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Nonlinear optics from an ab initio approach by means of the dynamical Berry phase:
Application to second- and third-harmonic generation in semiconductors
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We present an ab initio real-time-based computational approach to study nonlinear optical properties in
condensed matter systems that is especially suitable for crystalline solids and periodic nanostructures. The
equations of motion and the coupling of the electrons with the external electric field are derived from the
Berry-phase formulation of the dynamical polarization [Souza et al., Phys. Rev. B 69, 085106 (2004)]. Many-body
effects are introduced by adding single-particle operators to the independent-particle Hamiltonian. We add a
Hartree operator to account for crystal local effects and a scissor operator to correct the independent particle band
structure for quasiparticle effects. We also discuss the possibility of accurately treating excitonic effects by adding
a screened Hartree-Fock self-energy operator. The approach is validated by calculating the second-harmonic
generation of SiC and AlAs bulk semiconductors: an excellent agreement is obtained with existing ab initio
calculations from response theory in frequency domain [Luppi et al., Phys. Rev. B 82, 235201 (2010)]. We finally
show applications to the second-harmonic generation of CdTe and the third-harmonic generation of Si.
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I. INTRODUCTION

Ab initio approaches based on Green’s function theory
became a standard tool for quantitative and predictive calcula-
tions of linear response optical properties in condensed matter.
In particular, the state-of-the-art approach combines the G0W0

approximation for the quasiparticle band structure1 with the
Bethe-Salpeter equation in static ladder approximation for the
response function.2 This approach proved to effectively and
accurately account for the essential effects beyond independent
particle approximation (IPA) in a wide range of electronic
systems, including extended systems with strong excitonic
effects.3

In contrast, for nonlinear optics ab initio calculations
of extended systems rely in large part on the IPA4 with
correlation effects entering at most as a rigid shift of the
conduction energy levels.5 Within time-dependent density-
functional theory (TDDFT), an approach has been recently
proposed6 to calculate the second-harmonic generation (SHG)
in semiconductors that takes into account as well crystal
local-field and excitonic effects. However, this promising
approach7 is limited by the treatment of the electron correlation
to systems with weakly bound excitons.8

Within Green’s function theory the inclusion of many-body
effects into the expression for the nonlinear optical suscepti-
bilities is extremely difficult. Furthermore the complexity of
these expressions grows with the perturbation order. Therefore
it is not surprising that there have been only a few isolated
attempts to calculate second-order optical susceptibility using
the Bethe-Salpeter equation9,10 and no attempt to calculate
higher-order optical susceptibilities.11

Alternatively to the frequency-domain response-based ap-
proach, one can obtain the nonlinear optical susceptibility in
time domain from the dynamical polarization P of the system
by using the expansion of P in power of the applied field

P = χ (1)E + χ (2)E2 + χ (3)E3 + · · · . (1)

This strategy is followed in several real-time implementations
of TDDFT.12 In these approaches the dynamical polarization
is obtained by numerical integration of the equations of motion
(EOMs) for the Kohn-Sham system.13–15 So far applications
regard mostly nonlinear optical properties in molecules.

The time-domain approach presents three major advantages
with respect to frequency-domain response-based approaches.
First, many-body effects are included easily by adding the
corresponding operator to the effective Hamiltonian. Second,
it is not perturbative in the external fields and therefore it
treats optical susceptibilities at any order without increasing
the computational cost and with the only limitation dictated
by the machine precision. Third, several nonlinear phenomena
and thus spectroscopic techniques are described by the same
EOMs. For instance, by the superposition of several laser fields
one can simulate sum- and difference-frequency harmonic
generation, or four-waves mixing.16

In a recent work,17 we proposed a real-time implementation
of the Bethe-Salpeter equation, based on the nonequilibrium
Green’s function formalism. However, due to the problems
in defining the position operator and thus P, it is not trivial to
apply Eq. (1) to systems in which periodic boundary conditions
(PBC) are imposed. As it was recognized for example in
Ref. 18, the same problem appears in the direct evaluation
of the nonlinear optical susceptibility in frequency-response-
based approaches. In particular the dipole matrix elements
between the periodic part of the Bloch functions are ill defined
when using the standard definition of the position operator.
In that case, it is possible to obtain correct expressions for the
dipole matrix elements from perturbation theory4,6,18 at a given
order in the external field. Instead, in the real-time approach
one needs an expression valid at each order of the perturbation.

A correct definition of the polarization operator in systems
with PBC has been introduced by means of the geometric Berry
phase in the modern theory of polarization.19 To our knowledge
real-time schemes for calculating the electron-field coupling
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consistently with PBC have been proposed in Refs. 20–22.
In those works the dipole matrix elements are evaluated
numerically from the derivative in the crystal-momentum (k)
space. The latter cannot be carried out trivially because of
the freedom in the gauge of the periodic part of the Bloch
functions. In fact, the gauge freedom leads to spurious phase
differences in the Bloch functions at two neighboring k points
and ultimately to spurious contributions to the numerical
derivative. Then, basically the three schemes20–22 differ in how
the gauge is fixed to eliminate the spurious phase.

