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Many-body study of a quantum point contact in the fractional quantum Hall regime at ν = 5/2
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We study a quantum point contact in the fractional quantum Hall regime at Landau level filling factors ν = 1/3
and 5/2. By using exact diagonalizations in the cylinder geometry, we identify the edge modes in the presence of a
parabolic confining potential. By changing the sign of the potential, we can access both the tunneling through the
bulk of the fluid and the tunneling between spatially separated droplets. This geometry is realized in the quantum
point contact geometry for two-dimensional electron gases. In the case of the model Moore-Read Pfaffian state
at filling factor ν = 5/2, we identify the conformal towers of many-body eigenstates including the non-Abelian
sector. By a Monte-Carlo technique, we compute the various scaling exponents that characterize the edge modes.
In the case of hard-core interactions whose ground states are exact model wave functions, we find equality of
neutral and charged velocities, both bosonic and fermionic, for the Pfaffian state.
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I. INTRODUCTION

Modern semiconductor technology has made it possi-
ble to fabricate structures with electronic motion essen-
tially restricted to two dimensions.1 In these so-called two-
dimensional electron gases (2DEG), the motion along the
direction perpendicular to the sample plane is frozen into its
quantum-mechanical ground state. This may be realized in
heterostructures and in quantum wells. They differ in the shape
of the wave function for the frozen motion. The mesoscopic
physics at play in 2DEGs is very rich and includes the integer
and fractional quantum Hall effects, quantum localization, and
double-barrier tunneling. One of the main building blocks of
mesoscopic devices is the so-called “quantum point contact”
(QPC): a constriction of the 2D electronic fluid created by the
electrostatic potential of a gate. Tuning the potential allows
to control the shape of the electron droplet. Devices like
interferometers involve typically several QPCs. When used
in the quantum Hall regime, they allow manipulation of the
edge modes that propagate at the boundary of the sample. It
is possible to increase the tunneling rate between edges by
inducing a pinching of the 2DEG. By measuring the noise
characteristics of this geometry it has been shown2,3 that
quasiparticles at filling factor 1/3 in the fractional quantum
Hall (FQH) regime have fractional charge 1/3 as expected
from Laughlin’s theory.4

The simplest description of these phenomena is by an effec-
tive theory that keeps only the low-energy edge modes that are
generically present in FQH liquids.5–8 In this framework, the
simplest FQH fluids at filling factor ν = 1/m have low-energy
excitations described by a free chiral boson theory at each
edge. Complicated samples with multiply connected geometry
involve in general several such modes even if the electron fluid
stays at ν = 1/m. When the filling factor is not simple, for
example, in the Jain sequence ν = p/(2p + 1), edge states
are described by several interacting chiral bosons. Detailed
understanding of these modes is still controversial.9–18 Even
more intriguing is the case of the fraction ν = 5/2, which is
believed to be described by the Moore-Read19 Pfaffian state
(or its particle-hole conjugate dubbed the antipfaffian). This

elusive FQH state has a fermionic Majorana edge mode in
addition to a chiral bosonic mode and interferometers have
been proposed to manipulate the associated quasiparticles
and reveal their non-Abelian statistics.20 Typical devices
like Fabry-Perot interferometers involve several QPCs. As a
function of the gate voltage, there are typically two limiting
regimes. When the voltage is small, the pinching of the
2DEG leads to a smaller distance between edges and hence
tunneling of quasiparticles is possible through traversal of
the bulk liquid. When the voltage is very large, one may
reach the so-called pinch-off regime where the droplet is
now cut into two separate islands and only electron tunneling
between them is allowed. The theoretical treatment of these
two situations can be done by adding ad hoc operators to
the effective bosonic field theory, encapsulating all micro-
scopic tunneling details into a few coupling constants. The
quasiparticle creation operator has then to be expressed in
terms of the effective Bose degrees of freedom, as is the case
for the electron operator. Many experimental features can be
explained in this framework.13 Nevertheless, it is important to
have a microscopic understanding of the phenomena. Previous
numerical studies of microscopic models have used the disk
geometry21–25 to evaluate tunneling matrix elements for the
fillings ν = 1/3 as well as ν = 5/2. It is also possible up to
some extent to identify the edge mode quantum numbers and
measure velocities.

