choice assigns no energy cost to the p/m spins
s = 0,m,2m, . . . ,p − m, while all other spins are eliminated
from the low-energy Hilbert space as �/λ → ∞. Since ĥ(m)

is insensitive to the relative phases in the ground-state wave
functions, the arguments of Sec. IV A and Appendix C can
be combined to show that the phase transition is equivalent to
that of a p/m-state Potts gauge theory restricted to its trivial
ground-state sector, and therefore must be first order.

Our main interest in this section, then, will be to describe the
topological order of the condensed phase. Since the topological
order is a property of the phase, it is convenient to study it by
identifying a point in this phase at which the Hamiltonian is
exactly solvable. To do so, as in the ZPotts

p case [Eq. (35)] for
m > 1 we will modify the Walker-Wang plaquette projector
according to

λB̂P = 1

p

[
�

m−1∑
n=0

(�̂P )np/m�̂P,np/m

+ λ

p/m−1∑
i=1

m−1∑
n=0

(�̂P )i+np/m�̂P,i+np/m

]
. (37)

The term proportional to � commutes with ĥ(m) irrespective
of the presence of �̂: �̂ and ĥ(m) necessarily commute, as both
are diagonal in the spin basis, and also [ĥ(m),(�̂P )np/m] = 0.
Thus, the model can be solved exactly in the limit λ = 0,� →
∞,� > 0.

For λ = 0, the plaquette projector changes the values
of the spins only by multiples of p/m. Taking � → ∞
ensures that the low-energy Hilbert space contains only the m

spins s = 0,p/m, . . . ,p − p/m. Thus, by relabeling the spins
0 → 0,p/m → 1, . . . ,p/m − 1 → m − 1, we may express
the Walker-Wang Hamiltonian in this limit as

HWW = −M
∑
V

Q̂V − �
∑
P

(
1 −

m−1∑
n=0

(�̂P )n ˆ̃�P,n

)
(38)

with Q̂V , �̂P the vertex and flux operators of the m-state Potts
gauge theory, and ˆ̃�P,n defined by the action of the operator
�̂P,np/m on the reduced Hilbert space containing only spins
that are multiples of p/m.

To proceed further, we must understand the basic properties
of ˆ̃�P,n. In particular, we wish to determine whether there is an
operator analogous to ŴC [Eq. (13)] that commutes with the
Hamiltonian (38). If so, the system will have multiple ground
states, distinguished by their different eigenvalues under the
action of the operator ν̂C in Eq. (15) (which does commute
with HWW). If not, as shown in Ref. 28, the ground state is
unique.

The eigenvalues of ˆ̃�P,n can be deduced from those of
�̂P,np/m, which are phases depending on the spin configuration
of the external edges of P , as well as the spin configurations of
certain edges on P . In the low-energy Hilbert space containing
only spins that are multiples of p/m, the possible eigenvalues
of �̂P,np/m are eiπ(r/m)(p/m), where r = 0,1, . . . ,m − 1.

There are four cases to consider here. First, if p/m2 ∈ 2Z,
then eiπ(r/m)(p/m) ≡ 1 for all r . In this case, one can show
that ˆ̃� acts as the identity operator on all states obeying
Q̂V |
〉 = |
〉. If p/m2 is an even integer, the Hamilto-
nian (38) therefore describes an m-state Potts gauge theory,
with a topological ground-state degeneracy of m3 in periodic
boundary conditions.

Second, if p/m2 ∈ 2Z + 1, then eiπ(r/m)(p/m) ≡ (−1)r . In
this case, we can still define an operator ŴC for each
noncontractible C that commutes with the Hamiltonan for
any value of λ, such that the ground-state degeneracy remains
m3 in periodic boundary conditions (see Appendix A for a
proof of this). In fact, we show in Appendix E that for M < ∞
this model describes an m-state Potts gauge theory coupled to
fermionic matter sources.

Third, if m is not a factor of p/m, then the only value of r ∈
{0, . . . ,m − 1} for which �̂P,np/m has eigenvalue 1 is r = 0. As
we show in Appendix A, this means that the Hamiltonian (38)
describes an m-state CAWW model, with trivial topological
order.

Finally, suppose p/m2 = a/b, with a and b relatively
prime, and b > 1 a factor of m. In this case, ˆ̃� has b eigenvalues
±1 for r = tb, t = 0,1, . . . ,m/b − 1. If �̂ has eigenvalue
1 for r �= 0, the eigenvalue of ˆ̃� is unaffected by replacing
s → s + r on any edge (see Appendix A). Therefore, the
operator (ŴC)r commutes with the Hamiltonian. Less trivially,
one can show that provided Q̂V |
〉 = |
〉 (which is true in the
ground states, provided M is positive), (ŴC)r also commutes
with H for r corresponding to negative eigenvalues of ˆ̃�.
Thus, in this case we find a model whose Hilbert space is
described by m-state Potts spins on each edge, with (in periodic
boundary conditions) a ground-state degeneracy of (m/b)3,
where b divides m. The topological order of this phase is
therefore different from that of both the m-state Potts gauge
and CAWW models.

A summary of these possibilities, together with the topo-
logical order of the condensed phases, is given in Table I.

What becomes of the excitations as we cross the boundary
from an uncondensed phase to a condensed phase? Since
all spins are now multiples of p/m, there are only m − 1

TABLE I. Topological orders of p-state CAWW models in the
condensed phase with transverse field ĥ(m). Our notation conventions
are drawn from Ref. 45.

p/m2 Topological order of the condensed phase

2n, n ∈ Z Zm gauge theory
2n + 1, n ∈ Z Fermionic Zm gauge theory
n/m (irreducible) Zm CAWW (modular)
n/b, b|m Zmn/(2b)

m CAWW (nonmodular)
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physically distinct vortex-loop creation operators

ĥ(1), . . . ,ĥp/m−1. (39)

Writing the plaquette projector as in Eq. (37) allows us to
separate the fluxes bound to our charges into two kinds: those
whose energy cost remains finite (proportional to �) as λ → 0
and those whose energy cost vanishes for λ = 0. The number
of fluxes with zero-energy cost in the confined phase is given
by the number of spins r for which eiπr p/m2 = ±1. Thus,
some particles become deconfined in the condensed phase
because they lie at the end points of flux tubes whose energy
cost vanishes as λ/� → 0. Physically, this is because these
flux tubes become unobservable (and thus have vanishing
energy) once a subset of the spins have been eliminated from
the theory. The deconfined particles are always fermions or
bosons: the criteria eiπr p/m2 = ±1 ensures that the relevant
charge-creation operators either commute or anticommute.
(For a more detailed discussion of the fermionic case, see
Appendix E.)

It is also instructive to consider the fate of the deconfined
surface excitations in the condensed phase. There are three
possibilities: a given type of surface anyon may become
confined; may remain deconfined at the surface only; or may
become deconfined in the bulk (as well as at the surface).

To understand the first possibility, we need only know
that the surface anyons exist at the end points of a string of
edges of appropriate spins. For example, in the p = 2 example
discussed above, a pair of surface anyons occurs at the end
points of a string of edges on which s = 1. In that case, in
the condensed phase, edges with s = 1 bear an energetic cost;
hence, the surface anyons are confined (in the same sense that
charges become confined in the ZPotts

p gauge theory), and the
transition is one to a state with trivial bulk and trivial surface
topological order.

If the anyon is to sit at the end point of a string of edges with
spin labels that remain deconfined, then excitations of this type
are deconfined on the surface in the condensed phase. Whether
they are also deconfined in the bulk then depends on whether
p/m2 is an integer. If it is, then our “anyons” are in fact
bosons or fermions, and in the condensed phase have trivial
braiding with all of the deconfined surface anyons. If p/m2 is
not an integer, then the condensed phase has excitations that
are deconfined only at the boundary of the 3D lattice; at least
one of these must be anyonic.

C. Examples

For concreteness, we will now consider one example from
each of the four classes in Table I. To obtain a physical
picture of which excitations are deconfined in the bulk, it is
helpful to classify the excitations in the Walker-Wang models
in terms of their “charge” (given by the eigenvalue of Q̂V

at the violated vertices) and “flux” (given by the phase of
the eigenvalue of �̂P,1�̂P,1 on the line of excited plaquettes
connecting the two vertices). In the uncondensed phase, a
charge q lies at the end of a flux tube with flux φ = 2πpq. The
operator that raises edge spins of P by s essentially measures
the Berry phase of an object of charge q = s/p around the
flux through the plaquette P , penalizing states where this
Berry phase is not a multiple of 2π . To understand why

some charges become deconfined in the condensed phase, we
observe that for λ = 0, the plaquette term (37) contains only
a subset of such possible measurements: those for charges
q = np/m,n = 1, . . . ,m − 1. In this limit, some flux tubes
become physically unobservable: there are no longer any
charges in the theory with which they have nontrivial Berry
phase. This gives us a simple mnemonic for understanding the
topological order of the phase with large �/λ.

Armed with this intuition, we will consider each of the
four classes (see Table I) in turn. For simplicity, we will
discuss these in the solvable limit λ = 0,� > 0, for which
there is zero amplitude to create any edges with confined spin
labels; however, the physical properties are not restricted to
this special point but characterize the condensed phase.

The first possibility is that the condensed phase can be
described by a Zm Potts gauge theory. To see this, consider
the example p = 8, m = 2. We can view the spin labels
s = 0, . . . ,7 as representing seven possible electric fluxes that
can exist on each edge of the lattice, associated with fractional
charges qs = 0, 1

8 , . . . , 7
8 . The possible magnetic fluxes in the

theory are then 2πn,n = 1, . . . ,7. The fundamental excita-
tions in the uncondensed phase are closed flux tubes of flux
2πn, and open flux tubes with flux 2π (8q) which terminate at
vertices with charge q.

For λ/� = 0, only the two spins s = 0,4 remain in the
low-energy Hilbert space. If we keep only these two spins,
the vertex condition requires that the number of edges with
s = 4 at each vertex must be even; in other words, it reduces
exactly to the vertex condition of the Z2 model. Further, if we
keep only edge spins s = 0,4, then �̂4 ≡ 1, and the plaquette
projector simply flips all spins around a plaquette. Thus, our
solvable Hamiltonian for the condensed phase is exactly that
of ZPotts

2 gauge theory.
What has become of our charge-flux-tube bound states? In

the condensed phase, the only deconfined charge is q = 1
2 ,

which lies at the end of a flux tube of flux 8π . In the
uncondensed phase, this magnetic flux tube is physically
observable (and indeed costs energy per unit length) since it is
measured by lines of electric flux corresponding to charge
q = 1

8 , 3
8 , . . . . Electric flux lines corresponding to q = 1

2 ,
however, can not distinguish between a flux 8π and a flux
0, and the q = charges are the only deconfined excitations in
the condensed phase. The only other low-energy excitation in
this phase is the closed vortex loop of flux 2(2n + 1)π , about
which a charge 1

2 has a Berry phase of π . (All such vortex loops
are physically indistinguishable in the condensed phase.) This
is exactly the spectrum of Z2 gauge theory.