This work presents a real-time ab initio approach to
nonlinear optical properties for extended systems with PBC
in which the nonlinear optical susceptibility are obtained
through Eq. (1). To derive the EOMs we follow the scheme
of Souza et al.22 based on the generalization of the Berry
phase to the dynamical polarization (Sec. II A). Originally
applied to a simple tight-binding Hamiltonian, this approach
is valid for any single-particle Hamiltonian and, as we discuss
in Sec. II B, it can be applied in an ab initio context with in-
clusion of the relevant many-body effects. After detailing how
nonlinear optical susceptibility is extracted from the dynamical
polarization (Sec. III), we show results for the second- and
third-harmonic generation (THG) in semiconductors (Sec. IV)
and successfully validate them against existing results from the
literature obtained by response theory in the frequency domain.

II. THEORETICAL BACKGROUND

We consider a system of N electrons in a crystalline solid
of volume V = Mv (where M is the number of the equivalent
cells and v the cell volume) coupled with a time-dependent
electric field E

H (t) = H 0 + H E (t), (2)

where H 0 is the zero-field Hamiltonian, and H E (t) describes
the coupling with the electric field. Here, we consider a generic
single-particle Hamiltonian H 0. In Sec. II B we specify the
form of H 0 and show how many-body effects are included
by means of effective single-particle operators. Of course, the
choice of a single-particle Hamiltonian prevents applications
to systems with strong static correlation such as Mott insulators
or frustrated magnetic materials. We assume the ground state
of H 0 to be nondegenerate and a spin singlet so that the
ground-state wave function can be expressed as a single
Slater determinant. We also assume, as is usual in treating
cell-periodic systems, Born-von Kármán PBC and define a
regular grid of Nk = M k points in the Brillouin zone. With
such assumptions, the single-particle solutions of H 0 are Bloch
functions.

Regarding the electron-field coupling we assume classic
fields and use the dipole approximation, H E (t) = eE(t)r̂ (−e

is the electronic charge). However, because of the PBC the
position operator is ill defined. In order to obtain a form for
the field coupling operator compatible with Born-von Kármán
PBC, in this paper we use the Berry-phase formulation of
the position operator and consequently the polarization. As
proved in Ref. 22, in this formulation the solutions of H (t) are
also in a Bloch function form: φk,n(r,t) = exp(ik · r)vk,n(r,t),
with vk,n being the periodic part and n being the band index.
Notice that, even in the Berry-phase formulation, for very

strong fields and with the number of k points that goes to
infinity, the Hamiltonian Eq. (2) is unbounded from below
due to the Zener tunneling.20 Nevertheless the strength of the
fields used in nonlinear optics is well below this limit.20,22

In Sec. II A we detail how, by starting from the Berry-phase
formulation of polarization, we obtain the EOMs in presence
of an external electric field within PBC.

A. Treatment of the field coupling term

1. Berry-phase polarization

Developed in the mid-1990s the modern theory of
polarization19 provides a correct definition for the macroscopic
bulk polarization, not limited to the perturbative regime, in
terms of the many-body geometric phase

Pα = eNkα
aα

2πV
Im ln 〈�0|eiqα ·X̂|�0〉. (3)

In Eq. (3) Pα is the macroscopic polarization along the
primitive lattice vector aα , X̂ = ∑N

i=1 x̂i , qα = bα

Nkα
with bα

the primitive reciprocal lattice vector such that bα · aα = 2π ,
and Nkα

the number of k points along α, corresponding to the
number of equivalent cells in that direction. Note that in this
formulation the polarization operator is a genuine many-body
operator that cannot be split as a sum of single-particle
operators.

By using the assumption that the wave function can be
written as a single Slater determinant, the expectation value of
the many-body geometric phase in Eq. (3) can be seen as the
overlap between two single Slater determinants. The latter is
equal to the determinant of the overlap S matrix built out of
φkj ,m, the occupied Bloch functions

Skm,k′m′ = 〈φk,m|e−iqα x̂ |φk′,m′ 〉. (4)

Then we can rewrite Eq. (3) as

Pα = − ef aα

2πNk⊥
α
v

Im ln det S, (5)

where f is the spin degeneracy, equal to 2 since we consider
here only spin-unpolarized systems, and Nk⊥

α
is the number of

k points in the plane perpendicular to reciprocal lattice vector
bα , with Nk = Nk⊥

α
× Nkα

.
The overlap S has dimensions nbNk × nbNk, where nb is

the number of doubly occupied bands. However, from the
properties of the Bloch functions and by imposing that they
satisfy the so-called periodic gauge φk+G = φk, it follows that
the integrals in Eq. (4) are different from zero only if k′ − k =
qα . Therefore the determinant of S reduces to the product of
Nkα

determinants of overlaps S built out of vk,m, the periodic
part of the occupied Bloch functions:

