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Dynamics of domain-wall Dirac fermions on a topological insulator: A chiral fermion beam splitter
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The intersection of two ferromagnetic domain walls placed on the surface of topological insulators provides a
one-way beam splitter for domain-wall Dirac fermions. Based on an analytic expression for a static two-soliton
magnetic texture we perform a systematic numerical study of the propagation of Dirac wave packets along such
intersections. A single-cone staggered-grid finite difference lattice scheme is employed in the numerical analysis.
It is shown that the angle of intersection plays a decisive role in determining the splitting ratio of the fermion
beam. For a nonrectangular intersection, the width and, to a lesser extent, the type of domain walls, e.g., Bloch or
Néel, determine the properties of the splitter. As the ratio between domain-wall width and transverse localization
length of the Dirac fermion is increased its propagation behavior changes from quantum-mechanical (wavelike)
to classical ballistic (particlelike). An electric gate placed near the intersection offers a dynamic external control
knob for adjusting the splitting ratio.
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I. INTRODUCTION

There has been considerable progress in the investigation
of Dirac fermions on (textured) topological insulator (TI)
surfaces in external electromagnetic fields. Experimentally, the
Dirac cone spectrum with and without external magnetic field
has been verified in recent experiments.1–3 Position control of
the Fermi energy within the bulk gap of the insulator has
become feasible.4–9 Magnetic texturing of TI surfaces has
been explored experimentally.2,10,11 In one study using iron
as the dopant, however, the easy axis has been reported to
be in-plane.10 In thin films of MBE grown Cr doped ternary
(BixSb1−x)2Te3 ferromagnetic order has been reported.12 With
the theoretically predicted existence of topologically protected
surface states confirmed in experiment, one of the next steps is
to learn to manipulate them by structural design and to utilize
their properties in chiral fermion devices. On the theoretical
side, numerous papers have been published on related topics,
such as magnetotransport on TI surfaces in the presence of
ferromagnetic layers,13–18 spin-polarized magnetic impurities
on TI surfaces and Landau levels,19–23 the interaction of
magnetic domain walls with Dirac fermions,24–26 lensing
effects and transport perpendicular to domain walls,27,28

crossover from weak antilocalization to weak localization,29

and gate control of TI channel states.30 An interferometer for
chiral fermions has been proposed recently.31

Surfaces of three-dimensional (3D) topological insula-
tors can be interpreted as a two-dimensional (2D) domain
wall between a spin-orbit driven band inversion within the
insulator and normal band ordering in vacuum.32–35 The
topologically protected gapless surface states in the form of
helical-state Dirac cones can be manipulated further by time-
reversal–symmetry-breaking (TRB) perturbations applied to
the surface.32,36,37 Indeed, it has been known for quite a while
that an effective-mass inversion domain wall can produce a
one-dimensional (1D) chiral edge eigenstate for a 2D Dirac
fermion Hamiltonian.38 Such edge states are required to
observe a quantized Hall effect. TRB can be induced by
exposure to an (effective) external magnetic field. For example,
a ferromagnetic tip or permanent magnetic texture arising from
the proximity of ferromagnets, in conjunction with magnetic

doping of the surface, may be used to induce sign changes in
the mass term of the effective Dirac equation.2,10,11,35,37 The
expected order-of-magnitude for the mass gap in materials,
such as Bi2Se3, is up to several tens of meV.2,39

Nanostructuring of TIs enhances the surface over the bulk
contributions to fermion charge transport and provides another
promising means to produce edge states, following strategies
previously applied to graphene. It should be recalled that
the properties of the surface states are a consequence of the TI
bulk properties. Bulk doping can be used to manipulate surface
state behavior.40–43 Compositional tuning of Dirac fermion
electronic structure has been demonstrated for BiTl(S1xSed )2

and Bi2(Te3−xSex).44,45 Placed on a substrate, electric contacts
have been made to the TI.41,46 Metal-TI junctions have been
studied theoretically.47 Such structuring can be expected to
lead to the realization of interesting quantum interference
effects due to the helical nature of surface states, implying
spin-polarized electric currents, the absence of back scattering,
and robustness to moderate disorder. This strategy has led
to the experimental observation of the quantum anomalous
Hall effect in a magnetic topological insulator.46 Quantum
oscillations in TI nanoribbons in conjunction with high
surface conductance (e.g., for Bi2Te3) have been investigated
theoretically and in experiment.41,48,49