In this paper, we study the FQH effect in a QPC by using
the cylinder geometry.26–28 In the Landau gauge, one can
impose periodic boundary conditions along one direction and
keep the other one free. It is then possible to perform exact
diagonalization (ED) studies of various Hamiltonians for small
numbers of particles. This gauge also allows the addition of a
parabolic confining potential to lift the edge mode degeneracy.
We first use a hard-core interaction two-body interaction to
create a ν = 1/3 FQH droplet. The spectrum of low-lying
modes can be analyzed in terms of a Luttinger model.29 While
this is known for the case of a positive potential,27 we show
that if the harmonic potential is reversed (with hard walls to
keep it bounded from below) then the fluid separates in two
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droplets and that the two disconnected edges again combine
in a non-chiral Luttinger liquid. The study of the spectrum
allows us to identify the zero modes of the effective bosonic
theory and their role in the description of electron tunneling.
Measurement of the Luttinger exponent reveals the duality
between quasiparticle and electron properties as expected
from theory.30–34 Tunneling properties of electron versus
quasiparticles were studied also in the cylinder geometry.35,36

We also study the Moore-Read Pfaffian state in the
QPC geometry by using the special three-body hard-core
Hamiltonian whose ground state is the Pfaffian. The mode
counting reflects the fractionalization of the charge in units
of e/4. In the spectrum, we are able to identify the various
bosonic and fermionic excitations that form conformal towers
as expected from conformal field theory (CFT). While there
is a set of low-energy states that corresponds to almost rigid
translation of the incompressible droplet this is not the only
possibility and we also find a series of states that are generated
by transfer of a e/4 quasiparticle through the droplet. The
associated conformal towers now are described in terms of the
spin scaling field in the Ising CFT. It is an important feature of
the cylinder geometry that the non-Abelian sector appears in a
natural way as a function of the total momentum of the ground
state and does not require tweaking extra potentials to locate
a quasiparticle at the origin of a disk or a the pole of a sphere.
The low-lying energies of the CFT towers can be analyzed to
find the charge Luttinger parameter as in the plain Laughlin
liquid case but lead also to the measurement of the nontrivial
scaling dimensions of the Ising fields. While ED studies are
limited to numbers of particles too small to extract the scaling
dimensions, we introduce a Monte Carlo method based on the
exact formulas for Pfaffian edge states in all sectors to compute
reliably the scaling dimension of spin field σ as well as of
the Majorana field θ . The bosonic Pfaffian at ν = 1 share the
same spectral features. For the special hard-core Hamiltonians
that generate exactly the wave functions, we find unexpectedly
that the Bose and Fermi velocities are equal or almost equal
in the thermodynamic limit, which implies that the special
interactions have an extended symmetry.

In Sec. II, we present the cylinder geometry and discuss
the introduction of a parabolic potential. In Sec. III, we add
a parabolic potential well to lift the degeneracy of the edge
states and compute the Luttinger parameter g in the simple
case of a principal Laughlin ν = 1/m in the two possible geo-
metries of the QPC, the weak constriction regime and the
pinch-off regime. In Sec. IV, we explain the basics of the
Moore-Read Pfaffian edge modes in the disk geometry. Then
we explore the conformal towers in the cylinder geometry in
Sec. V. Finally, we present a Monte Carlo method to obtain
accurate measurements of scaling dimensions in Sec. VI. Our
conclusions are presented in Sec. VII.

II. THE QPC IN THE CYLINDER GEOMETRY

To study FQH physics on the cylinder, one has first to use
the Landau gauge, which is compatible with periodic boundary
conditions in one space direction. We take the vector potential
as Ax = 0 and Ay = Bx and the one-body eigenstates in the

lowest Landau level (LLL) are given by

φn(x,y) = 1√
L

√
π

e− 1
2 (x−k)2

eiky = 1√
L

√
π

e− 2π2

L2 n2

Zn e−x2/2,

Z ≡ e
2π
L

(x+iy) . (1)

Here, we have set the magnetic length � = √
h̄c/eB to unity.