Smn(k,k + qα) = 〈
vk,m

∣∣vk+qα,n

〉
. (6)

This leads to the formula by which we compute the polarization
of the system

Pα = − ef

2πv

aα

Nk⊥
α

∑
k⊥

α

Im ln
Nkα −1∏

i=1

det S(ki ,ki + qα). (7)

Using matrix properties,23 the logarithm of the matrix deter-
minant can be rewritten as the trace of matrix logarithm, and
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so Eq. (7) can be transformed as

Pα = − ef

2πv

aα

Nk⊥
α

∑
k⊥

α

Im
Nkα −1∑

i=1

tr ln S(ki ,ki + qα), (8)

more suitable to derive the EOMs. By taking the thermody-
namic limit (Nk → ∞ and qα → 0) of the latter expression
one arrives at the King-Smith and Vanderbilt formula for
polarization.24 Since in a numerical implementation we deal
with a finite number of Nk and finite qα , we stick here to
Eq. (8) with qα = �kα to derive the EOMs.

2. Equations of motion

Following Ref. 22 we start from the Lagrangian of the
system in presence of an external electric field E:

L = ih̄

Nk

M∑
n=1

∑
k

〈vkn|v̇kn〉 − E0 − vE · P, (9)

where E0 is the energy functional corresponding to the zero-
field Hamiltonian:

E0 = 1

Nk

M∑
n=1

∑
k

〈vkn|Ĥ 0
k |vkn〉, (10)

with Ĥ 0
k = e−ikr′

H 0eikr. Notice that H 0 does not connect
wave functions with different k vectors. To simplify the
notation we do not make explicit the time dependence of the
|vkn〉, but they should be considered time dependent in the rest
of the paper.

We derive the dynamical equations from the Euler-
Lagrange equations

d

dt

δL
〈δv̇k,n| − δL

〈δvk,n| = 0, (11)

ih̄
d

dt
|vkn〉 − Ĥ 0

k |vkn〉 − NkvE · δP
〈δvk,n| = 0. (12)

To obtain the functional derivative of the polarization expres-
sion in Eq. (8) we use that22,25

δtr lnS = tr[S−1δS] + O(δS2), (13)

and that exchanging arguments (k ↔ k′) in S [Eq. (6)] brings
a minus sign in Eq. (8). This leads to (see Ref. 22 for details):

δPα

〈δvk,n| = − ief

2π

aα

2Nk⊥
α
v

(∣∣ṽk+
α ,n

〉 − ∣∣ṽk−
α ,n

〉)
(14)

∣∣ṽk±
α ,n

〉 =
∑
m

(S(k,k±
α )−1)mn

∣∣vk±
α ,m

〉
, (15)

where k±
α = k ± �kα , and from which we can define the field

coupling operator

ŵk(E) = ief

4π

∑
m

3∑
α=1

(aα · E)Nkα

∑
σ=±

σ
∣∣ṽkσ

α ,m

〉〈vk,m|. (16)

Notice that the field coupling operator in Eq. (16) is non-
Hermitian. In order to have well-defined Hermitian operators
in the EOMs we replace ŵk(E) with ŵk(E) + ŵ

†
k(E). This is

possible because at any time ŵ
†
k|vkn〉 = 0.22 Finally, by using

Eqs. (14)–(16) in Eq. (12) and the Hermitian field coupling
operator we obtain the EOMs:

ih̄
d

dt
|vk,m〉 = (

Ĥ 0
k + ŵk(E) + ŵ

†
k(E)

)|vk,m〉. (17)

Note that Eq. (16) contains

1

2�kα

(∣∣ṽk+
α ,n

〉 − ∣∣ṽk−
α ,n

〉)
, (18)

which has the form of the two-points central finite difference
approximation of ∂kα

|vkα
〉, but for the fact that |ṽk±〉 are used

instead of |vk±〉. As explained in Ref. 22, the |ṽk±〉 are built
from the |vk±〉 [Eq. (15)] in such a way that they transform as
|vk〉 under a unitary transformation Uk,nn′ .

In fact, there is a gauge freedom in the definition of |vk〉, that
is |vk〉 → Uk|vk〉, and since the Hamiltonian is diagonalized
independently at each k, the gauge is fixed independently and
randomly at each k. Then, standard (numerical) differentiation
will be affected by the different gauge choices at two
neighboring k points. Instead the (numerical) derivative in
Eq. (18) is gauge invariant, or more specifically is performed
in a locally flat coordinate system with respect to Uk,nn′ . In fact,
in the thermodynamical/continuum limit, Eq. (18) corresponds
to the covariant derivative. The problem of differentiating |vk〉
with respect to k has been addressed also in Refs. 20, 21, and 26
that use alternative approaches to ensure the gauge invariance.
In the here-discussed approach the definition of a numerical
covariant differentiation originates directly from the definition
of the polarization as a Berry phase.