Next, consider p = 4, m = 2. The associated electric
charges are q = 1

4 , 1
2 , 3

4 , bound to the ends of flux tubes of
flux 2π (4q). For λ/� = 0, the only remaining electric flux
is 1

2 , and the possible charged excitations are q = 1
2 , bound

to flux tubes 4π . These fluxes are physically undetectable
by objects of charge 1

2 , so that the charges are deconfined.
The condensed phase also has vortex loop excitations, of
flux 2π ≡ 6π . Indeed, the only difference from the previous
example is that the charge 1

2 has Berry phase 2π , rather than
4π , with its associated flux tube. As we show in Appendix E,
this describes a Z2 gauge theory with fermionic sources.

Third, consider p = 6, m = 2. Here, again the electric flux
that remains for λ/� = 0 is 1

2 ; charge- 1
2 excitations are now
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bound to the end points of tubes of flux 6π . These flux tubes
have a Berry phase of π with particles of charge 1

2 , meaning
that they are physically observable, and thus cost a finite energy
per unit length. The charge- 1

2 excitations (the only possible
charges in this limit) are therefore confined. Indeed, this model
is exactly the p = 2 CAWW model discussed in Sec. III A1.

Finally, consider p = 8, m = 4. In this case, there are
four electric fluxes that remain for λ/� = 0, of strength
1
4 , 1

2 , and 3
4 . The corresponding charges are bound to flux

tubes of strength 4π, 8π , and 12π , respectively. The first
and last of these fluxes have Berry phase π with objects
of charge 1

4 , and thus are physically observable. A flux of
8π is physically unobservable, so that there is a deconfined
excitation of charge 1

2 (corresponding to s = 4 in the original
spin basis). According to our criteria above, this excitation is
a boson. The excitations of charge 1

4 , 3
4 are confined. This

model is therefore intermediate between the Potts gauge
theories and the CAWW models: it has deconfined charge
and nontrivial topological order, but the number of deconfined
charges (and the ground-state degeneracy) is less than the
number of deconfined spin labels.

V. ISING GAUGE TRANSITIONS IN WALKER-WANG
MODELS FOR SU(2)k

The CAWW models are only a subset of the possibilities
that can be realized following the construction of Ref. 21.
In this section and the next, we will discuss transitions in a
different family of Walker-Wang models, whose low-lying
excitations include non-Abelian anyons confined to their
surfaces. We will call these the SU(2)k Walker-Wang models,
as on lattices with boundaries, their surface states have the
topological order of a chiral SU(2)k Chern-Simons theory.

In the SU(2)k Walker-Wang models, each edge is endowed
with a spin variable s = 0, 1

2 , . . . ,k/2, where k is a parameter
of the model. The vertex operator acts according to

Q̂V
i j

k

=
l i j

δkl
i j

k

(40)

where

i × j ≡
min{i+j,k−i−j}∑

l=|i−j |
l. (41)

Notice that if k = ∞, we recover the usual rules for the
addition of spin angular momenta, and Q̂V has eigenvalue
1 on states where the total angular momentum is conserved at
the vertex V . Equation (41) enforces a “deformed” version of
this condition, appropriate to models with a finite number of
possible values of the total (deformed) spin angular momentum
on each edge.46

As in the Abelian models, the plaquette operator B̂P

is a superposition of operators that raise all spins on the
edges around the plaquette by s [using the rules (41)], and
simultaneously multiply the wave function by a configuration-
dependent complex coefficient

B̂P =
k∑

2s=0

�̂P,s . (42)

In this case, we can not separate the action into independent
raising and phase operators, as in general raising all spins on
the edges of P by s will create a superposition of configurations
with different spin labels; each element of this superposition
may have a different phase. Thus, we denote by �̂P,s the
combination of raising operator and phases. (The precise
form of these operators is given in Refs. 21 and 28; see also
Sec. VI A.)

Following the procedure that we used in the Abelian
models above, we will seek to identify possible edge terms
(transverse fields) that we can add to the solvable Walker-Wang
Hamiltonian to produce a phase transition. In the Abelian
case, the transverse-field operators ĥe were sums of terms
Ŝn

e,+ + Ŝn
e,−, each of which has eigenvalues of the form

cos(2πnse/p). For the SU(2)k models, it is convenient to
choose a slightly different form of the transverse field:

ĥ(m)
e |se〉 = κe sin

(
π (2se + 1)(2m + 1)

k + 2

)
|se〉, (43)

where se,m ∈ {0, 1
2 ,1, . . . ,k/2}, and κ−1

e = sin[π (2se +
1)/(k + 2)]. This has a similar effect to adding a term of
the form cos(4πjs/k), but assigns slightly different energy
penalties to the various edge spins. The advantage of the
form (43) is that it obeys the rules (41) for combining spins:

ĥ(m)
e ĥ(n)

e |se〉 =
∑

l∈m×n

ĥ(l)|se〉. (44)

The excitations created by the operator ĥ(m)
e are therefore a

vortex loop “of spin m” and can be combined according to the
same rules [Eq. (41)] we use to raise and lower the edge spins.

For most choices of k,m, the transverse field will assign an
energy cost to every nonzero spin, and the condensed phase is
the “trivial phase” in which all spin labels are confined. (If we
choose m = 1

2 , for example, this is true for all k). We will not
discuss these transitions in detail, but note that they can not be
mapped onto the transitions discussed above: the commutator
of ĥ(m)

e with B̂P is not a sum of terms of the form (29), and the
condensing vortex loops do not behave like vortex loops in a
ZPotts

p (or related Abelian) model.
There are, however, some choices of the transverse-field

term which do not lead to a transition into the trivial phase.
These will be our primary interest here. In Sec. VI, we will
describe a general method to determine the topological order
of the condensed phases for general m.

We begin, however, with two examples. First, if we take
m = 1,

ĥ(1)
e |k/2〉 = κ1|k/2〉, ĥ(1)

e |0〉 = κ1|0〉 (45)

with κ1 = sin( 3π
k+2 ). It is not hard to show that the eigenvalue

of ĥ(1)
e for all other spin states is smaller, so that this transverse

field assigns an energy penalty to any edge label except 0,k/2.
In this case, we will have little to say about the behavior near the
transition. However, we will show that the condensed phase is
(1) the Z2 gauge theory if k is divisible by 4; (2) the Z2 gauge
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theory with fermionic charges if k = 4n + 2; (3) the p = 2
CAWW model (Sec. III A1) if k is odd. The difference between
these cases arises from the different possible phases incurred
by acting with �̂P,k/2 on configurations with se = 0,k/2 only,
as we discuss in Sec. VI.

A second interesting possibility is to take m = k/2. In this
case, we have

ĥ(k/2)
e |se〉 = − cos[(2se + 1)π ]|se〉 = (−1)2se |se〉 (46)

such that −ĥ(k/2)
e assigns an energy penalty to any state where

the edge e carries a half-integer spin. This case is the 3D
analog of the Ising transitions studied by Refs. 4 and 8. We will
show that as in the 2D case, for every k the phase transition
is identical that of the Z2 gauge theory. The nature of the
condensed phase, however, depends strongly on k, as we shall
see.

A. Transitions in SU(2)2

We begin by studying the simplest model in this family,
the SU(2)2 Walker-Wang model. Here, there are only three
allowed spin labels, s = 0, 1

2 ,1, and since k/2 = 1, the two
choices (45) and (46) of transverse field coincide.

The Hamiltonian we will study is

H = 1

2
�

∑
P

(1 − �̂P,1) − M
∑
V

Q̂V + λ√
2

∑
P

�̂P,1/2

−�
∑

e

ĥ(1)
e (47)

with the action of ĥe given by Eq. (46).
The action of the vertex term is:

Q̂V | i j
k

〉 = 1 (0, 0, 0) (0, 1, 1) 1
2,

1
2,1

1
2,

1
2,0

)

0 otherwise
(48)

where it is understood that rotations of these combinations
have the same eigenvalue under Q̂V . Since the eigenvalue of
Q̂V is conserved at every vertex, we will restrict our attention
to states where these eigenvalues are 1 everywhere. In this
restricted Hilbert space, edges of spin- 1

2 always occur in closed
loops, while edges of spin-1 can either form closed loops or
open lines ending at vertices with two spin- 1

2 edges.
We have separated the action of the plaquette operator into

two terms:

λ(1 − B̂P ) → 1

2
�(1 − �̂P,1) + λ√

2
�̂P,1/2. (49)

The term proportional to � changes the spin on each edge
of the plaquette P by an integer amount, and thus commutes
with the transverse-field term (and in fact with all terms in the
Hamiltonian). The term proportional to λ changes the spin by
a half-integer amount and therefore changes the eigenvalue of
ĥe on all edges of P . (Walker and Wang’s21 definition of the
plaquette operator B̂P is obtained by setting � = λ.)

In more detail, the action of the operators �̂P,s is as follows.
�̂P,1 raises the spin on every edge of P by 1, using the rules
[see (41)]

1 × 0 = 1, 1 × 1 = 0, 1 × 1/2 = 1/2. (50)

In other words, spin- 1
2 edges remain spin- 1

2 edges, while edges
of spin-0 and spin-1 are interchanged. (The operator �̂P,1

also in general multiplies the wave function by a nonzero
configuration-dependent coefficient; we will have more to say
about these coefficients presently.) �̂P,1/2 raises the spin on
every edge of P by 1

2 , using the rules [see (41)]

1/2 × 0 = 1/2, 1/2 × 1 = 1/2, 1/2 × 1/2 = 0 + 1.

(51)

In other words, it turns edges of spin-0 or -1 into edges of
spin- 1

2 , and edges of spin- 1
2 into a superposition of edges

of spin-0 and spin-1. Again, this action also multiplies the
result by a configuration-dependent coefficient. Importantly,
this coefficient is 0 for any configurations where the eigenvalue
of Q̂V has changed. This ensures that the plaquette and vertex
terms commute.

We now wish to prove the two assertions following
Eqs. (45) and (46): first, that this transition is identical to
the confining transition of the Z2 gauge theory, and second,
that the condensed phase at large �/λ can be described by the
deconfined phase of Z2 gauge theory with fermionic sources.

We begin with the second of these assertions. As in previous
sections, to understand the behavior of the condensed phase, it
suffices to consider the Hamiltonian at λ = 0, � > 0. In this
case, the spin on each edge is conserved modulo an integer, and
each edge of spin- 1

2 carries an energy cost of �: spin- 1
2 labels

are confined, in the sense described in Sec. II. Restricting our
attention to states containing only the deconfined spin-1 label,
the effective Hamiltonian has the form

H = 1

2
�

∑
P

(1 − �̂P,1) − M
∑
V

Q̂V , (52)

where Q̂V penalizes states with an odd number of spin-1 edges
entering the vertex V . In the restricted Hilbert space, �̂P,1

simply interchanges all spin-0 edges of P with spin-1 edges,
and all spin-1 edges with spin-0 edges, multipliying the result
by a coefficient ±1. Apart from a possible sign in the action
of the plaquette term, we recognize this as the Hamiltonian
for a Z2 gauge theory, whose possible excitations are vortex
loops of plaquettes on which �̂P,1 = 0, and vertex violations
(charges) where an odd number of 1 spins meet at a vertex. As
we mentioned in Sec. IV B, the fact that the matrix elements
of the plaquette term are always real ensures that the charges
are deconfined; the effect of the minus signs in this case is to
render the charges fermionic, as we prove in Appendix E.