The periodic direction y has a length L and the momentum
k is quantized k = 2πn/L with n an integer (which can be
negative or positive). All the states φn are degenerate and
constitute the basis on which we construct the Fock space.
If we add a potential energy V (x) invariant by translation
along the cylinder periodic direction y, then it appears in the
Hamiltonian through its matrix element:

Ṽn = 1

L
√

π

∫
dx e−(x − 2πn/L)2

V (x). (2)

To deal with a finite-dimensional Fock space, we impose a
cutoff on the values of the integer n. This procedure allows
ED of the Hamiltonian by linear algebra techniques standard
in the field of strongly correlated systems. This type of
cutoff physically resembles a cutoff in real space only in the
limit when the length L → 0. Here, the orbitals are widely
separated by more than the magnetic length and any reasonable
confining potential gives rise to such a boundary condition.
In the opposite limit L → ∞, there is no nonoscillating
potential leading to a hard cutoff in reciprocal space. This leads
ultimately to the appearance of spurious low-energy modes
that do not belong to the true FQHE problem.27 However, if
we keep an aspect ratio reasonably close to unity, then the
physics of the FQHE is present in this geometry. The limit
L → 0 is known as the Tao-Thouless limit (TT).37–42 The
problem becomes closer to an electrostatic problem and many
features of the FQHE can be analyzed simply. However, in
the TT limit, the ground state becomes a Slater determinant
with a trivial entanglement spectrum. Nevertheless, the fusion
rules for quasiparticles still remain complete.43 We show in
this paper that this is also an appropriate limit to identify the
so-called conformal towers of excited states.

Generically, the two-body interaction projected in the LLL
can be written as a function of projection operators of the state
of relative angular momentum m for each pair of particles:

Hint =
∑
i<j

∑
m

VmP̂
(m)
ij , (3)

where the coefficients Vm are the so-called29 Haldane pseu-
dopotentials. While originally defined in the disk geometry,
they can be extended to the cylinder case as shown by Rezayi
and Haldane.44 Spinless fermions are only sensitive to odd
values of m and of particular interest is the extreme hard-core
model for which the only nonzero pseudopotential is V1. In this
peculiar case, the Laughlin wave function is the exact unique
zero-energy ground state. A fictitious potential reproducing
an arbitrary set of Vms is given by Ṽ (q) = ∑

VmLm(q2),
where the Lms are the Laguerre orthogonal polynomials. It
can be then inserted in the second-quantized expression of the
Hamiltonian:

Hint = 1

2

∑
{mi }

Am1,m2,m3,m4 c†m1
c†m2

cm3cm4 , (4)
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with the matrix elements given by

Am1,m2,m3,m4 = 1

2L

∫
dq

2π
Ṽ

(
q,

2π

L
(m1 − m4)

)

×e−q2/2+2iπq(m1−m3)/L e−2π2(m1−m4)2/L2
, (5)

where Ṽ (qx,qy) is the ordinary Fourier transform of the
potential. In the present work, we use a potential that produces
only V1 and V3 given by

Ṽ (qx,qy) ≡ Ṽ (q) = −(V1 + 3V3)q2 + 3
2V3q4 − 1

6V3q6, (6)

where we set q2 = q2
x + q2

y . The coefficients for the third
pseudopotential can be checked by verification that the
Hamiltonian has a unique zero-energy ground state for
filling factor ν = 1/5 obtained by imposing the (Laughlin)
relation between the number of orbitals and the number of
electrons.