B. Treatment of electron correlation

Correlation effects play a crucial role in both linear3 and
nonlinear5,6 response of solids. Since we assumed that |�0〉 in
Eq. (3) can be written as a single Slater determinant, effects
beyond the IPA can be introduced in Ĥ 0 through an effective
time-independent one-particle operator that can be either
spatially local as in time-dependent density functional theory,
or spatially nonlocal as in time-dependent Hartree-Fock.

However, both time-dependent density functional theory
and time-dependent Hartree-Fock are not suitable approaches
to optical properties of semiconductors: the former, within
standard approximations for the exchange-correlation ap-
proximations, underestimates the optical gap and misses the
excitonic resonances; the latter largely overestimates the band-
gap and excitonic effects.

In the framework of Green’s function theory a very
successful way to deal with electron-electron interaction in
semiconductors is the combination of the G0W0 approximation
for the quasiparticle band structure27 with the Bethe-Salpeter
equation in static ladder approximation for the response
function.2

We recently extended this approach to the real-time
domain17 by mean of nonequilibrium Green’s function the-
ory. In practice, the latter approach corresponds to a time-
dependent static screened Hartree-Fock operator that satisfies
the above-mentioned restrictions on the choice of Ĥ 0 and
thus can be used within the here-proposed framework. In
what follows, we reformulate the approach in Ref. 17 as
time-dependent Schrödinger-like equations [Eq. (17)].
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As a starting point we choose the Kohn-Sham Hamiltonian
at fixed density as a system of independent particles,28

Ĥ 0,IPA ≡ ĥKS = − h̄2

2m

∑
i

∇2
i + V̂eI + V̂H [ρ0] + V̂xc[ρ0],

(19)

where VeI is the electron-ion interaction, VH the Hartree
potential, and Vxc the exchange-correlation potential. The
advantage of such a choice is that the Kohn-Sham system is
the independent-particle system that reproduces the electronic
density of the unperturbed many-body interacting system ρ0,
thus, by virtue of the Hohenberg-Kohn theorem,29 the ground-
state properties of the system. Furthermore, no material-
dependent parameters need to be input, but for the atomic
structure and composition.

As a first step beyond the IPA, we introduce the corrections
to the independent-particle energy levels by the electron-
electron interaction through a (state-dependent) scissor
operator

�Ĥ =
∑
n,k

�n,k
∣∣v0

n,k

〉〈
v0

n,k

∣∣. (20)

The latter can be calculated ab initio, e.g., via the G0W0

approach �n,k = (EG0W0
n,k − εKS

n,k), or can be determined empir-
ically from the experimental band gap �n,k = � = E

exp
GAP −

�εKS
GAP. We refer to this approximation as the independent

quasiparticle approximation (QPA):

Ĥ 0,QPA ≡ ĥKS + �Ĥ. (21)

Notice that in our approach the inclusion of a nonlocal operator
in the Hamiltonian does not present more difficulties than a
local one, while in the response theory in the frequency domain
this is not a trivial task.6 As a second step we consider the
effects originating from the response of the effective potential
to density fluctuations. By considering the change of the
Hartree plus the exchange-correlation potential in Eq. (19) we
will obtain the TD-DFT response. Here we include just classic
electrostatic effects via the Hartree part. We refer to this level
of approximation as the time-dependent Hartree (TDH)

Ĥ 0,TDH ≡ Ĥ 0,QPA + V̂H [ρ − ρ0]. (22)

In the linear response limit the TDH is usually referred as
random-phase approximation and is responsible for the so-
called crystal local field effects.30

Beyond the TDH approximation one has the TD-Hartree-
Fock that includes the response of the exchange term to
fluctuations of the density matrix γ . As discussed above this
level of approximation is insufficient for optical properties of
semiconductors, normally worsening over TDH results. The
next step is thus to consider a screened exchange term in
which the relevant electron correlation is introduced as a static
screening term.2 The latter is calculated for the unperturbed
KS system and is fixed to its initial value. We refer to this level
of approximation as TD screened exchange or TD screened
Hartree-Fock (TD-SHF),

Ĥ 0,TDSHF ≡ Ĥ 0,TDH + �̂0,SHF[γ − γ 0]. (23)

We want to emphasize again that within this approach many-
body effects are easily implemented by adding terms to the

unperturbed independent-particle Hamiltonian Ĥ 0,IPA in the
EOMs [Eq. (17)]. Limitations may arise because of the compu-
tational cost of calculating those addition terms. Specifically,
the large number of k points needed to converge the SHG
and THG spectra makes TD-SHF calculations impractical.
However, much fewer k points are needed for converging
the screened-exchange self-energy itself and currently we are
investigating how to exploit this property and devise a double
grid strategy similar to the one proposed in Ref. 31. In this
work effects beyond IPA are limited to the QPA and TDH.