In this paper the dynamic properties of chiral fermions
in channel states introduced by magnetic texturing of the
surface of a TI insulator are explored. We perform a theoretical
study of the propagation of chiral domain-wall fermions
along the intersection of two ferromagnetic domain walls
imprinted upon the surface of a TI. In a systematic numerical
analysis, we extract the one-way beam splitting properties
regarding magnetic texturing, such as the angle of intersection,
domain-wall thickness, and details of in-plane magnetization.
Our time-dependent analysis is based on a newly developed
scheme for a numerical treatment of the (2+1)D Dirac
equation in the presence of electromagnetic fields, whose
numerical mathematical properties will be presented in a
forthcoming publication. Here the analysis is performed using
static solitonic domain-wall crossings, valid in the adiabatic
regime. The paper is organized as follows. In Sec. II we
give a brief summary of chiral (domain-wall) fermions in
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external electromagnetic fields, as relevant for TI surfaces and
introduce two-soliton magnetic textures. In Sec. II C we give
the model Hamiltonian for our numerical analysis. Section III
gives a summary of our single-cone numerical lattice model
for (2+1) Dirac fermions. Section IV features some of our
numerical results for chiral fermion beam splitters. Finally, a
general summary and our conclusions are given in Sec. V.

II. CHIRAL DOMAIN-WALL FERMIONS

A. Basic considerations

An effective (2+1)D model for the dynamics of Dirac
fermions on a magnetically textured TI surface may be founded
upon a Hamiltonian

H = HF + HI + HFI , (1)

consisting of the fermion Hamiltonian HF , the impurity
Hamiltonian HI , and the interaction HFI . For the Dirac
fermions in an external electromagnetic field one may write

HF = v(σ×�) · ẑ + μBgF σB(x,y,t) + V (x,y,t). (2)

Here � = p + e
c
A(x,y,t) in the spin-orbit term denotes the

kinetic momentum in the presence of a vector potential
A associated with the external magnetic field B(x,y,t),
V (x,y,t) = −e�(x,y,t) is the scalar potential energy, and
μB = e�

2mc
and gF in the Pauli term are, respectively, the

electron Bohr magneton and the Landé factor. The Pauli vector
is proportional to the physical fermion spin with its direction
locked perpendicular to the particle current density and the
normal vector to the surface ẑ.32 Note that the simple form of
the spin-orbit term can be extended to more precisely represent
the energy dispersion away from the Dirac point, such as an
account of hexagonal warping.32,50

The impurity spins may be modeled by a generic
Heisenberg-type Hamiltonian of the form

HI = −
∑
i,j

Jij SiSj −
∑

i

gIμBSiBo
i , (3)

and the Dirac fermion-impurity interaction by

HFI = −
∑

i

J ′
i Siσ . (4)

Here Si and Bo
i denote, respectively, the impurity spin and

external magnetic field, for impurity site i. Note that one
must differentiate between the “external” magnetic field
experienced by fermions and impurities.

The physical situation envisioned and captured by the
Hamiltonian H is that of a TI surface which is densely covered
by magnetic impurities which interact with one another, as
well as with the Dirac fermions under an exchange interaction.
Several possible origins for an exchange interaction Jij have
been discussed in the literature.39,51 An external magnetic field
may be applied to imprint and stabilize domain-wall formation
between ferromagnetic ordered domains.

Subjecting HI + HFI to a mean-field approximation
one obtains HI + HFI → (HI + HFI )MF = −∑

i gIμBB(I)
i ,

where the effective magnetic field at impurity site i is given as

B(I )
i = Bo

i + 1

gIμB

⎡
⎣∑

j

Jij 〈Sj 〉 + 〈J ′
i σ 〉

⎤
⎦ . (5)

The three contributions arise from the external magnetic
field (including contributions from the orbital motion of
Dirac fermions), impurity magnetization, and fermion spin
polarization. The latter gives rise to a spin-transfer torque.

Similarly for the fermions,

HF + HFI → (HF + HFI )MF

= v(σ × �′) · ẑ + μBgF σB(F)(x,y,t) + V (x,y,t),

(6)

where the effective magnetic field in the Pauli term is given by

BF (x,y,t) = B′(x,y,t) − 1

gF μB

∑
i

〈J ′
i Si〉σ , (7)

and the vector potential A′ entering the canonical momentum
�′ in the spin-orbit term contains the contribution from
the external magnetic field and the magnetization of the
impurities, as will be discussed below, such that B′(x,y,t) =
∇ × A′(x,y,z,t)|z=0.