If we want to study the Pfaffian state, then one needs to
consider a special three-body Hamiltonian with derivative
interactions whose exact zero-energy ground state is given
by the Pfaffian wave function introduced by Moore and
Read:19

H3 = −
∑

i<j<k

Sijk�
2
i �j δ

2(ri − rj )δ2(rj − rk), (7)

where S stands for symmetrization. To perform ED studies,
the Fock space should be finite-dimensional. This is enforced
by restricting the allowed orbitals to a finite range of momenta:
the integer n indexing the one-body wave functions takes
only 2Kmax + 1 values. This allowed range can be translated
at will as long as there is complete translation invariance
along the cylinder. For example, if we take 0 � n � 2Kmax,
then the Z powers are positive and formal expressions of
first-quantized wave functions are closest to the disk geometry.
Centering the range of n values at zero momentum is more
natural if we add a parabolic potential to mimic a realistic
QPC geometry. To create a droplet of Laughlin-type fluid at
filling 1/3 one chooses 2Kmax = 3(N − 1), while the Pfaffian
requires the adjustment 2Kmax = 2N − 3 exactly as in the
spherical geometry. Adding orbitals beyond this reference
number leads to the appearance of more zero-energy states
that are the gapless edge states of the FQHE fluid. In the
cylinder geometry, there are two counterpropagating edges
that combine into nonchiral effective theories. To reveal their
precise content, it is convenient both physically and practically
to add an extra parabolic potential well along the axis of the
cylinder, which is invariant under y translations so that the total
momentum remains a good quantum number: V = β

∑
k k2nk .

We define the conserved total momentum as Ktot whose values
are integers or half-integers that can be used to label the
many-body eigenstates (this momentum is thus in units of
2π/L).

In the absence of a confining potential, there is a set of
exactly zero-energy states when there are more available or-
bitals beyond the fiducial value required by incompressibility:
2Kmax = 3(N − 1). this set of states is rendered finite by the
orbital cutoff. We now consider adding a confining potential.
If the coefficient β is taken to be positive, then a quantum
Hall droplet will stay centered in the middle of the cylinder

Dry area Droplet Dry area

Droplet Dry area Droplet

FIG. 1. (Color online) The location of the quantum Hall droplet
according to the value of the potential along the axis of the cylinder.
(Top) The potential is convex leading to a single droplet (blue area)
centered in the middle of the cylinder. (Bottom) With a concave
potential it is more favorable to split the liquid into two occupied
areas close to the hard walls. The edge modes then reside at the
boundary between the droplet(s) and the dry area(s).

and, provided we allow enough extra orbitals, there will be
two edges that can combine. This is is displayed in Fig. 1. If
we now use a negative β value leading to a inverted potential,
then the droplet splits into two separate chunks each of them
using the more energetically favorable orbitals closest to the
hard wall in k space, provided that the potential well is deep
enough. In the following studies, we use a potential small
enough so that there is always a large separation between bulk
and edge states: see Fig. 2 for a typical situation where the
low-energy edge states now have acquired a nontrivial energy
level structure.

Since we use a parabolic external potential V = β
∑

k(k −
k0)2nk , it satisfies

[V,U ] = βUp
∑

k

[(k − k0 + p)2 − (k − k0)2]nk

= βUp(2pK + p2N ), (8)

where U ∝ ∏
i Z

i is the translation operator of one orbital
along the x axis, and K = ∑

k(k − k0)nk the momentum
operator with the convention that the ground state wave
function has zero momentum. Therefore, if |ψ〉 is an eigenstate
of our total Hamiltonian Hint + V with energy E, N particles
and momentum K , then Up|ψ〉 is also an eigenstate with
energy and momentum:

E′ = β(2pK + p2N ), K ′ = K + pN . (9)

So, provided there are no hard walls or if the walls are
far enough (large Kmax), it is possible to deduce the whole
spectrum from the sector with K = 0, . . . ,N − 1. It can be
used in an approximate way if we add enough orbitals beyond
that required by the flux number of electrons that defines our
FQH state.

235107-3
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FIG. 2. (Color online) The two QPC configurations in the limit of a small parabolic potential. The potential parameter β is chosen to be
10−3V1 and the bulk gap is essentially given by V1. Here we plot the spectrum of N = 6 electrons in orbitals describing the ν = 1/3 Laughlin
state and edge excitations. (Left) Single droplet regime where the cusps in the low-lying states are related to quasiparticle transfers. (Right) We
change the sign of the confining potential to switch to the pinch-off regime. Now the cusps are due to electron tunneling. Since the potential is
taken to be weak, first-order perturbation theory means that one just reverse the manifold of edge states.