Finally, when the wave function cannot be approximated
anymore with a single Slater determinant (as in strong-
correlated systems) the evaluation of the polarization operator
[Eq. (3)] becomes quite cumbersome.32 Also we are not
aware of any successful attempt to combine Berry-phase
polarization with Green’s function theory or density matrix
kinetic equations (including, for example, scattering terms),
even if some appealing approaches have been proposed.33,34

III. COMPUTATIONAL SCHEME AND NUMERICAL
PARAMETERS

Figure 1 illustrates the computational scheme we use to
calculate the SHG and THG spectra. It consists in KS-DFT

(a)

(b)

(c)

(d)

FIG. 1. (Color online) Proposed real-time ab initio scheme to
compute SHG and THG spectra in the [�1,�2] energy range for
extended systems with PBC: (a) Results from KS-DFT and G0W0

are input to determine the zero-field Hamiltonian. (b) The EOMs
[Eq. (17)] are then integrated to obtain (c) the overlaps S from which
the polarization is computed as in Eq. (7). In the postprocessing step
(d) the nonlinear susceptibilities are obtained by inversion of the
Fourier matrix [Eq. (28)], see Sec. III for details.
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TABLE I. Parameters used in the Kohn-Sham density-functional
theory and in the real-time simulations: the pseudopotential compo-
nents for each atom (PP); energy cutoff for the plane waves (Ec);
number of k points of the Monkhorst-Pack grid in each of the three
dimensions for calculating the density and in the RT simulations (k
grid); the lattice parameter (a); the range of bands for which the
single-particle wave function is evolved during the RT simulation;
the QP scissor (�) used within the QPA.

System PP Ec(Ha) k grid a (Å) Bands �(eV)

SiC Si:(3s)2(3p)2 30 8/16 4.36 1–8 0.8
C:(2s)2(2p)2

AlAs Al:(3s)2(3p)1 20 8/18 5.66 2–10 0.9
As:(4s)2(4p)3

CdTe Cd:(4d)10(5s)2 40 8/14 6.48 7–13 1.0
Te:(5s)2(5p)4

Si Si:(3s)2(3p)2 14 8/24 5.39 1–7 0.6

and G0W0 calculations to determine the density and the KS
eigenvalues, the quasiparticle corrections and eigenfunctions
entering the zero-field Hamiltonian; the integration of the
equations of motion [Eq. (17)] with a monochromatic electric
field E(t) = E0 sin(ωLt) to obtain the P(t) from Eq. (7), and the
postprocessing of P(t) to extract the nonlinear susceptibilities.
The latter two steps are repeated varying the laser frequency
ωL within the energy range for which we calculate the spectra.

The scheme in Fig. 1 has been implemented in the develop-
ment version of the YAMBO code.35 Kohn-Sham calculations
have been performed using the ABINIT code,36 and the relevant
numerical parameters are summarized in Table I. All the
operators appearing in the EOMs [Eqs. (17),(22),(21)] have
been expanded in the Kohn-Sham basis set and the number of
bands employed in the expansion is reported in Table I.

Rigorously to have a fully ab initio scheme, the scissor
operator has to be calculated using, e.g., G0W 0. Here we use
empirical values for the scissor operator (reported in Table I)
since the scope is to validate the computational scheme, and
to facilitate the comparison with other works in the literature.

The EOMs [Eq. (17)] have been integrated using the
following algorithm37

|vkn(t + �t)〉 = I − i(�t/2)Ĥ 0
k (t)

I + i(�t/2)Ĥ 0
k (t)

|vkn(t)〉, (24)

valid for both Hermitian and non-Hermitian Hamiltonians,
and strictly unitary for any value of the time step �t in the
Hermitian case. In all real-time simulations we used a time
step of 0.01 fs. The number of states (number of bands ×
number of k points) evolved during the simulations is reported
in Table I.

In our simulations we switch on the monochromatic field at
t = t0. This sudden switch excites the eigenfrequencies of the
system ω0

l introducing spurious contributions to the nonlinear
response. We thus add an imaginary term into the Hamiltonian
H 0

k to simulate a finite dephasing:

� = − i

γdeph

∑
l

{|vk,l〉〈vk,l| − ∣∣v0
k,l

〉〈
v0

k,l

∣∣}, (25)

t

P
(t

)

Convergence: t
1

γdeph

Sampling: TL =
2π

ωL

FIG. 2. (Color online) Pictorial representation of the signal
analysis in the postprocessing step. The signal P (t) (red line) can
be divided into two regions: an initial convergence region (up
to t � 1/γdeph) in which the eigenfrequencies of the systems are
filtered out by dephasing and a second region where Eq. (26) holds.
In this second region the signal P (t) is sampled within a period
TL = 2π/ωL to extract the P α

i coefficients of Eq. (28). Note that
P (t) is not a realistic one: for illustration purposes we enhanced the
second-harmonic signal that otherwise would not be visible on this
scale.