The Hamiltonian (52) is, of course, valid only precisely
at λ = 0; however, the qualitative features of the Z2 gauge
theory describe the low-energy physics of the entire phase.
Since spin- 1

2 edges are confined throughout the large �/λ

phase, these loops can never appear at long length scales,
and Eq. (52) is the effective Hamiltonian at long wavelengths
throughout this phase.

Having understood the condensed phase, let us understand
the nature of the transition. This is most easily done if we
restrict our attention to states for which

Q̂|ψ〉 = |ψ〉, 1
2 (1 + �̂P,1)|ψ〉 = |ψ〉, (53)
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i.e., states with no vertex violations, and no spin- 1
2 vortices.

(�̂P,1 does not measure the spin-1 vortices generated by ĥ(1)
e .)

In this subspace, for � = 0 the model contains only one type
of excitation: a plaquette defect visible only to �̂P,1/2, which
costs energy λ. This is precisely the plaquette defect created
by the transverse-field term ĥ(1)

e , which commutes with �̂P,1

and anticommutes with �̂P,1/2. Further, (ĥ(1)
e )2 = 1, exactly

as for the transverse-field term in the Z2 gauge theory. Thus,
we might expect that the states in the Hilbert space defined
by Eq. (53) can be mapped onto states of the pure Z2 gauge
theory, by identifying the vortex loops created by ĥ(1)

e with the
vortex loops in the gauge theory.

It is instructive to construct such a mapping directly in the
spin eigenbasis. On each edge, we may map the degrees of
freedom of the SU(2)2 model to that of a Z2 gauge theory via

se → 2se (mod2). (54)

The reason that this is a sensible mapping is that at each vertex
V , the number of half-integer spins entering V must be even;
similarly, in the Z2 gauge theory the number of edges with s =
1 must be even. Thus, in the absence of vertex violations, the
mapping is one from closed loops of spin- 1

2 to closed loops of
spin-1. Further, the transverse-field term ĥ(1)

e = (−1)2se maps
exactly to the transverse-field term ĥe = (−1)se of theZ2 gauge
theory. Finally, the operator �̂P,1/2 interchanges integer and
half-integer spins, while the plaquette term in the Z2 gauge
theory interchanges se = 0 and 1.

The mapping (54), however, clearly fails to capture many
of the features of the ground state of the SU(2)2 Walker-Wang
model. First, as a mapping of spin configurations it is many-to-
one: for a given choice of spin- 1

2 loops, there are many possible
ways to occupy the remaining edges of the lattice with spin-0
or -1 states without violating the vertex condition. Second, the
matrix elements of �̂P,1/2 are not all equal in magnitude, as
is the case for the Z2 gauge theory. Third, matrix elements of
the plaquette term in the Z2 gauge theory are also real and
positive, while for SU(2)2 they can be negative or complex.

It is thus somewhat surprising that the expectation values of
all operators required to describe the phase transition are the
same in both models. Essentially, this occurs because operators
that commute with the conditions (53) can do only one of two
things: either they measure the spin on each edge mod 1 (and
are thus a linear combination of transverse-field operators) or
they are linear combinations of �̂P,1 (which in any case must
act as the identity on our restricted Hilbert space) and �̂P,1/2.
As we show in Appendix C, the fact that the commutators of
these operators have the same structure as their analogs in Z2

gauge theory ensures that their expectation values are identical
in both models.

For example, for � = 0 any such expectation value can be
expressed in terms the expectation value of an operator that is
diagonal in the the spin basis, after moving all �̂P,1/2, �̂P,1

terms to the right of all ĥe terms using the commutation rela-
tions, and using the fact that �̂P,1/2|
0〉�=0 = �̂P,1|
0〉�=0 =
|
0〉�=0. Expectation values of operators diagonal in the spin
basis are insensitive to the relative phases between different
spin configurations in the ground states of the two models;
they depend only on the probability of being in a given
loop configuration. As we discuss in Appendix C, in the

SU(2)2 model adding (or removing) a closed loop of spin- 1
2

edges halves (or doubles) the number of possible integer spin
configurations compatible with the given choice of spin- 1

2
loops. However, this is exactly compensated for by the fact
that the coefficients in the action of the plaquette projector
multiply such configurations by a factor of

√
2 (or 1/

√
2)

relative to the state from which they were derived. Hence, the
probability to be in a given loop configuration, and hence the
expectation value of any product of transverse-field terms in
the � = 0 ground state, is the same in both models.

1. Z2 Transitions in SU(2)k

k = 2 is a special case, in which the condensed phase is
a Potts gauge theory, and the transition is also of the form
described in Sec. III A1. For larger values of k, this is no
longer the case. Here, we briefly comment on the more general
situation.

First, we have already observed that we can always add
a transverse-field operator of the form ĥ(k/2)

e = (−1)2se . For
transitions where this is the only transverse field, if we restrict
our attention to states satisfying

Q̂|ψ〉 = |ψ〉, 1

D

(
1 +

�k/2�∑
s=1

�̂P,s

)
|ψ〉 = |ψ〉 (55)

(where D is an appropriate normalization, such that the
operator has eigenvalues 0 and 1), the mapping (54) between
the low-energy degrees of freedom in the SU(2)k model and the
Z2 theory remains valid. The rules for allowed combinations of
angular momenta at a vertex ensure that edges of half-integer
spin form closed loops, allowing us to map from closed
1
2 -integer spin loops to closed integer spin loops in the Z2

gauge theory. Here again, because the only excitations relevant
to the transition are vortex loops created by ĥ(k/2)

e , which are
Ising like, as the operator squares to the identity, one can show
that all correlation functions in the limit (55) are equal to their
Z2 analogs. This is discussed in more detail in Appendix C.

The solvable Hamiltonian describing the physics of the
condensed phase is simply

H = M
∑
V

Q̂V + �
∑
P

[
1 − 1

D

(
1 +

�k/2�∑
s=1

�̂P,s

)]
. (56)

The Hilbert space in the solvable limit contains only integer
spins on the edges. For k > 2, however, the vertex condition
on these integer spins is not that of a Zp gauge theory: for
example, if k = 4, we have

1 × 1 = 0 + 1 + 2 (57)

and vertices with three spin-1 edges, or two spin-1 edges and
a spin-2 edge, are allowed. We will see in the next section how
to determine the topological characteristics of these condensed
phases.

VI. TOPOLOGICAL ORDER AND CONFINEMENT IN
NON-ABELIAN WALKER-WANG MODELS

Having investigated the confining phase transitions in
Abelian and SU(2)2 Walker-Wang models, we now show
that many of the results found follow naturally from the
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mathematical structures (“premodular categories”) used to
define Walker-Wang models. While the methods of this section
will not furnish us with the details of the phase transition, they
do tell us how topological order changes for any confining
transition in a Walker-Wang model. Before setting out a
general recipe, we summarize the basic properties of general
WW models and their corresponding categories in Sec. VI A
(see Ref. 28 for details). Then, in Sec. VI B we show that
the results of Secs. IV B and V A are simply described in
terms of the M matrix (closely related to the S matrix) of the
categories corresponding to the CAWW and SU(2)k Walker-
Wang models, respectively. Following this, we describe the
condensation in SU(2)k for the cases k > 2 which did not
yield to the methods of Sec. V.

A. General Walker-Wang models and the M matrix

General WW models have a Hilbert space consisting of a
p-state system on each edge of the lattice shown in Fig. 4. We
denote the p possible states by the labels {a0,a1, . . . ,ap−1},
where a0 is the identity element; for the models of Sec. III,
these labels were the possible spins se = 0,1, . . . ,p − 1 with
se = 0 corresponding to a0. Each label in the set has a
conjugate label also in the set, which we denote ai . [For the
Abelian models, s = p − s, while for SU(2)k , a = a.] As we
saw in Sec. III, if a �= a, to define B̂P and Q̂V we must include
arrows on each edge to specify whether the operator measures
a or a. The general Hamiltonian has the familiar form

H = λ
∑
P

(1 − B̂P ) − M
∑
V

Q̂V − �
∑

e

ĥ(m)
e , (58)

where ĥ(m)
e is defined below, and the operators obey the

commutation relations in Eqs. (19) and (20). For now, we
tune the model to an exactly solvable point by setting � = 0.
The Q̂V term ensures the ground state is a superposition of
configurations for which only certain combinations of the
p labels are allowed to meet at each vertex. The allowed
combinations are those that satisfy the fusion rules of the
category, as in Fig. 6(a); we call configurations that satisfy this
condition at every vertex “string-net” configurations.

The plaquette term B̂P is subtler. Just as in the Abelian case
detailed in Eq. (5), plaquette violations can be labeled by their
“fluxes,” which are drawn from the same set {a0,a1, . . . ,ap−1}
as the edges (see Sec. III A). These fluxes can be measured by
a plaquette operator analogous to �̂P , which raises or lowers
the edge labels on the boundary of the plaquette P according to
the rules of the category (see Refs. 21 and 28 for more detail).
Since B̂P and Q̂V commute, the result is that the ground state
is a superposition of different string-net configurations, with
coefficients that are related by the set of graphical rules in
Figs. 6(b)–6(e). Only certain combinations of graphical rules
in Figs. 6(a)–6(e) are consistent with one another; when they
are consistent, the resulting structure is called a premodular
category.