III. LUTTINGER LIQUID AND THE ABELIAN QPC

The Lagrangian of the chiral Luttinger model describing
edge excitations of a Hall sample with two counterpropagating
edges around an incompressible FQH liquid at filling ν = 1/m

is given by8,13

L = LR + LL

= 1

4πg
[∂xφR(i∂τ + v∂x)φR + ∂xφL(−i∂τ + v∂x)φL],

(10)

where the Luttinger parameter g is equal to the filling factor
g = ν. This effective theory does not include edge interactions
and is presumably valid when there is a large spatial separation
between them. The Hamiltonian that follows can be written as

H = v

4πg

∫ L

0
dx {(∂xφL)2 + (∂xφR)2}. (11)

To expand this Hamiltonian into Fourier modes, one has to
keep track of the zero modes that come from the periodicity
of the bosonic fields:

H = πv

gL

(
N2

L + N2
R

) +
∑
q 	=0

v|q|b†qbq , (12)

where b
†
q,bq are the Fourier mode creation/annihilation oper-

ators and NL,R are the winding numbers of the bosonic fields
along the edge:

φL,R(x + L) − φL,R(x) = 2πNL,R. (13)

Quasiparticle states correspond to fractional values of these
parameters N = nν with n integer while electron states are
generated with N = n. This can be seen by computing the elec-
tric charge associated with the winding through ρ = ∂xφ/2π .
The momentum operator of this theory has a zero-mode

contribution in addition to the phononlike part:

K = kF J +
∑
q 	=0

qb†qbq , (14)

where the even integer J counts essentially the particle-
hole excitations across the pseudo-Fermi surface with Fermi
momentum kF . Finally, we note that the number of states
at a given energy for a given chirality is determined by the
partitions of unity and this can be obtained easily by expanding
the character:

χB(q) =
∞∏

n=1

1

(1 − qn)
. (15)

This character is that of a free boson CFT. The level scheme
we expect from the Luttinger picture is shown in Fig. 3.

Ktot

E

0 2kF 4kF

•

• •

• • •

• • • •

•

• •

• • •

• • • •

•

• •

• • •

• • • •

FIG. 3. The spectrum of a free nonchiral boson theory with finite
radius. There are sectors at K = 0,2kF ,4kF , . . . that are similar to the
spectrum of a noncompact boson. The extra excitations associated
with nontrivial windings leads to copies of the k = 0 spectrum shifted
quadratically in energy. The finite-size spectrum of free fermions is
the same. The Luttinger parameter value is encoded in the parabolic
shift of the energy. The special spectra above each extremal point at
2nkF are the so-called conformal towers of the bosonic CFT.
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If we now compute by exact diagonalization, the spec-
trum of an electron system with a small quadratic potential
then we find a characteristic Luttinger-like spectrum with
arches interpolating between quasiground states separated
by momenta K = ±Ne, ± 2Ne, ± 3N3, . . . . By adiabatically
following these quasiground states when sending the potential
to zero, we can identify their root configuration. In fact, they are
obtained by a global uniform translation of the Laughlin state
from Eqs. (8) and (9). For neighboring quasiground states, the
shift is by exactly one orbital. This operation can be realized
by threading the cylinder with a thin solenoid and increasing
adiabatically the flux by one quantum. This is the celebrated
Laughlin argument for quasiparticle creation. Electrons are
then pushed along the axis of the cylinder by exactly one orbital
at the end the process. This is equivalent to the transfer of a
fractionally charged quasiparticle from one edge of the system
to the other edge. These quasiparticle transfers generate the
whole set of extremal states that are prominent in Fig. 2. On top
of these global excitations, we can of course excite phononlike
density modes with two possible chiralities corresponding to
the two edges of the quantum Hall droplet. These excitations
are created by acting with the b

†
q Fourier mode operators.