where |v0
k,l〉 are the valence bands of the unperturbed system

and γdeph is the dephasing rate. Then we run the simulations for
a time much larger than 1/γdeph and sample P(t) close to the end
of the simulation, see Fig. 2. Since γdeph determines also the
spectral broadening, we cannot choose it arbitrary small. For
example, in the present calculations we have chosen 1/γdeph

of 6 fs, which corresponds to a broadening of approximately
0.2 eV (comparable with the experimental one) and thus we
run the simulations for 50–55 fs. Once all the eigenfrequencies
of the system are filtered out, the remaining polarization P(t)
is a periodic function of period TL = 2π

ωL
, where ωL is the

frequency of the external perturbation and can be expanded in
a Fourier series

P(t) =
+∞∑

n=−∞
pne

−iωnt , (26)

with ωn = nωL, and complex coefficients:

pn = F {P(ωn)} =
∫ TL

0
dtP(t)eiωnt . (27)

To obtain the optical susceptibilities of order n at frequency
ωL one needs to calculate the pn of Eq. (26), proportional to
χ (n) by the nth power of the E0. However, the expression in
Eq. (27) is not the most computationally convenient since one
needs a very short time step—significantly shorter than the one
needed to integrate the EOMs—to perform the integration with
sufficient accuracy. As an alternative we use directly Eq. (26):
We truncate the Fourier series to an order S larger than the
one of the response function we are interested in. We sample
2S + 1 values Pi ≡ P(ti) within a period TL, as illustrated in
Fig. 2. Then Eq. (26) reads as a system of linear equations

Finp
α
n = P α

i , (28)

from which the component pα
n of pn in the α direction is found

by inversion of the (2S + 1) × (2S + 1) Fourier matrix Fin ≡
exp(−iωnti). We found that the second-harmonic generation
converges with S equal to 4 while the third harmonic requires
S equal to 6. Finally we noticed that averaging the results on
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more periods can slightly reduce the numerical error in the
signal analysis.

Alternatively one can opt for a slow switch on of the electric
field as in Takimoto et al.,13 so that no eigenfrequencies of the
system are excited, and to avoid introducing imaginary terms
in the Hamiltonian. We found, however, that the latter approach
also requires long simulations, and on the other hand, it is less
straightforward to extract the χ (n).

IV. RESULTS

The main objective of this section is to validate the
computational approach described in Secs. II and III against
results in the literature for SHG obtained by the response
theory in frequency domain. In particular we chose to validate
against results from Refs. 6 and 38 on bulk SiC and AlAs
in which the electronic structure is obtained—as in our
case—from a pseudopotential plane-wave implementation of
Kohn-Sham DFT with the local density approximation, which
makes the comparison easier. In the following we considered
the zinc-blende structure of SiC and AlAs for which the χ (2)

tensor has only one independent nonzero component, χ (2)
xyz (or

its equivalent by permutation).
Figures 3 and 4 show results for the magnitude of SHG in

SiC at the IPA, QPA, and TDH level of theory. At all levels
of approximation we obtained an excellent agreement with
the results in Ref. 6. The minor discrepancies between the
curves are due to the different choice for the k grid used for
integration in momentum space: we used a �-centered uniform
grid (for which we can implement the numerical derivative)
whereas Ref. 6 used a shifted grid. Figures 5 and 6 show
results for the magnitude of SHG in AlAs at the IPA, QPA and
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FIG. 3. (Color online) Magnitude of χ (2)(−2ω,ω,ω) for bulk SiC
calculated within the IPA (black triangles) and QPA (red circles).
Each point corresponds to a real-time simulation at the given laser
frequency (see Sec. III). Comparison is made with results obtained
ab initio by direct evaluation of the χ (2) in Ref. 6 in IPA (gray solid
line) and QPA (brown dashed line).
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FIG. 4. (Color online) Magnitude of χ (2)(−2ω,ω,ω) for bulk SiC

calculated within the IPA (black triangles) and TDH (red circles).
Each point corresponds to a real-time simulation at the given laser
frequency (see Sec. III). Comparison is made with results obtained
ab initio by direct evaluation of the χ (2) in Ref. 6 in IPA (gray solid
line) and TDH (brown dashed line).

TDH level of theory. Also in this case results obtained from
our real-time simulations agree very well with the reference
results and again the small differences between the spectra can
be ascribed mostly to the different grid for k integrations.
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FIG. 5. (Color online) Magnitude of χ (2)(−2ω,ω,ω) for bulk
AlAs calculated within the IPA (black triangles) and QPA (red
circles). Each point corresponds to a real-time simulation at the
given laser frequency (see Sec. III). Comparison is made with results
obtained ab initio by direct evaluation of the χ (2) in Refs. 6 and 38
in IPA (gray solid and dot-dashed line) and QPA (brown dashed and
dotted line).
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FIG. 6. (Color online) Magnitude of χ (2)(−2ω,ω,ω) for bulk
AlAs calculated within the IPA (black triangles) and TDH (red
circles). Each point corresponds to a real-time simulation at the
given laser frequency (see Sec. III). Comparison is made with results
obtained ab initio by direct evaluation of the χ (2) in Ref. 6 in IPA
(gray solid line) and TDH (brown dashed line).