The p × p sized “monodromy” or M matrix (which is es-
sentially the modular S matrix with a different normalization)
shown in Fig. 6 contains much of the useful information in the
category. We will use this object to ascertain the topological
order of phases on either side of the confining transition. Before

(a) Vertex 
constraints

(b) Deformation

(c) Loop 
collapsing

(d) Fusion

General pre-modular category

(e) Braiding

a

b c
Qv abc

1, if a, b, c allowed

0, otherwise.

a a

a

a b

b

a

c

d

e
b

a

c

d

f
f 0

p 1
Fd; f e

abc

Mab

1

a b

b c

a

b c

a

a

(f) M-matrix

Ra
bc

FIG. 6. (a) Represents the vertices allowed by the category; the
ground state of a Walker-Wang model will involve only these types of
vertices. The diagrams in (b)–(d) serve two purposes. First, they tell
us the relative amplitudes of string-net configurations in the ground
state, e.g., row (c) tells us that configurations related by removing
a closed loop carrying label a occur with a relative factor of �a in
the ground state. Second, these diagrams provide a neat graphical
mnemonic for the definitions of string operators. Note that there is
a rule conjugate to (e) obtained by turning the overcrossing into an
undercrossing on the left-hand side, and sending R → R∗ on the
right-hand side.

doing so, we note that it satisfies45

|Mab| � 1, Ma0 = 1 ∀a ∈ {a0,a1, . . . ,ap−1}. (59)

In Ref. 28, we showed that the spectrum of point defects (and
the associated topological order) can be deduced from the M

matrix (or the closely related S matrix) of the category. Our
main result was that point defects carrying charge j �= 0 are
deconfined in the bulk if and only if Mij = 1 for all possible
labels i.47 As an example, we now use the M matrix to shed
light on Walker-Wang models in the p = 2 models discussed
in Sec. III A1. The p = 2 Potts gauge theory is a Walker-Wang
model based on the so-called Z(0)

2 category, while the p = 2
CAWW model is based on a category Z(1/2)

2 . Both categories
have edge labels in {0,1}, and fusion rules specifying that an
even number of label-1 edges must enter each vertex. The full
properties of these categories are listed elsewhere,45 but here
we require just their M matrices

MT.C. =
(

1 1

1 1

)
, M3DSem =

(
1 1

1 −1

)
. (60)

In the case of the p = 2 Potts gauge theory (or “3D toric
code”34,48), we see that both columns of M are filled with 1,
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so that particles carrying label 1 are deconfined. On the other
hand, the M matrix of the p = 2 CAWW model (also known
as the “3DSem model”28) has only its first column filled with
1, and so there are no nontrivial deconfined particles in the
bulk of this model. In the less trivial non-Abelian example
studied in Sec. V A, the Walker-Wang model based on SU(2)2

has labels in {0, 1
2 ,1} and an M matrix

MSU(2)2 =

⎛⎜⎝ 1 1 1

1 0 −1

1 −1 1

⎞⎟⎠ . (61)

Thus, the SU(2)2 model from Sec. V A has no deconfined bulk
species since no column except the first is all unity. Having
stated the correspondence between the M matrix and the
spectral properties of the corresponding Walker-Wang models,
we now use it to understand the condensation transitions
between different models.

B. Confining transitions from the M matrix

Ramping up � in Eq. (58) drives the system through a
confining transition, where loops proliferate. In this section,
we will describe the effect of this transition on the spectrum of
the theory. To begin, pick an edge e, and suppose it is labeled
j in the n̂ direction. To create a small vortex loop of flux m

encircling e in a right-hand sense with respect to n̂, define

v̂(m)
e |j 〉 = Mmj |j 〉. (62)

In the simplest case, starting with the � = 0 ground state, the
state formed by v̂(m)

e |GS〉 has 0 flux on every plaquette except
those bordering e. If we set ĥ(m)

e = (v̂(m)
e + (v̂(m)

e )†)/2, then the
resulting operator creates a superposition of flux m and flux
−m loop around the edge e. Using the properties of the M

matrix in Eq. (59) it is clear that the theory in the � → ∞
limit consists of a string net with edge labels j satisfying
Mmj = 1, although we are unable to say precisely how the
system behaves for intermediate �.

Starting with a category with labels {a0,a1, . . . ,ap−1} and
proliferating vortex loops of flux m, we can use the M matrix
to answer most questions about the topological order of the
condensed phase. First, the labels present in the condensed
phase are precisely {̃a0,̃a1, . . . ,̃al−1} such that Mãim = 1. The
model obtained in the � → ∞ limit is a new Walker-Wang
model based on a category which has the same graphical rules
as the old category, except the rules are now restricted to labels
{̃a0 ,̃a1, . . . ,̃al−1}, i.e., this is now a subcategory of the original
category. In particular, the new M matrix is simply the l × l

matrix M̃ij = Mãi ãj
. Rather nonintuitively, if particles carrying

label ã are confined for small � (i.e., Mãai
�= 1 for some ai),

they can be deconfined in the condensed (large-�) phase since
it is possible that Mããi

= 1 for the l labels ãi present in this
phase.

1. Abelian categories

We now reproduce some of the results of Sec. IV B using
the M-matrix formalism. The CAWW models of interest have
a p-state system on the edge of each lattice, and the transition
in Sec. IV B was driven by proliferating vortex loops with an
equal superposition of flux labels in {m,2m, . . . ,p − m} [see

Eq. (31)]. However, proliferating only the ±m vortex loops
gives the same ground state in the � → ∞ limit (although the
behavior at intermediate �/λ may differ). To parallel more
closely our treatment of the non-Abelian models, we will
use this alternative form for the transverse field here, as it
reproduces the topological orders found in Sec. IV B for the
condensed phase.

In the uncondensed phase, the M matrix takes the
form Mab = e±i2πab/p with a,b ∈ {0,1, . . . ,p − 1}, where
we take ± for p even or odd, respectively. If m labeled
vortices are condensed, edges with label a develop a gap
of ∼�(1 − Re [Mam]) � 0, so the labels surviving on the
edges of the lattice are precisely those satisfying Mam = 1,
i.e., {0,p/m,2p/m, . . . ,(m − 1)p/m}. It follows readily that
as � → ∞, the ground state of Eq. (58) is precisely that of
Sec. IV in the same limit. Moreover, this ground state can be
thought of as arising from a Walker-Wang model with the same
graphical rules as in the uncondensed phase, but restricted
to the surviving labels. The effective M matrix of the new
model is an m × m matrix of the form M̃xy = e±i2πxyp/m2

,
with rescaled labels x,y ∈ {0,1, . . . ,m − 1}, and we can use
this to diagnose the topological order of the vortex phase. We
now summarize the cases presented in Table I using this new
formalism:

(i) p/m2 = 2n: Clearly, M̃xy = e±i4πxyn = 1 for all x,y,
so that all m remaining edge labels are deconfined. Therefore,
the model has the topological order of a Zm gauge theory. A
pair of particles carrying label x have mutual bosonic statistics
because the R matrix [Fig. 6(e)] of the category satisfies Rxx

2x =
e∓i2πx2n = 1 (see Appendix E).

(ii) p/m2 = 2n + 1: Again, M̃xy = e±i2πxy(2n+1) = 1, so
the model appears to have the topological order of a Zm

gauge theory. However, in this case a pair of particles with
odd charges x exhibit fermionic statistics, a fact that follows
from the form of the R matrix Rxx

2x = e∓iπx2n = (−1)x (see
Appendix E).

(iii) p/m2 = n/m an irreducible fraction: In this case,
gcd(p/m,m) = 1, which implies that M̃xy = e±i2πxyn/m is
only ever equal to 1 when xy = 0 mod m, which in turn
implies that all point particles are confined in the bulk. Thus,
the resulting model is a CAWW, and only has surface (rather
than bulk) topological order.

(iv) p/m2 = n/b with 1 < b < m: Letting n/b be a fraction
in lowest terms implies that M̃xy = e±i2πxyn/b. Clearly, m/b

columns of M̃ are filled with 1, which implies there are
(m/b) − 1 (nontrivial) deconfined species, and m(1 − 1/b)
confined species. Thus, the condensed phase has both bulk
topological order and surface topological order.

2. SU(2)k

Having seen that the results of Table I are reproduced
precisely by the M-matrix formalism, we now investigate a
non-Abelian example. The category SU(2)k has k + 1 labels
{0, 1

2 ,1, . . . , k
2 }, and the M matrix takes the form45

Mab = sin
( (2a+1)(2b+1)π

k+2

)
sin

(
π

k+2

)
sin

( (2a+1)π
k+2

)
sin

( (2b+1)π
k+2

) . (63)

We now summarize the results of proliferating label m vortices.
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Condense half-integer m: For half-integer m, one can
check that Mmj < 1 unless j = 0. Therefore, proliferating
half-integer vortices m confines all nontrivial edge labels,
leading to the trivial string net with only the zero label in
the � → ∞ limit.

Condense integer m with 0 < m < k
2 : In this case, Mmj < 1

unless j = 0, k
2 . Hence, proliferating m-label vortices gives a

string-net phase with two labels 0, k
2 . The effective M matrix

for these remaining particles takes the form

M̃ ∝
(

1 1

1 (−1)k

)
. (64)

Therefore, in the case that k is even, the resulting phase has
the topological order of a Z2 gauge theory (or equivalently
the 3D toric code). In the case that k is odd, the phase has the
“surface topological order” of the 3D semion model, i.e., the
p = 2 CAWW model.

Condense m = k
2 , with k odd: In the case that k is odd,

proliferating the k
2 vortex loops leads to a string-net state with

only the integer labels {0,1, . . . , k−1
2 }. This is because Mj k

2
< 1

unless j is an integer. Specifying integer particle labels a =
x, b = y leads to an effective M matrix

M̃xy = sin
( (2x+1)(2y+1)π

k+2

)
sin

(
π

k+2

)
sin

( (2x+1)π
k+2

)
sin

( (2y+1)π
k+2

) , (65)

where x,y ∈ {0,1, . . . ,w − 1}. This new M matrix has M̃xy <

1 for all x,y > 0, and therefore all excitations are confined
in the vortex phase. The condensed phase is described by a
category called SO(3)k .45

Condense integer m = k
2 : In the case the k is even, we again

find that Mj k
2

= 1 precisely when j ∈ {0,1, . . . , k
2 }, hence

proliferating vortices with flux k
2 leads to a string-net phase

with precisely these integer labels. In this case, however, two
columns of the new M matrix [obtained by restricting Eq. (63)
to integer labels] are formed entirely of 1’s. These columns
correspond to the 0, k

2 -labeled particles, which are the only
deconfined particles. We saw an example of this transition in
the k = 2 case where we proliferated the label-1 vortex, and
we were left with ZPotts

2 topological order.

3. SU(N)k

Among the possible condensation transitions in SU(2)k ,
therefore, are two notable families: first, by condensing an
“integer spin” vortex loop, we arrive at a condensed phase
described by aZ2 model, which has bulk or surface topological
order if k is even or odd, respectively. Second, condensing
the “highest-spin” (k/2) vortex loop generically results in a
non-Abelian topological phase which also has bulk (surface)
topological order if k is even (odd). Moreover, this transition
has the same low-energy description as the ZPotts

2 transition in
Sec. II.

Interestingly, an analog of both of these exists in SU(N)k
models: proliferating vortex loops in the adjoint representation
leaves a set of deconfined edge labels with ZN fusion rules.
Further, there is always an order-N simple current; condensing
the corresponding species of vortex loops produces a transition
identical to that of the ZPotts

N gauge theory. Although we will

not derive these results here (see Ref. 49 for the necessary
information about these categories), intuitively both families
result from the fact that the group SU(N ) has a center ZN ,
which is also present in the related tensor category. The two
families of transitions correspond either to condensing the
vortices associated with this ZN subgroup or condensing
vortices that have trivial Berry phase only with the ZN

subgroup.