In what follows we concentrate on the Dirac fermion
dynamics. The impurity dynamics, in principle, can be treated
self-consistently in parallel. However, it is generally accepted
that the latter occurs on a time scale which is long compared
to the fermion dynamics, and adiabatic schemes have been
used successfully to model the interplay between the two
subsystems.52

According to Eq. (6) the presence of magnetic impurities
and a stabilizing external B field has two consequences for
the dynamics of Dirac fermions: an impurity spin polarization
(magnetization) M modifies the net external magnetic field
from B to B′ and, for Mz �= 0, introduces an exchange term
(“mass term”), in addition to the Zeeman term, in Eqs. (6)
and (2). Such a mass term has been estimated to be of the
order of up to several tens of meV and represents the dominant
magnetic-field contribution.39 For a fermion g factor 20 the
effective magnetic exchange field required for a mass gap of
25 meV is about 10 T.37,53 Such a magnetic exchange field
will, as usual for ferromagnets, dominate any typical static
external field B � 0.5 T in Eq. (7) in the Pauli term of Eq. (6).

In order to estimate the magnetization M associated
with an exchange field of 10 T, we use parameters typ-
ical for Mn impurities.54 Within the simple form J ′

i =
J ′δ(x − xi)δ(y − yi) and J ′ ≈ 130 meV nm2 one needs an
impurity density of about 0.1 nm−2 to achieve a mass gap of
25 meV. Using gI ≈ 2, the magnetization per area is of the
order of 1.2 × 10−6 meV/(G nm2). Based on this estimate
and a layer thickness of 1 nm, the order of magnitude of
the magnetization contribution to B ′, |B ′ − B| = 4πM , is
about 2.5 × 10−3 T, making this effect negligible in both the
spin-orbit and Pauli term of Eq. (6). In principle there also
is a topological field contribution due to the magnetoelectric
effect, but it is extremely small in magnitude (�10−6 T).32,55

In summary, the dominant magnetic-field effect onto the Dirac
fermions arises from the exchange field, followed in impor-
tance by the external magnetic field in the spin-orbit term.

235119-2



DYNAMICS OF DOMAIN-WALL DIRAC FERMIONS ON A . . . PHYSICAL REVIEW B 88, 235119 (2013)

The effect of an external magnetic field on the spectrum of
TI Dirac fermions has been investigated both theoretically and
experimentally (see Introduction). It has a negligible effect on
the dynamics of domain-wall Dirac fermions when compared
to the in-plane component of the exchange term, as we have
verified numerically in our studies detailed below. We conclude
that the formation of domain-wall states and the dynamics of
domain-wall Dirac fermions is dictated predominantly by the
magnetic domain-wall structure (exchange field) and the exter-
nal electric bias. However, the presence of an external magnetic
field may be essential to pin domain walls and to imprint and
stabilize a specific ferromagnetic domain-wall structure.

B. Solitonic magnetic textures

The rich physics of ferromagnetic domain-wall dynamics
has been well documented in the literature.24–26,56,57 Here
we consider well-pinned hard ferromagnetic textures and
explore domain-wall fermion dynamics on a time scale which
allows for a quasistatic treatment of the domain-wall structure,
neglecting spin-transfer torque effects.52 The latter implies the
regime of low current density. Our numerical approach can
handle time-dependent magnetic domains, however, such an
analysis will be the topic of future investigations.

An analytic model for stable, local-minima, 2D magnetic
textures can be derived from solutions to a simple free
energy functional which consists of an isotropic exchange
term and an anisotropy term with z as the easy axis (Fig. 1).
In terms of the unit magnetization m = (mx,my,mz) =
(sin θ cos φ, sin θ sin φ, cos θ ) and with a,b > 0 it is

F(m) = 1

2

∫
dxdy

[
a(grad m)2 − bm2

z

]
. (8)

αφ

wallwidth λ

y

x

FIG. 1. (Color online) Magnetic texture of a domain-wall in-
tersection. The contour plot encodes the Mz component of the
magnetization, asymptotically taking the values ±|M| (black and
white regions). The arrows show the in-plane components (Mx,My).
α is the angle of intersection and φ is the angle of the in-plane
magnetization direction relative to the x axis. The wall width is
given by λ = √

a/b, where a is the exchange constant and b is the
anisotropy parameter (see main text).

In spherical coordinates θ (x,y) and φ(x,y) F takes the simple
form

F(m) = 1

2

∫
dxdy

{
a

∑
xi=x,y

[(
∂xi

θ
)2 + sin2(θ )

(
∂xi

φ
)2]

− b cos2(θ )

}
. (9)

For constant φ (∂xi
φ = 0) the optimality condition for θ

becomes

θxx + θyy = b

2a
sin 2θ. (10)

Setting u = 2θ and rescaling xi → √
b/axi one obtains the

sine-Gordon equation (in “imaginary time” iy)

uxx + uyy = sin 2u.