We identify the modes that are above each of the extremal
states as phonon modes. The counting we find in ED studies is
always compatible with the bosonic counting rule (15). From
Eq. (12), we see that extracting the energies of the parabola of
extremal states lead to an estimate of the Luttinger parameter,
provided we have an independent measurement of the velocity
v of phonon excitations. This strategy was already applied
in the weak constriction regime.27 Here we note that it may
also be applied in the complementary case of the QPC in
the pinch-off regime where the fluid is now separated into
two droplets. It is important to note that electron tunneling or
quasiparticle tunneling phenomenon originate from a single set
of many-body states that are the low-energy states of Fig. 2.
Indeed, the global contribution to the Hamiltonian (11) can be
written as

Hglobal = πv

2νL
(J 2 + N2), (16)

where J = NL − NR (N = NL + NR) is an integer that
changes by two units for each transfer of an electron from
the left droplet to the right droplet. This integer J indexes the
extremal low-lying states of the Luttinger spectrum in Fig. 2
in the split QPC regime. Fitting the global parabolic envelope
of the spectrum in this regime leads to the dual exponent
g = 1/ν = 3 as expected from the standard duality8 between
electrons and quasiparticles. Even with small system sizes we
obtain a precise estimate of g, see Fig. 4.

We finally note that the tower structure of the principal
Laughlin fluid can also be revealed by computing the entan-
glement spectrum.45–47 However, this approach does not lead
to estimates of the boson radius.

IV. THE PFAFFIAN EDGE STATES IN
THE DISK GEOMETRY

We now turn to the study of the model wave function known
as the Moore-Read Pfaffian.19 We first recall for completeness

 2.4

 2.6

 2.8
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 3.2

 0  5  10  15  20  25

N=8(+9)
N=8(+10)
N=8(+11)
N=8(+12)

N=8(+11..12)

g

L

FIG. 4. (Color online) Numerical estimation of the Luttinger
parameter in the electron-tunneling configuration for two ν = 1/3
spatially separated FQH droplet. The first four curves at the bottom
are obtained from the edge spectrum for N = 8 with fixed number
of extra orbitals. The topmost curve, circle markers, is an estimation
using the finite-size scaling explained in Sec. VI with 11 and 12 extra
orbitals. We also find that adding a small V3 pseudopotential does not
change the value of the exponent.

the knowledge about edge modes in the disk geometry before
turning to the analysis in the cylinder geometry with confining
potential modeling a constriction in the ν = 5/2 state. The
formula for the Pfaffian state in the disk geometry is

�MR(zi) = Pf

(
1

zi − zj

) ∏
i<j

(zi − zj )m , (17)

where the symbol Pf stands for the Pfaffian of a matrix

Pf(Aij ) =
∑

σ

εσAσ (1)σ (2) . . . Aσ (N−1)σ (N) , (18)

where εσ is the signature of the permutation σ . The correspond-
ing filling factors are ν = 1 in the Bose case and ν = 1/2 in
the Fermi case. In some 2DEGs with very high mobility, there
is an incompressible state in the second LL with total filling
5/2 = 2 + 1/2, which is a strong candidate to be described
by this wave function.20 Bosons with low-energy scattering
in the s wave are also an interesting candidate for the m = 1
state above.48,49 This model wave function can be generated
as the zero-energy eigenstate of the three-body hard-core
Hamiltonian (7). The edge modes of these fractions have been
studied by Wen50 and Milovanovic and Read.51 They include
the charged modes that we have already discussed in the
case of the elementary Laughlin fractions at filling ν = 1/m.
They are generated by multiplying the wave functions by
a symmetric polynomial. The counting is given by a free
bosonic mode Eq. (15). However, this is not the whole story:
there are also extra neutral modes that can be described by
a Majorana fermion theory. From the point of view of the
wave function, they are generated by removing some of the
1/z pairing-type factors and replacing them by powers of
the coordinates:

�ni
= A

(
z
n1
1 z

n2
2 . . . z

nF

F

1

zF+1 − zF+2
. . .