VII. CONCLUSION

In this work, we have compared a family of phase transitions
in the relatively well-studied Zp Potts gauge theories with
a related family in the recently introduced Walker-Wang
models. In both models, the transitions that we consider can
be understood as the condensation of vortex loops (i.e., loops
of plaquette defects). Both admit an identical mathematical
description of the transition, allowing us to deduce from the
work of Ref. 31 that all of the corresponding phase transitions
are first order. For the Abelian models, clocklike variants of
both Walker-Wang and lattice gauge models exist; in these
models for p � 5, the single first-order transition splits into
two second-order transitions separated by a gapless Coulomb
phase.38–40

However, the relationship between the topological orders
of phases connected by such condensation transitions is
fundamentally different in the gauge theories and the Walker-
Wang systems. The uncondensed (or deconfined) phase of
the ZPotts

p gauge theory is a topologically ordered phase with
p deconfined charges (i.e., vertex excitations), one for each
possible value of the electric flux (i.e., edge spin label).
Depending on the value of p, there may be several possible
condensation transitions. For any p, we can simultaneously
condense all magnetic fluxes. This confines all electric flux
lines, thereby confining all charges and completely destroying
the topological order. If p is not prime, it is also possible
to condense a subset of the magnetic fluxes. This confines
only a subset of electric flux loops (corresponding to the
charges that have nontrivial Berry phase with the condensed
vortex lines), and leaves the remaining electric fluxes and
their corresponding charges deconfined. Thus, there are also
condensation transitions between the ZPotts

p phase and a ZPotts
m

phase, where m divides p. An example of the general structure
of these phase diagrams is shown for p = 4 in Fig. 7. In all
of these transitions, there is a reduction in the ground-state
degeneracy, and topological entanglement entropy, as the
system enters the condensed phase.

In contrast, in the uncondensed phase of the CAWW
models, there are no deconfined excitations in the bulk. The
ground state is nonetheless a string net, with loops (or nets,
for p > 2) of nontrivial “electric flux” (i.e., nonzero spin, in
the language of Secs. II and III). (Here, we use “electric”
and “magnetic” flux by analogy with the corresponding
objects in the ZPotts

p gauge theory, although for the CAWW
models the analogy is not exact.) Because the ground state
contains extended loops (or nets), here too we can add a
perturbation that condenses loops of “magnetic flux” (i.e.,
plaquette defects), driving a phase transition that confines
“electric flux” (i.e., edges carrying certain spin labels). As
for the ZPotts

p case, simultaneously condensing all magnetic
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Potts topological order
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Potts

topological order
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FIG. 7. (Color online) A sketch of the phase diagram for the
ZPotts

4 model, as a function of the transverse-field strengths �1 (2π

vortex loops) and �2 (4π vortex loops), where charge is quantized in
multiples of 1

4 (mod 1). For small �1,�2, there is a phase with ZPotts
4

topological order. This is separated by first-order phase transitions
from both the trivial phase at large �1 and a phase with ZPotts

2

topological order at large �2. For large �1 and �2, there is an additional
first-order phase boundary between these two condensed phases. The
three first-order lines meet at a triple point. The location of the phase
boundaries is a rough guide, based on numerical analysis of a very
similar model by Ref. 50.

flux loops engenders a transition to a trivial phase, in which
all electric flux lines are confined. If m divides p, however,
we may once again condense a subset of the possible
magnetic fluxes, leaving m − 1 deconfined types of electric
flux loops. Surprisingly, many of the latter condensed phases
have bulk topological order and deconfined bulk excitations:
the topological ground-state degeneracy grows as the system
is driven into the condensed phase.

As we discussed in Sec. III, in general we can not rule out
the possibility that the uncondensed phase of these CAWW
models is in fact connected to the trivial phase in which all
electric fluxes are confined, once we allow perturbations that
introduce vertex violations into the ground state. (We note,
however, that there are Abelian Walker-Wang models similar to
those discussed here that are known to be symmetry-protected
phases.51) Interestingly, when a subset of the possible vortex
loops is condensed, there are transitions across which the
topological order changes; these are necessarily transitions
between distinct phases. Figure 8 sketches the possible forms
of the phase diagram for p = 4, as a function of the two
transverse fields �1,�2 which create vortex loops of magnetic
flux 2π and 4π , respectively. For small �1,�2, there is a
CAWW region. This region is separated from the regions at
large �1,�2 by a first-order phase transition. For large �2,
the system is in a ZPotts

2 phase (with the slight twist that the
charges are fermions rather than bosons). Since this phase is
topologically ordered, the phase boundary must persist in the
presence of arbitrary perturbations to the Hamiltonian. For
large �1, the system is in a trivial phase with all electric fluxes
confined. The arguments of Appendix C ensure that the phase
boundaries match those of the analogous Zp Potts-type model
shown in Fig. 7. However, since neither topological order
nor symmetry distinguish this phase from the uncondensed
CAWW phase, the phase boundary need not persist when we

2

1

4
CAWW

Trivial

2 ' fermionic '
topological order

4 Π vortices
proliferate

TP

2 Π vortices
proliferate

FIG. 8. (Color online) A sketch of the phase diagram for the
p = 4 CAWW model, as a function of the transverse-field strengths
�1 (2π vortex loops) and �2 (4π vortex loops), where charge is
quantized in multiples of 1

4 (mod 1). For small �1,�2, there are
extended loops of electric flux, as in the solvable p = 4 CAWW
model. This region is separated by first-order phase transitions from
both the trivial region at large �1 and a phase described by a Z2 gauge
theory with fermionic matter sources at large �2. As we have shown,
the locations of the phase boundaries are identical to those of Fig. 7.

allow arbitrary perturbations (which do not commute with the
vertex term Q̂V ) to the Hamiltonian.

We have also briefly discussed transitions in more com-
plicated CAWW models, for which the surfaces admit states
with non-Abelian topological order. In certain cases we are
able to identify the nature of the phase transition here too
(which is again first order) by mapping the transitions onto
transitions in the ZPotts

p gauge theories. We have also outlined
a completely general procedure for deducing the topological
order of any condensed phase, and identified transitions from
CAWW models with the surface topological order of SU(2)k
Chern-Simons theories to phases with bulk topological order.
Thus, the fact that a condensation transition that partially
confines the allowed flux (or spin) labels can deconfine some of
the remaining charges in the bulk is not unique to the Abelian
case.

Returning to our ZPotts
p gauge theories, we note that in

these systems there are generically two types of condensation
transitions: the first-order confining transition, in which vortex
loops or monopoles proliferate, and the Higgs transition, in
which charges condense. [The Higgs transition is second order
for p = 2 and first order for p � 3 (Ref. 30).] It is known23

that the Higgs and confined phases are not distinct (provided
we condense the fundamental charge or fundamental flux).
The qualitative form of the phase diagram in this more general
case is shown in Fig. 9, for the example p = 2.

It is thus natural to ask about the analog of the Higgs
transition in the CAWW models. To drive such a transition,
we must introduce an additional transverse-field term (of the
form �mŴe) which raises the value of the spin on each edge
e. Unlike the case of ZPotts

p gauge theories, however, such
an operator fails to commute not only with the vertex terms
at each end of the edge, but also with the plaquette terms
on some of the surrounding plaquettes. Thus, we can enter
the Higgs phase only by making �m large compared with
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FIG. 9. (Color online) A sketch of the phase diagram both ZPotts
2 (a) and p = 2 CAWW (b) models, with an additional transverse-field term

�m that can be used to drive a Higgs transition. For the ZPotts
2 model, there are two phases: the topologically ordered ZPotts

2 phase, and the trivial
phase which is obtained by condensing either charges or vortex loops. These are separated by a first-order transition (solid line) along the �

axis, and a second-order (dotted line) 4D Ising transition along the �m axis (Refs. 52 and 53). A first-order line emerges at the point where
these two meet, terminating at a second-order critical point. The phase boundaries sketched here are based on the numerical work of Ref. 52.
For the CAWW model, we do not expect the phase diagram to match that of the ZPotts

2 model once �m > 0, so that the loci and nature of the
phase transitions are largely currently unknown. In particular, although the Higgs phase clearly exists (and has the same ground state, in the
limit �m → ∞, as for the ZPotts

2 case), we do not know at present whether there is a phase transition along the �m axis, or indeed to what values
of �m the transition along the � axis persists.

both the coefficient of the vertex term and the coefficient of
the plaquette term. Because of this complication, the Higgs
transition in the CAWW models does not map onto that of the
ZPotts

p gauge theories in a straightforward way. Indeed, it is not
obvious that there is a phase transition at all, given that there is
no clear indicator that the CAWW model represents a distinct
phase. What is clear, however, is that for sufficiently large �m,
the model is again in a trivial phase, with the spins on each
edge diagonal in the Ŵe basis in the limit �m → ∞. Further,
as this trivial phase (together with the trivial confined phase)
is identical to its counterpart in the ZPotts

p gauge theory, the
arguments of Ref. 23 ensure that the � → ∞ and �m → ∞
phases are connected. A qualitative sketch of the resulting
phase diagram is shown in Fig. 9.

Of course, in the ZPotts
p gauge theory, we may also

condense charges other than the fundamental one to obtain
Higgs phases with nontrivial (ZPotts

m ) topological order. In the
CAWW models, such transitions appear not to produce new
topologically ordered phases, however.

In summary, this work has detailed just some of the many
possible phase transitions that can occur in the Walker-Wang
models. Although in the limits that we are able to describe
the transitions themselves are not exotic, the phase diagram
has some very surprising features, including the possibility of
producing topological order from a phase which can not be
distinguished, by either topological order or symmetry, from
the trivial phase. We hope that future numerical or analytical
work will be able to shed light on this rather surprising
phenomenon.
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APPENDIX A: GENERAL FORM OF THE PLAQUETTE
PROJECTOR FOR CONFINED ABELIAN

WALKER-WANG MODELS

Here, we give a general expression for the phase operator
�̂P,m in Eq. (21). As discussed in the main text, �̂P,m is
diagonal in the spin basis, and has eigenvalues eiπnm/p, 0 �
n < 2p − 1. Thus, �̂P,m can be expressed in terms of a product
of the operators Ŝe,± acting on certain edges proximate to the
plaquette P . In order to express �̂P,m in this way, however,
for p > 2 we must exercise some care about our choice of
Ŝe,+ versus Ŝe,−. To avoid confusion, our choice is indicated
in Fig. 10: an arrow pointing in the x̂, ŷ, or ẑ direction on
edge e indicates that we use Ŝe,+ and Ŵe,+; an arrow along
−x̂, −ŷ, or −ẑ on e indicates that we use Ŝe,− and Ŵe,−.

Let us begin by defining operators that measure the spin
(rather than its exponential) on each edge:

ŝe,+|se〉 = se|se〉, ŝe,−|se〉 = (p − se)|se〉, (A1)

O 1
U

U 1

O
P

FIG. 10. (Color online) Orientations of edges used in the defi-
nition of the Walker-Wang plaquette operator, shown for the three
different types of plaquettes on the point-split cubic lattice (see main
text). Edges in ∂P are shown in bold; edges in ∗P are not bold. The
definition of the plaquette operator requires two special edges in ∗P ,
shown here in blue and indicated with the letters O and U. For p even,
we also require two special edges O + 1, U + 1, which are shown here
in red.
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where se ∈ {0,1, . . . ,p − 1}. In terms of the operators Ŝ
introduced in Eq. (1), we have

Ŝe,± = exp[i (2π/p) ŝe,±]. (A2)

1. p odd

For technical reasons (which we discuss shortly), the
definition of the operator �̂P,m depends on whether p is even
or odd. To define �̂P,m, we identify two special “crossed”
edges in ∗P . [Recall that ∗P is the set of all edges connected
to, but not bordering, the plaquette P (these are the nonbold
edges in Fig. 10).] Each plaquette contains one “O” and one
“U” edge, indicated in blue in the figure.