Multisoliton solutions are most directly found using Hirota’s
bilinear expansion in ε.58–60 The single-soliton solution takes
the form

θ (1)(x,y) = 2 arctan{eη(x,y)},
η(x,y) =

√
b/a(x ′ − x ′

o), x ′
o = −

√
a/b ln ε,

(11)
x ′ = x cos β + y sin β, β ∈ [0,2π ],

φ(x,y) = φo, φo ∈ [0,2π ].

This solution represents a magnetization domain wall along
y ′ = −x sin β + y cos β at xo.

A magnetic domain-wall intersection which represents a
local minimum to the free energy functional Eq. (8) can be
constructed from the two-soliton solution

θ (2)(x,y) = 2 arctan

{
eη1(x,y) + eη2(x,y)

1 + κ12eη1(x,y)+η2(x,y)

}
,

ηi(x,y) =
√

b/a
(
xi − xi

o

)
,

xi = x cos αi + y sin αi, αi ∈ [0,2π ], i = 1,2

κ12 = (cos α1 − cos α2)2 + (sin α1 − sin α2)2

(cos α1 + cos α2)2 + (sin α1 + sin α2)2
,

φ(x,y) = φo, φo ∈ [0,2π ]. (12)

We place the point of intersection at the coordinate origin,
setting x1

o = x2
o = 0, retaining α1 − α2( �=0,π ) and φo to

characterize the type of intersection. With suitable magnetic
impurities present at or near the surface of the TI, such a ferro-
magnetic domain-wall intersection may be induced by an array
of magnetic poles of the form [+ −

− +] facing the TI surface.

C. The model Hamiltonian and domain-wall states

According to Sec. II the effective Hamiltonian for a single
Dirac cone on the surface of the TI interacting with magnetic
texture M(x,y) may be written32,35,61

H = v[σ × �(x,y,t)] · ẑ + M(x,y) · σ + V (x,y). (13)

According to Eq. (6) the second and third term on the
right-hand side, respectively, account for the presence of
the magnetic texturing M(x,y) = Ĵm(x,y), with Ĵ denoting
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the effective exchange coupling tensor, and an external scalar
electric potential arising, for example, from a gate bias.

This effective Hamiltonian describes the 2D excitation
spectrum near the Dirac point, including 1D edge states in
the presence of domain walls. Domain-wall edge states are
responsible for an integer quantum Hall effect on the TI
surface, as discussed in the literature.32,35 For H Eq. (13) and a
single-soliton domain wall Eq. (11), with limx ′→±∞ Mz(x ′) =
M± and M−M+ < 0, a domain-wall eigenstate exists which
takes the simple form36

〈x,y|Y ′,±〉 ∝ 1√
2

(±e−iα/2

eiα/2

)
e
∓ 1

�v

∫ x′
x′
o

Mz(x ′′)dx ′′+ik′
yy

′
, (14)

when neglecting in-plane contributions to the magnetization
(valid when sufficiently far away from the domain wall).31 It
features a linear dispersion E = ±v� k′

y , with the upper sign
for M− < 0 and M+ > 0, and the lower sign for M+ < 0 and
M− > 0. Note that a constant potential V in Eq. (2) simply
adds to the eigenvalue E. Parallel and curved zero-mass lines
have also been studied in the literature.62 For a general form of
an in-plane magnetization Mx(x ′),My(x ′) �= 0 or other more
complicated domain-wall structures eigenfunctions are best
found numerically.

More complex magnetic texturing, where islands of positive
mass neighbor islands of negative mass, produces a network of
one-way chiral channel states.31 Here we study an elementary
building block of such a network in form of an intersection of
two linear domain walls. With the realization of such a texture a
reflectionless beam splitter for chiral fermions is established.
This is demonstrated numerically below for the two-soliton
texture Eq. (12).

III. NUMERICAL METHOD: A SINGLE-CONE
LATTICE MODEL

The time-dependent Dirac equation is solved numerically for
H in Eq. (2). Putting the (single cone) Dirac equation onto a

grid for a numerical solution traditionally has been hampered
by fermion doubling, that is, the lattice model has more
eigenmodes than the original continuum model. Two different
numerical finite difference schemes have been employed and
compared in the course of this analysis. Both use a staggering
of the spinor components in space and time. The first one has
the following advantageous features:63 (i) It provides the exact
(linear) dispersion relation for massless free Dirac fermions
along the main axes kx and ky , (ii) it allows an implementation
of absorbing boundary conditions via an imaginary potential
term, and (iii) it allows for a removal of the second Dirac cone,
located at the corners of the Brillouin zone, by a Wilson term.64