1

zN−1 − zN

)

×
∏
i<j

(zi − zj )m , (19)
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where A means antisymmetrization. The non-negative and
distinct integers 0 � n1 < . . . < nF can be interpreted as the
occupation numbers of a fermion. Note that in this formula the
number of electrons N can be odd or even [contrary to our basic
Pfaffian definition Eq. (17)] but the difference N − F should
be even. This set of states can be counted by a Majorana-Weyl
field theory provided we use antiperiodic boundary conditions
on the field operator θ . This field theory can be written in a
Lagrangian language:

LM = iθ (∂t − vn∂x)θ , (20)

where vn is the velocity of the fermionic modes. It is nonzero
only in the presence of an external potential such as the one
created in a QPC. The antiperiodic sector θ (x + L) = −θ (x)
is called the Neveu-Schwarz (NS) sector. These edge modes
are essentially unaffected by the presence of Abelian (i.e.,
Laughlin) quasihole in the bulk liquid, here in the interior
region of the circular droplet. However, the Pfaffian state of
matter also includes quasiholes with e/4 electric charges and
such quasiholes when present in an odd number in the bulk
do change the physics of the edge modes. This case is called
the “twisted” sector.51–53 Again, these states with F fermion
edge modes require N − F to be even. They are properly
counted by the fermion field theory above provided we impose
now periodic boundary conditions on the field operator θ (x +
L) = +θ (x). This is the Ramond (R) sector. The boundary
conditions imposed on the fermion field operator give rise to
different quantization conditions on momenta and hence to
different counting of edge modes. In the R (respectively, NS)
sector, the Majorana fermionic modes are θn with n integer
(respectively, n half-integer).

In the disk without e/4 quasiholes in the bulk, for even
numbers of electrons, we have even numbers of NS Majorana
fermions, while for odd number of electrons, we have odd
numbers of NS fermions. This is the case studied by Wen.50

However, his ED studies in the disk geometry missed the
non-Abelian sector associated with the mere existence19 of
fractional charges e/4. If we add an extra non-Abelian
quasihole, for example, at the center of disk by tuning an
external potential,25 we now enter the R sector with again
even/odd number of Majorana fermions for even/odd number
of electrons. In these studies, one has also to consider the
elementary charge mode excitations described by the single
boson that is already present in simple principal liquids at
ν = 1/m. In general, the velocities of the edge modes vn and
vc are not equal. In fact, studies in the disk geometry have
found estimates of these velocities that are quite different.25

They were performed for interactions that are a linear
combination of the hard-core three-body interaction (7) and
Coulomb interaction. The mode counting can be performed
by elementary means by expanding Bose and Fermi fields
into Fourier modes and populating them according to the
constraints.

However, it is important to realize that the Pfaffian
universality class19 is built upon a 2D CFT, which is the
product of an Ising model CFT times a free boson with specific
radius. This definition as a CFT implies some very specific
properties of the spectrum of excited states. Most notably, we
expect from the existence of the Virasoro algebra of conformal
transformation the appearance of so-called conformal towers

of states.54 In addition to the fermionic Majorana field, the
Ising CFT also contains the spin field σ , which cannot be
expressed locally in terms of the fermion field. As is known
from the standard Kramers-Wannier duality of the Ising model,
there is also a disorder spin field μ associated to σ by
duality. These fields, contrary to the Majorana field, cannot
be separated into chirality components. They are boundary-
changing operators,54 which act upon the boundary conditions
of the θ field operator: NS←→R. In the context of the FQHE,
the σ,μ operators are associated with the presence of bulk
e/4 quasiparticles that change the boundary conditions on the
edge modes. Finally, as in any CFT, there is also the identity
operator I .