For p odd, we take

�̂P,m = exp

[
i
πm(p − 1)

p
(ŝO,νO − ŝU,νU )

]
, (A3)

where the subscripts U (O) denote the U (O) edges, with
orientations chosen as shown in the figure.

2. p even

For even p, the choice of �̂P,m in Eq. (A3) does not
lead to a well-defined Walker-Wang model. This is because
changing the spin on an O or U edge by p leads to an overall
phase of exp[iπ m(p − 1)] = (−1)m. This is inconsistent with
the notion that the spin state on each edge is defined only
modulo p.

Instead, the phase operator that we use for even p can be
expressed as

�̂P,m = (−1)m exp

⎡⎣i
πm

p

∑
ei∈∗P

ŝei ,νi

⎤⎦ θ̃P ,m, (A4)

where the values of νi = ±1 are indicated in Fig. 10,
as explained above, and θ̃P ,m is defined below. Note that∑

ei∈∗P ŝei ,νi
is always a multiple of p, provided that the vertex

condition is always satisfied. (When the vertex condition is not
satisfied, the expression for �̂P,m is more complicated, but can
be deduced from the form of the Hamiltonian given in Ref. 21.)
Thus, for m even, the first two terms in the product (A4) are
always 1. For m odd, their combination is negative if the net
spin of all edges leaving the plaquette (with the orientations
shown in Fig. 10) is an even multiple of p, and positive if it is
an odd multiple of p.

With the same definitions of O and U edges as used above,
we have

θ̃P ,m = exp

[
i
πm

p
(ŝO,νO − ŝU,νU )

]
[sign(ŝU+1,νU+1 − m)]ŝU,νU

× [sign(ŝO+1,νO+1 − m)]ŝO,νO , (A5)

where U + 1 (O + 1) are edges in ∂P that are adjacent to the
O and U edges, as shown in the figure. Note that here we
take sign(0) = 1. Evidently, since p − 1 and p are coprime, in
either case the possible eigenvalues of �̂P,m are eiπnm/p, 0 �
n < 2p.

Readers familiar with topological quantum field theories
(TQFTs) may wish to note that for p odd, we use the category
SU(p)1 (or Z(N/2−1/2)

N , in the notation of Ref. 45), while for

p even, we use U (1)p/2 (or Z(1/2)
N ).54 For odd p, the 6j

symbols are all unity, and �̂P,m is defined purely by the R

matrices. For even p, the 6j symbols may be negative; the
term exp[i πm

p

∑
ei∈∗P ŝei ,νi

] in Eq. (A4) gives the net effect
of the 6j symbols required to fuse the spin m with the spins
on the edges of P , with orientations given in Fig. 10. (This
term is also present in the 2D Levin-Wen26 models, on which
Walker and Wang’s construction is heavily based.) The term
θ̃P ,m is unique to 3D, and accounts for crossings of the string
labeled m with certain edges in ∗P . (This is explained in more
detail in Ref. 28.) The choice of “O” and “U” edges depends
on the projection (or angle of view) used to determine these
crossings.

3. Spectrum of the plaquette term

Let us begin by deducing a few key properties of B̂P,m ≡
(�̂P )m�̂P,m necessary for understanding the plaquette projec-
tor. First, we prove that

B̂P,m = (B̂P,1)m. (A6)

For odd p, this is immediate since [�̂P ,�̂P,m] = 0 (�̂P,m

acts only on edges that are not raised by �̂P ), and from
Eq. (A3) it is clear that �̂P,m = (�̂P,m)m. For even p, it is
a question of verifying that the two sign terms are indeed
shifted appropriately. (All other terms commute.) To see this,
observe that

[sign(ŝU+1,νU+1 − m)]�̂P |sU+1〉
= �̂P sign[ŝU+1,νU+1 − mod(m + 1,p)]

× sign(ŝU+1,νU+1 − 1)|sU+1〉. (A7)

This holds because (with the choice of orientations given in
Fig. 10) �̂P lowers the eigenvalue of ŝU+1,νU+1 by 1 (mod p);
to compensate for this, we have raised m by 1 (mod p) on
the right-hand side. (Evidently, this identity also holds if we
replace U by O.) From this, we deduce that

[�̂P [sign(ŝU+1,νU+1 − 1)]ŝU,νU [sign(ŝO+1,νO+1 − 1)]ŝO,νO ]m

= (�̂P )m[sign(ŝU+1,νU+1 − m)]ŝU,νU [sign(ŝO+1,νO+1 − m)]ŝO,νO

(A8)

as required.
Second, it follows that

(B̂P,1)p = (�̂P )p�̂P,p = 1. (A9)

This is because (�̂P )p = �̂P,p = 1. For p odd, the latter
follows immediately from Eq. (A3), as p − 1 is even. For
p even, we have that exp iπ [

∑
ei∈∗P ŝei ,νi

] = 1, and θ̃P ,p =
eiπ(ŝO,νO −ŝU,νU )[sign(ŝU+1,νU+1 )]ŝU,νU × [sign(ŝO+1,νO+1 )]ŝO,νO = 1.

4. Confinement and deconfinement in Abelian
Walker-Wang models

We next show in more detail how the presence of �̂ in
the plaquette term leads to confinement of all excitations in
the bulk, and why eliminating certain labels from the effective
action can produce deconfined excitations. There are two types
of excitations in these models: vortex loops (which always
incur an energy cost per unit length, for � = 0) and vertex
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defects, which correspond to deconfined charges in the Potts
gauge theories. A pair of vertex defects at vertices v1 and
v2 is created by raising the spin along a series C12 of edges
connecting v1 to v2. We will call the operator that does this
V

†
C12

. The excitations are deconfined if and only if there exists
a raising operator that commutes with B̂P for all P (except
possibly those plaquettes of which v1 and v2 are vertices).
This is most easily seen at the exactly solvable point � = 0,
where the eigenvalue of B̂P is conserved. Since the spectrum
of B̂P is discrete, such strings either cost no energy (if they
commute with B̂P ) or incur a fixed energy penalty per unit
length (if they do not).

Consider the effect of V
†
C12

for a trajectory C12 that contains,
say, the O edge (but not the U edge) of some plaquette P . If
V

†
C12;r simply raises the spins on all edges by r , then we have

�̂P,mV
†
C12;r =

{
e−iπm(p−1)/p rV

†
C12;r �̂P,m, p odd,

±e−iπm/p rV
†
C12;r �̂P,m, p even.

(A10)

The commutators are unchanged if C12 contains the U edge
(but not the O edge) since the O and U edges by definition
have opposite orientations.

We could also consider operators that simultaneously raise
the spin on edges in C12, and multiply the result by a phase
depending on the spins on edges in ∗C12 (i.e., on the set of
edges connected to, but not on, the path C12). For example,
if our operator acts on the O edge of a plaquette P , we can
eliminate the phase difference between B̂P,mV

†
C12

and V
†
C12

B̂P,m

by adding to V † a phase of the form exp[i π (p−1)
p

ŝO+1,νO+1 ŝO,νO ]
for p odd (or its equivalent for p even). This will give an
operator that commutes with B̂P , but fails to commute with
the plaquette term on at least one of the neighboring plaquettes
(with which it commuted previously). Thus, in general, it is
not possible to create an operator VC12 that does not incur a
finite energy cost per unit length.

Next, let us consider what happens when we restrict
ourselves to a subset of the possible values of m. Suppose,
for example, that both m and r must be multiples of p/s,
where s|p, i.e., m = ap/s, r = bp/s. With this restriction,
the possible phases appearing in the commutator of �̂P,m and
V

†
C12;r are integer multiples of iπbp/s2. If bp/s2 is not an

integer, then the situation is as described above: if C12 contains
both the O and U edges of P , [V †

C12;bp/s,�̂P,p/s] �= 0, and there
is no way to adjust V † that avoids paying a finite-energy cost
per unit length. Essentially the same reasoning can be used to
show that there are no operators ŴC that raise all spins on the
noncontractible curve C by r = bp/s and commute with the
Hamiltonian.

Conversely, if bp/s2 is an integer, then there is an operator
V

†
C12;r that commutes with B̂P,ap/s for every integer a and

plaquette P . If, for C12 containing either the O or the U
edge of P (but not both), [V †

C12;r ,�̂P,p/s] = 0, then V
†
C12;r

simply raises all spins along C12 by r , as for the Potts gauge
theory. If {V †

C12;r ,�̂P,p/s} = 0, then V
†
C12;r also contains phases

depending on the spin labels in ∗C12; nonetheless, it is possible
to assign these such that [V †

C12;r ,BP,p/s] = 0. A simple way to

see that there must be deconfined particles in this case is to
note that V

†
C12

commutes with B̂P,ap/s whenever C12 contains
both the O and the U edges of P , allowing us to separate
charges along certain directions without any energetic penalty.
By adding extra phases to V

†
C12

, we can allow separations in
any direction.

To summarize, there is one deconfined particle species for
each b such that eiπbp/s2 = ±1, as claimed in the main text.
For each deconfined particle species, there is a corresponding
operator ŴC (for each noncontractible curve C) that commutes
with the Hamiltonian, and can be used to map between
topologically distinct ground-state sectors.

APPENDIX B: COUNTING SPIN CONFIGURATIONS
IN GENERAL POTTS GAUGE TRANSITIONS

Here, we verify that the condensation transition involving
ĥ(m)

e in a ZPotts
p model can be mapped exactly onto a transition

involving ĥ(1)
e in a ZPotts

p/m model.
Our objective is to show that, for given �,λ, the expectation

value of any operator involving the flux excitations present
in the ground state (i.e., those created by ĥ(m)

e ) is the
same as the expectation of the analogous operator in the
ZPotts

p/m model. (Since the excitations that condense in both
cases are loops of flux 2πnm/p, the analogous operator is
simply the operator creating the same configuration of flux
loops.)

Intuitively, this follows from the fact that each insertion
of (Ŝm

e )n creates one flux loop [with flux φP = 2π (m/p)n]
encircling the edge e, and that the rules for combining the
flux loops are the same in both models. This ensures that
the number of ways of obtaining a given configuration of
flux loops within perturbation theory is the same in both
cases.

Let us see how this arises at the level of configurations.
Since (�̂P )np/m commutes with all operators in the Hamilto-
nian, energetically there is no difference between an edge of
spin s and an edge of spin p/m + s (mod p). In other words,
the many-to-one mapping between configurations of the ZPotts

p

model and the ZPotts
p/m model

se + np/m(modp) → se (B1)

preserves the energy of any spin configuration. In particular, it
does not affect the configuration of those vortex loops created
by ĥ(m)

e , as [ĥ(m)
e ,(Ŵe,±)p/m] = 0. Hence, the expectation

value of any operator involving the vortex loops (i.e., any
operator that is related to the degrees of freedom involved
in the phase transition) is unaffected by this mapping. It
follows that the phase transition must be identical in both
systems.