The second one, briefly outlined below, avoids the fermion
doubling problem altogether at the cost of losing the perfect
(i.e., linear) dispersion property along the main coordinate
axes for mass zero.65 It features a single Dirac cone dispersion
without the need for using a Wilson mass term to get rid
of the doublers. For simple rectangular magnetic structures
aligned with the grid’s x and y axis the first scheme has higher
accuracy, for general setups, however, the second scheme
performs better. The figures shown below are obtained with
the second scheme. Results from various simulations within
the first scheme have and will be presented elsewhere.31,63,66

Global grid refinement experiments were done and then the
simulations were executed with a grid for which a further
halving of the grid spacings gave an improvement of no
more than 1%. For comparison some simulations were done
with scheme one showing a difference in the result for the
transmission of less than 1%.

The finite difference scheme for the Dirac equation
i∂tψ(x,y,t) = Ĥψ(x,y,t) with the Hamiltonian Eq. (2),
where ψ(x,y,t) ∈ C2 is a two-component spinor, may be
summarized as follows. Introducing the space-time staggered
according to Fig. 2 for the components of the spinor ψ = (u,v)
and using symmetric second-order accurate approximations
for the derivatives, we propose the following discretization of
the (2+1)D Dirac equation

u
n+1/2
j,k − u

n−1/2
j,k

�t
= −i

[
(Mz)

n
j,k − V n

j,k

]u
n+1/2
j,k + u

n−1/2
j,k

2
−

(
vn

j+1/2,k − vn
j−1/2,k

)
�x

+ i

(
vn

j,k+1/2 − vn
j,k−1/2

)
�y

− (Mx)nj,k

(
vn

j+1/2,k + vn
j−1/2,k

)
2

− i(My)nj,k

(
vn

j,k+1/2 + vn
j,k−1/2

)
2

,

vn+1
j−1/2,k − vn

j−1/2,k

�t
= +i

[
(Mz)

n+1
j−1/2,k + V n+1

j−1/2,k

]vn+1
j−1/2,k + vn

j−1/2,k

2
−

(
u

n+1/2
j,k − u

n+1/2
j−1,k

)
�x

− i

(
u

n+1/2
j−1/2,k+1/2 − u

n+1/2
j−1/2,k−1/2

)
�y

− (Mx)n+1
j−1/2,k

(
u

n+1/2
j,k + u

n+1/2
j−1,k

)
�x

+ i(My)n+1
j−1/2,k

(
u

n+1/2
j−1/2,k+1/2 + u

n+1/2
j−1/2,k−1/2

)
�y

. (15)

The u component defined for the discrete time indices n −
1/2 ∈ Z “lives” on the discrete space grid points (j,k) ∈ Z2

and (j − 1/2,k − 1/2) ∈ Z2, while the v component defined
for n ∈ Z is defined for space indices (j − 1/2,k) ∈ Z2 and
(j,k − 1/2) ∈ Z2.

The dispersion relation for constant coefficients is revealed
using a plane-wave ansatz un+1

j+1,k+1 = ei(ω�t−kx�x−ky�y)un
j,k

(and analogously for v). The centered approximation for
the time and space derivatives, respectively, translates into
a multiplication by 2i

�t
sin ω�t

2 and 2i
�x,y

sin kx,y�x,y

2 . Time
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FIG. 2. (Color online) Leap-frog time stepping on a time and
space staggered grid for the (2+1)D Dirac equation.

averaging leads to the factor cos ω�t
2 . Solving for ω gives the

dispersion relation for Mx = My = V = 0,

ω = ± 2

�t
arcsin

[
�t

2 + (Mz)2�t

×
√

(Mz)2 +
(

2

�x
sin

kx�x

2

)2

+
(

2

�y
sin

ky�y

2

)2]
.

(16)

FIG. 3. (Color online) The dispersion within the numerical ap-
proach for a mass gap 2Mz = 1 compared to the exact cone of the
continuum approach (in green). The grid spacings are chosen to be
�x = �y = 1 and �t = 1/

√
2.

(b)

(a)

|ψ|2

V

FIG. 4. (Color online) Snapshots of the wave packet propagation
in a 90-deg domain-wall intersection: (a) Unbiased and (b) biased
(15 mV). The color (or brightness variation) shows the probability
density |ψ |2 (see color bar). The black contour lines and the
white crossed and dotted circles show the Mz component of the
magnetization. The vector plot shows the direction and magnitude of
the in-plane magnetization (Mx,My).