As side results we can also observe the effects of different
levels of approximation for the Hamiltonian on the SHG
spectrum. In order to interpret those spectra note that SHG
resonances occur when either ωL or 2ωL equals the difference
between two single-particle energies. Then one can distinguish
two energy regions: below the single-particle minimum direct
gap where only resonances at 2ωL can occur, and above where
both ωL or 2ωL resonances can occur.

Regarding the quasiparticle corrections to the IPA energy
levels by a scissor operator, below the minimum Kohn-Sham
direct band gap the IPA spectrum is shifted by half of the
value of the scissor shift (0.4 eV for SiC and 0.45 eV for
AlAs) and the spectral intensity reduced by a factor 1.18
(SiC) and 1.25 (AlAs). Above the minimum Kohn-Sham
direct band gap instead the QPA spectrum cannot be simply
obtained by shifting and renormalizing the IPA one because
of the occurrence of resonances at ωL, which are shifted and
renormalized differently.

Regarding the crystal local field, their global effect is to
reduce the intensity with respect to the IPA. For SiC, the
intensity is reduced by about 15% below the gap, while above
the band gap TDH and IPA have similar intensities. For AlAs
we observe a reduction of about 30% in intensity for the whole
range of considered frequencies, but for frequencies larger than
4 eV (which is where the ωL resonances with the main optical
transition occur) for which again the TDH and IPA have similar
intensities.

We also computed the SHG of bulk CdTe (zinc-blende
structure) in Fig. 7 and we compared with theoretical results39

obtained by a minimal-basis semi-ab initio approach (linear
combination of Gaussian orbitals in conjunction with an α

Slater potential where α is tuned to fit the gap) and with
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FIG. 7. (Color online) Magnitude of χ (2)(−2ω,ω,ω) for bulk

CdTe calculated within the QPA (black triangles) and TDH (red
circles). Each point corresponds to a real-time simulation at the
given laser frequency (see Sec. III). Comparison is made with results
obtained ab initio by direct evaluation of the χ (2) in Ref. 39 in IPA
(gray solid line) and available experimental results in Refs. 40 and 41
(blue stars and diamonds).

experimental results.40,41 At the QPA level (scissor operator
of 1.0 eV) the calculated spectrum differs noticeably from
the theoretical results in Ref. 39, and largely overestimates
the experimental intensities. Interestingly crystal local fields
are strong, reducing the intensity of about 50% with respect to
the IPA. The intensity of the TDH spectrum is then consistent
with the experimental measurements.

Finally, our approach can also compute third-order sus-
ceptibilities as shown in Figs. 8 and 9 for the THG of Si.
Within the dipole approximation bulk Si does not have SHG
since it is centrosymmetric. The first nonlinear effects we can
extract from our simulation are at the third order. The THG
for Si (diamond structure) has two independent components,
χ

(3)
1212 ≡ χ (3)

xyxy and χ
(3)
1111 ≡ χ (3)

xxxx . In the expression for the TH
polarization along the direction i,

Pi(3ω) = 3χ
(3)
1212E i(ω)|E(ω)|2 + (

χ
(3)
1111 − 3χ

(3)
1212

)
E3

i (ω),

B = 3χ
(3)
1212 is the isotropic contribution, while A = χ

(3)
1111 is

the anisotropic contribution. Combination of measurements
of THG at different field polarizations provide the anisotropy
|σ | = |(B − A)/A| and the phase of B/A. Figure 8 shows our
results within the QPA and RPA (scissor operator of 0.6 eV)
for A and B compared with theoretical calculations at the
tight-binding level with either semi-ab initio or empirical
parameters. Apparently the empirical tight-binding results
are the closer to our QPA spectra; however, the semi-ab
initio tight-binding spectra show the same peak structure and
similar ratio between A and B intensities. Both spectra at the
RPA level are very similar to the QPA ones: the isotropic
contribution is practically identical, while slightly more
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FIG. 8. (Color online) Magnitude of the two independent com-
ponents of the THG in bulk Si: B = 3χ

(3)
1212 (left panel) and A = χ

(3)
1111

(right panel) calculated within the QPA (black triangles). Each point
corresponds to a real-time simulation at the given laser frequency
(see Sec. III). Comparison is made with results obtained by direct
evaluation of the χ (3) in Ref. 42 from empirical (gray solid line) and
semi-ab initio tight binding (brown dashed line).