Because the mapping is many-to-one, it fails to capture the
physics of the degrees of freedom that are not involved in the
phase transition. Indeed, the mapping sends m distinct spins
of the ZPotts

p model to a single spin in the ZPotts
p/m model. Hence,

there are m deconfined spin variables in the condensed phase,
as opposed to a single (se = 0) deconfined spin variable in the
condensed phase for the ZPotts

p/m case.
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APPENDIX C: EQUIVALENCE OF PHASE TRANSITIONS
IN POTTS AND WALKER-WANG MODELS

Here, we give detailed arguments as to why certain phase
transitions in Walker-Wang models must be of the same type
as transitions known in the ZPotts

p models.

1. Abelian Walker-Wang models

We begin with the Abelian Walker-Wang models. Here, all
possible phase transitions can be mapped onto transitions in
the ZPotts

p models. In practice, the arguments presented here do
not depend on the relative coefficients of the different powers
of B̂P,1 and Ŝe,+ in the definitions of B̂P and ĥe, and can
equally be applied to variants of the CAWW models, such as
the Zp lattice gauge theory of Sec. II C, or the �1 − �2 models
discussed in the Conclusion.

Specifically, we will show that the expectation value of
any operator composed of an arbitrary sum of products
of flux measurements and spin measurements is identical
in the two models, for any value of �/λ. In the CAWW
models, flux measurements are carried out by the operator
B̂P,1 ≡ (�̂P �̂P,1), whose eigenvalues we identified with the
flux through a given plaquette. In the ZPotts

p model, a flux

measurement is given by B̂P,1 = �̂P . The two flux operators
differ by a set of spin measurements, carried out by Ŝe in both
models. Hence, the set of operators that we allow is identical
in both models; however, it is convenient to identify our “flux”
operator as the object that commutes with the Hamiltonian for
� = 0.

First, we note that since [�̂P,m,ĥe] = 0, we have

(�̂P �̂P,1)Ŝe,νe
=

{
e−2πi/pŜe,νe

(�̂P �̂P,1), e ∈ ∂P

Ŝe,νe
(�̂P �̂P,1), otherwise.

(C1)

In the ZPotts
p models, the identical relationship holds, with(

�̂P �̂P,1
)

replaced by �̂P . In either model, therefore, any
product Ô of B̂Pi ,1 and Ŝek,νek

can be expressed in the form

Ô = e−i2πq/p
∏

i

(
Ŝei ,νi

)ni
∏
j

(
B̂Pj ,1

)nj
, (C2)

where q is the same integer for the ZPotts
p and CAWW cases.

Second, observe that in both models, the exact ground state
|
0〉 for any value of �/λ can be expressed in the form

|
0〉 =
∑

α

a(�/λ)
α

∏
k∈{Cα}

ĥek
|
0〉�=0, (C3)

where {Cα} is an arbitrary collection of edges in the lattice,
and aα are arbitrary coefficients. This is true everywhere
in the phase diagram, although the coefficients aα can be
evaluated perturbatively only in the uncondensed phase. Thus,
the expectation value of an operator Ô can always be evaluated
via

〈Ô〉�,λ = 〈
0|�=0

∑
α,β

(
a(�/λ)

α

)∗
a

(�/λ)
β

⎛⎝ ∏
k∈{Cα}

ĥek

⎞⎠
× Ô

⎛⎝ ∏
j∈{Cβ }

ĥej

⎞⎠ |
0〉�=0. (C4)

If Ô is a sum of products of B̂P1 and Ŝe, we may use Eq. (C1)
repeatedly to move all B̂P1 operators to the right, arriving at
the form

〈Ô〉�,λ = 〈
0|�=0

∑
α,β

(
a(�/λ)

α

)∗
a

(�/λ)
β

⎛⎝ ∏
k∈{Cα}

ĥek

⎞⎠
×

⎛⎝ ∏
j∈{Cβ }

ĥej

⎞⎠ ∑
γ

cγ
˜̂Oγ |
0〉�=0, (C5)

where ˜̂Oγ is of the form (C2), and the coefficients cγ are
necessarily the same in both models as they follow directly
from Eq. (C1). Since B̂P,1|
0〉�=0 = |
0〉�=0, we have

〈Ô〉�,λ =
∑
α,β,γ

(
a(�/λ)

α

)∗
a

(�/λ)
β cγ 〈
0|�=0

⎛⎝ ∏
k∈{Cα}

ĥek

⎞⎠
×

⎛⎝ ∏
j∈{Cβ }

ĥej

⎞⎠ ∏
i

(
Ŝei ,νi

)ni |
0〉�=0. (C6)

In other words, we can express 〈Ô〉 as a sum of expectations
of operators that are diagonal in the spin eigenbasis, with
coefficients that are completely determined by {a(�/λ)

α } and the
relation (C1).

To complete the proof, we must show two things. First,
that if Ôs is an operator diagonal in the spin basis,
〈
0|�=0Ôs |
0〉�=0 is the same for both models; and second,
that the coefficients a

(�/λ)
α in Eq. (C3) are the same for the

CAWW and ZPotts
p ground states.

For the first item, we observe that the � = 0 ground state
can be constructed from the trivial state |0〉 ≡ ∏

e |se = 0〉, via

|
0〉�=0 =
∏
P

B̂P |0〉. (C7)

Since B̂2
P = B̂P [or more generally, B̂P,1B̂P = B̂P , which

follows from Eq. (A9)], this is an eigenstate of the plaquette
projector with eigenvalue 1; it also has no vertex violations
since B̂P and Q̂V commute. Hence,

〈
0|�=0Ôs |
0〉�=0 = 〈0|
(∏

P

BP

)
Ôs

(∏
P

BP

)
|0〉. (C8)

Since by definition the spin is 0 on every edge in the trivial
state |0〉, it follows that this expectation value is completely
determined by the coefficients that result from moving Ôs past
the product over plaquette projectors. These coefficients are
necessarily the same in both models [see Eq. (C1)]. Hence, this
expectation value must be identical in the CAWW and ZPotts

p

ground states. Intuitively, this is because the matrix elements
of �̂P and (�̂P �̂P,1) between any pair of spin configurations
differ only by a phase; since different spin configurations
are orthogonal, operators diagonal in the spin basis can not
measure these phases.

Notice that in the ZPotts
p case, Eq. (C7) describes only

one of the possible ground-state sectors in periodic boundary
conditions. Hence, any statements that we can make about the
correspondence in the phase transition between the two models
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are valid in the trivial ground state only. This will not affect
the thermodynamic properties of the transition, however.

Finally, we must show that the coefficients a
(�/λ)
α are the

same for both models. This is clearly true to any order
in perturbation theory: at � = 0 the spectra of the two
Hamiltonians (in the topologically trivial sector) are identical,
and the perturbing term �

∑
e ĥe has the same effect on both

of these spectra. Beyond the phase transition, perturbation
theory is no longer valid; however, we may reexpress the wave
function (C3) as

|
0〉 =
∑

α

b(λ/�)
α

∏
k∈{C̃α}

B̂Pk
|0〉, (C9)

where {C̃α} is a set of plaquettes. The coefficients b
(λ/�)
α must

be equal in both models to any order in perturbation theory,
for the same reasons as in the uncondensed phase. Further, if
e is an edge of P , in the ZPotts

p case we have

ĥeB̂P = 1

p2

p−1∑
n=0

(Ŝe,+)n
p−1∑
m=0

(B̂P,1)m

= 1

p2

∑
m,n

ei2πmn/p(B̂P,1)m(Ŝe,+)n. (C10)

(If e is not an edge of P , the two operators commute.) Hence,

ĥeB̂P |0〉 = 1

p2

p−1∑
m=0

(B̂P,1)m
p−1∑
n=0

ei2πmn/p|0〉 = 1

p
|0〉. (C11)

Thus, the wave function (C9) can also be expressed as∑
α

b(λ/�)
α

∏
k∈{C̃α}

B̂Pk
|0〉 =

∑
α

b(λ/�)
α

∏
k∈{C̃∗

α}

(
p ĥek

)|
0〉�=0,

(C12)

where {C̃∗
α} contains at least one edge of every plaquette not

in {C̃α} (and no edges of the plaquettes in {C̃α}). (Including
multiple edges of a particular plaquette will not affect the
outcome.) Since b

(λ/�)
α are equal in both models, this proves

the desired result.
If ĥe or B̂P are not of the Potts form (in the sense that they

do not contain all powers of Ŝ or �̂ with equal amplitudes),
Eqs. (C10) and (C11) no longer hold. However, in Eq. (C3)
we need not restrict ĥe to the transverse-field operator in the
Hamiltonian in order for the result to be valid; it suffices to
express the ground-state wave function in terms of operators
diagonal in the spin basis acting on the � = 0 ground state.
We therefore replace Eq. (C12) with∑

α

b(λ/�)
α

∏
k∈{C̃α}

B̂Pk
|0〉

=
∑

α

b(λ/�)
α

∏
j∈{Cα}

h̃ej

∏
k∈{C̃∗

α}

(
p ĥek

)|
0〉�=0. (C13)

Here, C̃∗
α is defined as above, and Cα contains the remaining

edges of the lattice (notably, it contains at least one edge of
every plaquette in C̃α). Here, h̃e = ∑p−1

n=0 αn(Ŝe,+)n, with αn

chosen so that

1

p
h̃e

p−1∑
m=0

B̂m
P,1|0〉 = B̂P |0〉. (C14)

This gives an expression of the required form for the ground
state at large �/λ, with coefficients that are necessarily the
same in both models.

2. SU(2)k Walker-Wang models

Next, we consider the set of transitions for SU(2)k in which
spin k/2 vortex loops condense. The arguments we used in
the Abelian case can essentially be applied here, as they
depend only on the commutation relations between B̂P,1 and
the transverse-field term, with a few modifications which we
describe in the following.

Specifically, if we shift the transverse-field term by a
constant, taking

Ŝe = (−1)2ŝe , ĥe = 1
2 (1 + Ŝe), (C15)

then Ŝe and �̂P,1/2 anticommute, satisfying Eq. (C1) with
p = 2. Hence, Eqs. (C3)–(C6) apply, and we need only show
that the expectation values of any product of transverse-field
terms in the unperturbed ground state, and the coefficients
a

(�/λ)
α in Eq. (C3) are identical to those of the Z2 gauge theory.