The dispersion relation for Mx = My = V = 0 is mono-
tonic and has its single minimum at kx = ky = 0.
On the grid the k vectors are defined up to reciprocal
lattice vectors, only, leading to k ∈ (−π/a,π/a], where
a = �x,�y. Accordingly the domain for the frequency
is ω ∈ (−π/�t,π/�t]. Figure 3 compares the dispersion
within the (2+1)D lattice model for the lattice parameters
�x = �y = 1 and �t = 1/

√
2 and a mass gap 2m = 1

to the exact cone of the continuum model (in green).
A more detailed analysis of the scheme including a rig-
orous stability analysis [as performed recently for the
(1+1)D case]67 for general time- and space-dependent mass
vector M and electromagnetic potentials will be given
elsewhere.68
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FIG. 5. (Color online) Relative transmission to the upper channel
in a rectangular domain-wall intersection with wall width λ = 25 nm
as a function of the in-plane magnetization angle φ and the energy
mean value E of the wave packet.

IV. A DIRAC FERMION BEAM SPLITTER:
NUMERICAL RESULTS

The asymptotic value for the z component of the mag-
netization in Eq. (2) is chosen to be |mz| = 7.5 meV. This
value is realistic in view of the expected exchange coupling.39

Note that the results obtained for this value can be scaled to
other values due to the scale invariant nature of the problem
at hand. Indeed, the relevant parameters characterizing a
physical situation can be separated into ratios and scale-free
(absolute) parameters. The relevant ratios are: the ratio of
the confinement length of the wave packet to the domain-
wall width, the ratio of the wave packet energy to the gap
(established by the asymptotic value of the z component
of the magnetization), and the ratio of the in-plane to the

FIG. 6. (Color online) Relative transmission to the upper channel
in a rectangular domain-wall intersection as a function of the in-plane
magnetization angle φ and wall width λ. The in propagation-direction
Gaussian initial wave packet is prepared with an energy mean value
of E = 0.

out-of-plane exchange coupling constant (in principle, the in-
plane component can also have an anisotropy). The scale-free
parameters are the angle of intersection and the angle φ for
the in-plane magnetization direction (see Fig. 1). For real
structures in experiment sample-specific imperfections, such
as unwanted irregularities in the magnetic structure, may play a
role.

A typical simulation region of 1000 × 1000 nm is used and,
for the simulations to follow, we place an initial Gaussian wave
packet in the in-channel (see also Fig. 1). It is characterized
by its energy mean value E and standard deviation, see Fig. 5.
Its initial shape perpendicular to the channel is given by
Eq. (12). Following the time evolution of the wave packet
along the structure we determine the splitting ratio from the
transmission into the outgoing upward-running channel, i.e.,
in positive y direction, for rectangular intersections (see also
Fig. 1).

|ψ|2

V

|ψ|2

V

(a)

(b)

FIG. 7. (Color online) Snapshots of the wave packet propagation
in a 90-deg domain-wall intersection: (a) With rectangular electrode
and (b) with tailored electrode and a bias of 15 mV. The color (or
brightness variation) shows the probability density |ψ |2 (see color
bar). The black contour lines and the white crossed and dotted circles
show the Mz component of the magnetization.
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FIG. 8. (Color online) Relative transmission to the upper channel
in a rectangular domain-wall intersection as a function of the mean
energy of the wave packet E and the gating potential V as shown in
Fig. 4(b). The wall width is chosen to be λ = 25 nm and φ = 0.

A. Rectangular intersections

Figure 4(a) gives a series of snapshots showing the wave
packet as it propagates horizontally along the in-channel and
splits more or less symmetrically into two outgoing wave
packets traveling along the vertical channels. For rectangular
two-soliton magnetic textures of the form Eq. (12) there are the
domain width λ and the angle φ characterizing the in-plane
magnetization across the domain wall which can be varied.
For the first simulations of these dependencies for rectangular
intersections shown in Figs. 5 and 6, the domain-wall width
is chosen to be a relatively large λ = 25 nm compared to
the perpendicular confinement of the wave packet ≈100 nm
to bring out more clearly the influence of the details of the
in-plane components of the magnetization on the wave packet
propagation.

In Fig. 6 we show the effects on the transmission into
the upper channel when the domain-wall width λ and the
magnetization angle φ are varied. Here the wave packet is
prepared with an energy mean value E = 0. The color-coded
figures show grid lines (in gray), altitude lines (black), as
well as the altitude (as interpolated color map) which should
allow the reader to assign a transmission value to every
parameter combination shown in the plot. One observes that
even for relatively large domain-wall widths the influence of
the in-plane magnetization to the splitting behavior is moderate
and, to a very high accuracy, a rectangular intersection provides
a 50-50 beam splitter for domain-wall states over a wide energy
range. This is important for robustness of the splitting ratio
under local imperfections.