pronounced differences can be observed for the anisotropic
contribution. Figure 9 shows the anisotropy and the phase
compared with both other theoretical results and experiments.
For energies below 1 eV our QPA spectra is in good agreement
with results obtained from semi-ab initio tight binding and
with the experimental measurement. For higher energies our
spectra are less structured with respect both the semi-ab initio
tight binding and the experiment. In particular the peak at
1–1.1 eV is missing. On the other hand, the intensities of
the spectra are in better agreement with the experiment than
the previous theoretical results. It is interesting to observe how
small changes in the spectrum of the anisotropic contribution A

due to crystal local field effects induce quite important changes
in the phase and anisotropy spectra. In particular, as previously
observed they increase the anisotropy. Thus, it seems important
to include crystal local field effects even if they are weak.

V. CONCLUSIONS

We presented an ab initio real-time approach to calculate
nonlinear optical properties of extended systems. The key
strengths of the proposed approach are, first, the correct
treatment of the coupling between electrons and external field
and, second, the possibility of easily including effects beyond
the IPA.

Regarding the treatment of the electron-field coupling,
following the work of Souza et al.,22 we started from the
Berry-phase formulation for the dynamical polarization—a
definition consistent with the PBC—to derive a covariant
numerical expression for the dipole operator in the EOMs.

Note that we worked in the length gauge even if the velocity
gauge may appear a more natural choice. In fact, as opposed

0
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FIG. 9. (Color online) Dispersion in the magnitude of the
anisotropy |σ | = |(B − A)/A| (top panel) and in the relative phase
of B/A (bottom panel) calculated within the QPA (black triangles).
Each point corresponds to a real-time simulation at the given laser
frequency (see Sec. III). Comparison is made with experimental
results from Ref. 43 (blue stars) and results obtained by direct
evaluation of the χ (3) in Ref. 42 from empirical (gray solid line)
and semi-ab initio tight binding (brown dashed line).

to the position operator the velocity operator is consistent with
the PBC. However, in the velocity gauge even if the position
operator disappears from the Hamiltonian, it reappears in the
phase factor for the wave function,44 so that the problem
of redefining the position operator remains. Furthermore, the
velocity gauge is plagued by unphysical numerical divergences
for the response to low frequencies.18

Regarding effects beyond the independent-particle approx-
imation, they are included by simply adding the corresponding
operator to the single-particle Hamiltonian. This is an easy task
when compared with deriving the corresponding expressions
for the nonlinear optical susceptibility.5,11 As an example, in
the present work we have included quasiparticle corrections to
the band gap by adding to the Hamiltonian a scissor operator
and crystal local-field effects by adding the time-evolution of
the Hartree potential. In principle, one can add as well excitonic
effects by adding the time evolution of the screened exchange
self-energy as in the scheme proposed in Ref. 17; or perform
real-time TD-DFT calculations by adding the time-evolution
of the exchange-correlation potential. The focus of this work
being the validation of the proposed approach for calculating
nonlinear properties, we leave the inclusion of these correlation
effects for future work.

We have proved the validity of our approach for the SHG
in bulk SiC and AlAs by showing an excellent agreement
between our results, obtained from real-time simulations, and
results in the literature obtained from direct evaluation of the
second-order susceptibility in the frequency domain. For CdTe
we have computed the SHG and shown that local field effects
are important to reproduce experimental measurements. Fi-
nally, our approach is not limited to the SHG and we have
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computed the phase and anisotropy of the THG in bulk Si
and obtained results consistent with existing experimental
measurements.
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Degoli, E. Luppi, V. Véniard, S. Ossicini, D. Modotto, S. Wabnitz,
R. Pierobon, and L. Pavesi, Nature Mater. 11, 148 (2012).

8S. Botti, F. Sottile, N. Vast, V. Olevano, L. Reining, H.-C. Weissker,
A. Rubio, G. Onida, R. Del Sole, and R. W. Godby, Phys. Rev. B
69, 155112 (2004).

9R. Leitsmann, W. G. Schmidt, P. H. Hahn, and F. Bechstedt, Phys.
Rev. B 71, 195209 (2005).

10E. K. Chang, E. L. Shirley, and Z. H. Levine, Phys. Rev. B 65,
035205 (2001).

11K. S. Virk and J. E. Sipe, Phys. Rev. B 80, 165318 (2009).
12K. Yabana and G. F. Bertsch, Phys. Rev. B 54, 4484 (1996).
13Y. Takimoto, F. D. Vila, and J. J. Rehr, J. Chem. Phys. 127, 154114

(2007).
14A. Castro, M. A. L. Marques, and A. Rubio, J. Chem. Phys. 121,

3425 (2004).
15S. Meng and E. Kaxiras, J. Chem. Phys. 129, 054110 (2008).
16R. W. Boyd, Nonlinear Optics (Academic Press, Waltham,

Massachusetts, 2008).
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