For SU(2)k , Eq. (C7) must be replaced by∣∣
SU(2)k
0

〉
�=0 =

∏
P

1

2
(1 + �̂P,1 −

√
2�̂P,1/2)|0〉. (C16)

The transverse-field term (−1)2ŝe commutes with 1 + �̂P,1,
but anticommutes with �̂P,1/2. Thus, moving the transverse
field past the plaquette operators has the identical effect as in
the Z2 gauge theory, where∣∣
Z2

0

〉
�=0 =

∏
P

1

2
(1 + �̂P )|0〉 (C17)

and Ŝe commutes with 1, and anticommutes with �̂P . It
follows, by the same reasoning as used in the Abelian case,
that〈



SU(2)k
0

∣∣
�=0Ô

[SU(2)k ]
s

∣∣
SU(2)k
0

〉
�=0 = 〈



Z2
0

∣∣
�=0Ô

(Z2)
s

∣∣
Z2
0

〉
�=0,

(C18)

where Ô[SU(2)k ]
s measures spin mod 1 in the SU(2)k model,

and Ô(Z2)
s measures the Ising spin of the Z2 gauge theory.

Similarly, the arguments leading to Eq. (C12) remain valid,
provided that we replace the trivial state |0〉 with the state
obeying (53). This completes the proof.

We emphasize that Eq. (C18) does not hold if we include
operators that can differentiate between integer spins in the
SU(2)k models. Such operators will not commute with �̂P,1,
and this component of the plaquette term (which is analogous
to the identity component of the plaquette term in the Z2 case)
is not left invariant by moving the spin-measuring operators to
the right.

As mentioned in the main text, this result is somewhat
surprising in light of the fact that the matrix elements of �̂P,1/2

in the SU(2)k model and �̂P in the Z2 model differ both in
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sign and magnitude, and because a given configuration of half-
integer spin loops in the SU(2)k model corresponds to many
different spin configurations. It is instructive to understand
why these differences do not affect the expectation values
of any operator that satisfies the conditions (53) in the � =
0 ground states. This is most apparent in the SU(2)2 case,
although the counting carries through for any k.55

As for the Abelian case described above, operators satisfy-
ing (53) are insensitive to the phases of the matrix elements.
This is clearly true for any operator diagonal in the spin basis,
and also (by the arguments above) for �̂P,1/2. Less trivially,
the difference in magnitude and multiplicity of configurations
turns out to cancel each other: in a given spin configuration
in the SU(2)2 model, any contractible spin- 1

2 loop can be
removed and replaced with one of exactly two configurations
of spins-0 and -1. This is because (1) the number of spin-1
edges external to any spin- 1

2 loop must be even if Eq. (53) is
satisfied; and (2) for a given loop on which the total number
of external spin-1 variables is even, there are exactly two
configurations of integer spins on this loop which satisfy
the vertex condition everywhere. The first condition follows
from the fact (explained in more detail in Ref. 28) that for
� = 0 the ground state of a Walker-Wang model contains only
configurations that are “allowed” as link diagrams within the
category; a diagram with a spin- 1

2 loop and an odd number of
spin-1 external edges is not such a diagram. To see the second
fact, we first note that if all edges external to the loop have
spin-0, then we may replace the spin- 1

2 loop with either a closed
loop of spin-0 or of spin-1. If there are at least two external
edges of spin-1, then the two ways to assign integer spins to
the loop correspond to beginning at one of the spin-1 external
legs, and assigning a spin of 1 to one of the two edges on the
loop with which it shares a vertex. After this initial choice,
there is no more freedom in the spin assignments, provided
that the spins of all external edges are fixed and we do not
introduce any vertex violations.

By the above reasoning, if we add (or remove) a closed
loop of spin- 1

2 edges, we halve (or double) the number of
possible integer spin configurations compatible with the given
choice of spin- 1

2 loops. However, this is exactly compensated
for by the fact that the coefficients in the action of the plaquette
projector multiply such configurations by a factor of

√
2 (or

1/
√

2) relative to the state from which they were derived.
Hence, the probability to be in a given loop configuration is
the same in both models. Hence, from the point of view of
operators only sensitive to the spin mod 1, the ground-state
loop configurations of the SU(2)2 Walker-Wang model look
exactly like the loop configurations in the ground state of the
Z2 model.

Needless to say, here again the arguments apply only to the
trivial ground-state sector of the Z2 theory; the other ground-
state sectors (where they exist) do not have analogs in the
Walker-Wang case.

APPENDIX D: MORE GENERAL ABELIAN
WALKER-WANG MODELS AND THEIR TRANSITIONS

In Sec. III, we considered CAWW models, which comprise
only a subset of all Abelian Walker-Wang models. In this
section, we examine vortex transitions in more general Abelian

Walker-Wang models. Since the arguments of Appendix C can
be used to map the phase transitions onto those of discrete
Abelian gauge theories, we will focus here on the nature of the
condensed phase. It will be useful to speak about Walker-Wang
models in terms of their corresponding categories. The p-state
CAWW should be thought of as being based on the category
Z1/2

p for p even, and Z(p−1)/2
p for p odd.45 Other examples

include the Abelian Potts gauge theories of Sec. II, which can
be viewed as Walker-Wang models based on Z0

p.
In general, p-state Abelian Walker-Wang models are based

on categories Zq
p, where 0 � q � p − 1 is either integer or

half-integer, and where q can only ever be half-integer if p

is even. These categories are described in Ref. 45. The labels
in Zq

p are {0,1, . . . ,p − 1}. The general M matrix of category
Zq

p takes the form Mab = ei4πqab/p, and as before we can use
this to understand the topological order of the corresponding
Walker-Wang model; remember that if M has c columns filled
with 1, then the corresponding Walker-Wang model has c

deconfined species, and a topological degeneracy of c3 on
the 3-torus. c = gcd(2q,p) in the case of Zq

p.
Condensing vortices with label m out of the Zq

p Walker-
Wang model lead to a phase described by aZqp/g

g Walker-Wang
model, where g = gcd(2qm,p). To see why, notice that the
labels remaining in the condensed phase are precisely those
a satisfying ei4πqam/p = 1. The most general values of a

satisfying this equation comprise the set {0,1,2, . . . ,g − 1} ×
p/g, and so precisely g labels remain in the condensed phase.

The new model inherits the old fusion and braiding rules,
as well as the M matrix from Zq

p, but restricted to the g new
labels. Indeed, the new model can be thought of as being based
on the category Zqp/g

g , which has labels x ∈ {0,1, . . . ,g − 1}
related to the old labels by a = xp/g. We can understand
the topological properties of this phase by examining the new
M matrix which takes the form M̃xy = e

i4π
qp

g
xy/g . While the

un-condensed model had c = gcd(2q,p) deconfined labels,
the condensed model has c̃ = gcd(2qp/g,g) of them. In the
Zp gauge theories (which have q = 0), c = p while c̃ = g.
In the CAWW models, there is one deconfined label (a = 0),
while c̃ = gcd(p/g,g) for p even, and gcd[p(p − 1)/g,g] =
gcd(p/g,g) for p odd.

APPENDIX E: FERMIONS VERSUS BOSONS IN
WALKER-WANG MODELS

In Sec. IV B, we claimed that spin labels a for which
the eigenvalue of �̂P,a can be only ±1 are associated with
fermionic “charge” excitations, while if �̂ ≡ 1 then the
associated charge is a boson. In the language of categories,
this is the statement that Walker-Wang models based on Zp/2

p

(which can only be defined for even p) have deconfined
fermionic and bosonic excitations, while those based on Z0

p

have all their pointlike excitations deconfined and bosonic.
In this section, we show how fermionic statistics arise in
Walker-Wang models based on Zp/2

p .
To begin, act on the ground state with a deconfined string

operator Ŵ a
C1,1

which connects vertices 1 to 1, and creates
two defects with conjugate charges a,a ∈ {0,1, . . . ,p − 1}
(note a �= a in general). Similarly, use Ŵ a

C2,2
|GS〉 to create

an identical pair of defects of charge a,a at 2 and 2,
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FIG. 11. (a) Shows point sources in an Abelian Walker-Wang
model with “fermionic excitations,” where 1,2 have charge a and 1,2
have charge −a. The strings represent the operators that act on the
ground state to form these point excitations. (b) Shows the diagram
resulting from the exchange of the defects. Plaquette operators can be
used to hop the string to the configuration in (c). The overcrossing in
(c) can be removed at the cost of introducing a possible minus sign,
and thus the diagram can be deformed back to (a) but with a phase
of (−1)a , which gives a fermionic or bosonic statistic contingent on
whether a is odd or even, respectively.

respectively, thus producing the excited state Ŵ a
C1,1

Ŵ a
C2,2

|GS〉
[see Fig. 11(a)]. The prescription for forming string operators
is discussed in detail in Ref. 28. In the cases of Zp/2

p and Z0
p,

the string operator creates deconfined excitations because it
commutes with the plaquette operators along its length; this is
possible because Zp/2

p has a trivial M matrix28 Mcd ≡ 1.
The exchange operation is only meaningful for identical

particles, thus we begin by exchanging sources 1 and 2 (which
have equal charges) which correspond with adiabatically
evolving the state Fig. 11(a) to the one in Fig. 11(b). This new
state (a) will be equivalent to (b), except for an overall phase.
To evaluate this phase, we first note that if P is a plaquette
touching a path C, then

(�̂P )a�̂P,aŴ
a
C |GS〉 = Ŵ a

C′ |GS〉, (E1)

where C ′ is the same path as C except it takes a detour around
plaquette P (this step relies on the fact that Zp/2

p has trivial M

matrix). We can now use the fact that �̂P,a = 1, and the fact
this operator commutes with Ŵ a

C , to show that Ŵ a
C′ and Ŵ a

C have
the same effect on the ground state. Using this idea repeatedly,
it is easy to show that Figs. 11(b) and 11(c) represent the same
state.

Notice that the state in Fig. 11(c) has an overcrossing of the
string operators (from the point of view of the projection). The
overcrossing can be removed and we can connect 1 to 2 and
2 to 1 to form Fig. 11(d), but there will be a phase associated
with this process, as illustrated by

PP
P

a
P,a

1 a

a a

a

a

,

(E2)

which shows that (�̂P )a�̂P,a introduces a phase if it changes
the number of overcrossings in a configuration. Notice that
(�̂P )a�̂P,a = 1 on the ground state, so configurations that are
related by removing such an overcrossing have a relative sign
of (−1)a in the ground-state superposition. One can extend
this reasoning to show that the state in Fig. 11(c) is the same as
Fig. 11(d), except for this relative phase. Thus, the exchange
of the two defects has resulted in a configuration identical to
that in Fig. 11(a), but with a phase of (−1)a .

One can more carefully derive this exchange phase by
noting that, when a category has trivial M matrix like Zp/2

p ,
the strings representing operators can be deformed according
to the graphical rules of the category seen in Fig. 6. This fact
follows from the “handle-slide” property21,28 of Walker-Wang
models. To get between Figs. 11(c) and 11(d), one may use
the manipulations of the string operators

a a a

a a

a

2 a

a a

aa

2 a

1 a aa1 a

(E3)

which correspond with a use of the rules in Fig. 6, with Fig. 6(e)
needed specifically for the second equality, where we used the
fact that Raa

2a = (−1)a for Zp/2
p . The statistic arises precisely

because the strings connecting the point defect keep track of
the exchange.
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