This situation can be changed, when an electrode is placed
asymmetrically onto the junction, as sketched in Fig. 4(b).
The chosen bias value is 15 mV. Note that a static potential
cannot close the channel or revert the propagation direction.
However, if sufficiently large it provides a mixing of 2D surface
states with the channel state and, when spatially confined
perpendicular to the out-channel, provides a waveguidelike
channel, as is shown in the simulation in Fig. 4(b). This

|ψ|2

(a)

(b)

(c)

FIG. 9. (Color online) Snapshots of the wave packet propagation
in a 45-deg domain wall with a wall width of (a) λ = 25 nm,
(b) λ = 15 nm, and (c) λ = 5 nm. E = φ = π . The color (or
brightness variation) shows the probability density |ψ |2 (see color
bar). The black contour lines and the white crossed and dotted
circles show the Mz component of the magnetization. The vector
plot shows the direction and magnitude of the in-plane magnetization
(Mx,My).
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confinement effect, arising from wave number mismatch,
has been discussed in the literature.13 Here it is used to
control the splitting ratio which is shown for varying V

and E and λ = 25 nm and φ = 0 in Fig. 8. Dynamically,
the confining effect by the (rectangular) gate resembles total
internal reflection which arises under glancing incidence onto
the potential wall. Tailoring the shape of the electrode helps in
effective “funneling” of fermions back into the domain-wall
state. This is demonstrated in Figs. 7(a) and 7(b) in which we
compare the effect of a rectangular versus a triangular bias
region.

Note that asymmetric biasing of one out-channel shows
influence on the splitting ratio only when the applied voltage
is sufficiently high to energetically move the Dirac fermion
out of the magnetization gap (see Figs. 7 and 8). Otherwise
it cannot influence significantly the propagation because the
addition of a scalar potential does not change the group
velocity due to the linear dispersion relation of the channel
states.

B. 45-deg intersections

We now turn to 45-deg intersections and study them as a
function of φ (domain-wall type), λ (channel width), and E

(mean energy of the wave packet). Figure 9 shows snapshots
of the wave packet as it propagates along the in-channel and
splits up at the intersection. It is observed that the preferred
out-channel depends on the channel width. For wide channels
the upper out-channel is preferred, while for narrow channel
width, the lower channel is the preferred exit. This trend arises
from an increased overlap of the in-channel wave packet with
the lower out-channel as the channel width decreases, whereas
for wide channels, the path of lower momentum transfer wins
out. This effect therefore also displays an energy dependence,
in contrast to the rectangular case.

Results from a more systematic analysis are summarized
in the following figures. In Fig. 10 we show the transmission
as a function of the in-plane magnetization angle φ and the

FIG. 10. (Color online) Relative transmission to the upper chan-
nel in a 45-deg domain-wall intersection with wall width λ = 25 nm
as a function of the in-plane magnetization angle φ and the energy
mean value E of the wave packet.

FIG. 11. (Color online) Relative transmission to the upper chan-
nel in a 45-deg domain-wall intersection as a function of the in-plane
magnetization angle φ and wall width λ. The in propagation-direction
Gaussian shaped initial wave packet is prepared with an energy mean
value of E = 0.

energy mean value E for λ = 25 nm. In Fig. 11 we vary the
wall width λ and the in-plane magnetization angle φ using
E = 0. Figure 12 shows the same setup but for E = 5 meV.
Compared to the rectangular intersections (Figs. 6 and 10)
the influence of the in-plane magnetization direction is more
pronounced. For a fixed interaction angle the most relevant
parameter still is the wall width since it determines the degree
of asymmetry in the “channel crosstalk” near the junction, as
shown in quantitative detail in these figures. As the fermion
approaches the intersection it probes the surroundings and
begins to leak into the lower out-channel before it detects the
upper one.

FIG. 12. (Color online) Relative transmission to the upper chan-
nel in a 45-deg domain-wall intersection as a function of the in-plane
magnetization angle φ and wall width λ. The in propagation-direction
Gaussian shaped initial wave packet is prepared with an energy mean
value of E = 5 meV.
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FIG. 13. (Color online) Relative transmission to the upper chan-
nel in a domain-wall intersection where the intersection angle α and
the wall width λ are varied. E = 0 meV and φ = 0.

C. General angles of intersection

Referring to Fig. 1, general angles of intersection α are
investigated. In conjunction with the domain-wall thickness
the angle of intersection plays the dominant role for estab-
lishing the splitting ratio of such an intersection. Results are
summarized in the following figures. In Fig. 13 we vary α and
λ for E = φ = 0. For Fig. 14 we change E to E = 5 meV.
Figure 15 shows the variation of E and α where φ = π/2
and λ = 25 nm. For λ = 10 nm this setup shows a quite
different behavior (Fig. 16). It is remarkable that for small
domain-wall widths, relative to the spatial extent of the Dirac
fermion wave packet, the transmission into the upper channel
decreases for a more acute angle α. For large widths, on the
other hand, the transmission into this out-channel is favored,
as one would suspect “intuitively” (see Figs. 12 and 13).
This effect is most dominant for wave packets with a center

FIG. 14. (Color online) Relative transmission to the upper chan-
nel in a domain-wall intersection where the intersection angle α and
the wall width λ are varied. E = 5 meV and φ = 0.

FIG. 15. (Color online) Relative transmission to the upper chan-
nel in a domain-wall intersection where the intersection angle α and
the mean energy E are varied. φ = π/2 and λ = 25 nm.

energy of E = 0. The two competing effects responsible for
this behavior are the difference in spatial (time-dependent)
overlap of the incident wave packet with the two outgoing
channels and the “wave-vector” mismatch at the intersection.
As already pointed out for the α = 45◦, the behavior of
narrow channels is dominated by the former, while wide
channels act ballistic, favoring low momentum transfer. In
other words, when going from narrow to wide channels, the
Dirac fermion scattering behavior changes from quantum-
mechanical wavelike to “classical” particlelike. Note that, as
per Eq. (14), the (stationary) transverse extent of the wave
packet is determined by the asymptotic values of the magnetic
texture, while the width of the domain wall independently
is determined by the relative importance between anisotropy
and exchange contribution in the free energy functional of the
magnetization [Eq. (8)]. Hence, in principle, structural design
allows for both situations to occur.

FIG. 16. (Color online) Relative transmission to the upper chan-
nel in a domain-wall intersection where the intersection angle α and
the mean energy E are varied. φ = π/2 and λ = 10 nm.
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V. SUMMARY AND CONCLUSIONS

In summary, we have investigated numerically the dy-
namics of domain-wall Dirac fermions at the intersections
of two linear ferromagnetic domain walls. To model a
realistic stable magnetic intersection texture we have used
a two-soliton solution of the sine-Gordon equation which
establishes the optimality condition for a minimum of a free
energy functional accounting for exchange and anisotropy. The
time-dependent analysis of chiral fermion propagation is based
on a staggered grid numerical scheme to solve the effective
(2+1)D Dirac equation. Developed for this particular purpose,
it is constructed such that fermion doubling is avoided and
absorbing boundary conditions in form of regions of imaginary
scalar potential can be incorporated. Details of this model and
an extension to (3+1)D can be found elsewhere.68

The properties of such magnetic intersections as one-way
beam splitters for chiral fermions have been investigated.
Based on this study, we can conclude that the splitting ratio
for domain-wall fermions at the intersection depends strongly
on the angle of intersection and, in case of nonrectangular
intersections, on the width of the domain wall. The latter
determines the importance of the wave nature of the fermion
onto the transmission behavior: Quantum tunneling dominates
the behavior at the intersection when the (transverse) local-
ization length of the domain-wall fermion is large compared
to the channel width. For wide domain walls the Dirac

fermion behavior at the intersection becomes particlelike.
The type of domain wall, as well as the mean energy of
the Dirac fermion wave packet, have a weaker influence
on the splitting ratio. The former is characterized by the
angle of the in-plane magnetization when its z component
goes through zero and allows one to compare Bloch- to
Néel-type intersections. Although experimental setups will
have imperfections regarding the magnetic structure our results
should give a qualitative guide for the splitting behavior in such
structures, as long as defects do not destroy the channel states.

External control of the splitting ratio may become feasible
in experiment via asymmetrically biased electric gates placed
near the junction. Using specially tapered electrodes, “fun-
neling” of laterally confined fermions back into domain-wall
states is shown in our simulation.

Here we have confined our analysis to the intersection of
two linear domain walls. If more complex magnetic textures
on topological insulators can be realized in experiment,
domain walls can be used as chiral Dirac fermion waveguides,
with their mutual intersections acting as beam splitters as,
for example, in a proposal for a domain-wall electric-gate
controlled fermion interferometer.31
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67R. Hammer, W. Pötz, and A. Arnold, J. Comp. Phys. 256, 728

(2014).
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