V. THE PFAFFIAN CONFORMAL TOWERS ON THE
CYLINDER

It is known from the representation theory of general CFTs
that the spectrum of excited states are arranged into so-called
conformal towers of states. In the cylinder geometry with left
and right modes, to each primary operator �h,h̄ with conformal
dimensions (h,h̄), corresponds an infinite set of states with
(dimensionful) energies and momenta:

E = E0 + 2πv

L
(h + h̄ + n + n̄),

(21)
P = P0 + 2π

L
(h − h̄ + n − n̄),

where n and n̄ are integers, v is the underlying velocity,
and E0 and P0 are, respectively, the ground-state energy and
momentum. There is simply a redefinition by a scale factor
2π/L with respect to the dimensionless momentum Ktot,
which we use in the remainder of the paper. In the Ising CFT,
there are four different sectors created by the action of primary
operators on the vacuum. On the cylinder geometry, we need to
introduce two Majorana fermions for each edge: θL and θR . The
energy operator ε with conformal dimension h = h̄ = 1/2 of
the Ising CFT can be written directly in terms of these fermion
fields: ε = iθLθR . The four different sectors of the Ising CFT
on the cylinder can be labeled by their fermionic content.
We have the identity with h = h̄ = 0 and energy tower with
h = h̄ = 1/2, which correspond to NS/even fermion states.
Then there is the Majorana sector with h + h̄ = 1/2 given
by NS/odd fermion numbers. These two sectors are created
by local Majorana operators θL,R . Finally, we have the σ

and μ sectors with h = h̄ = 1/16 corresponding to the R
sector with respectively even and odd fermionic parity. The
information on the counting of states in each sector of the
Ising CFT can be extracted from the so-called chiral Virasoro
character:54

χh(q) = qh−c/24
∞∑

n=0

dh(n)qn, (22)

where c is the central charge, i.e., c = 1/2 for the Ising
CFT. In the following, we omit the overall q−c/24 factor,
which is needed for modular invariance but not for the
counting below. The counting of states in the disk geometry
at momentum �P = 2πn/L is then given by the integers
dh(n). For the Ising CFT, the different characters are given
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TABLE I. The edge state counting in the disk geometry. In the
top part of the table, the number of states of the various sectors of
the Ising CFT is given, and the bottom part includes the bosonic
excitations assuming that the velocities of the bosons and fermions
are the same.

I 1 0 1 1 2 2 3 3 5 NS even
θ 1 1 1 1 2 2 3 4 5 NS odd
σ,μ 1 1 1 2 2 3 4 5 6 R even/odd

φ + I 1 1 3 5 10 16 28 NS even
φ + θ 1 2 4 7 13 21 35 NS odd
φ + σ,μ 1 2 4 8 14 24 40 R even/odd

by54

χ0(q) = 1

2

[ ∞∏
n=0

(1 + qn+1/2) +
∞∏

n=0

(1 − qn+1/2)

]
,

χ1/2(q) = 1

2

[ ∞∏
n=0

(1 + qn+1/2) −
∞∏

n=0

(1 − qn+1/2)

]
, (23)

χ1/16(q) = q
1

16

∞∏
n=1

(1 + qn).

By expanding the products, we get the counting of states of
Table I in each conformal tower of the disk geometry with
one edge. By taking into account the Bose field contribution
[see Eq. (15)], we deduce the counting of the edge states of
the Pfaffian in the disk geometry (see lower table in Table I).
In the cylinder geometry, the total number of states in the
identity and energy sector is obtained through expansion of
χ2

B(χ2
0 + χ2

1/2), while the Majorana fermion sector involves
χ2

B(2χ0χ1/2) and the twisted σ sector is related to χ2
Bχ2

1/16.
By expanding the products, we get the counting of states,
presented in Table II, in each conformal tower of the Pfaffian
at energy �E = 2πvn/L.

We turn to the ED analysis in the cylinder geometry. The
wave functions for the edge modes can be written easily
through the conformal transformation z → exp(2iπz/L). As
in the case of the primary Laughlin fluid, we consider the
case where there are extra orbitals available in the Fock space
beyond those required by the fiducial flux number of particle
relationship. We add a parabolic potential small enough so
that there is no mixing between bulk and edge modes. We find
the typical low-lying spectrum displayed in Fig. 5. There are
clear extremal states that are at the bottom of well-defined
towers of excited states. For Ktot = ±N, ± 2N, . . ., these
states are global rigid translations of the ground state found
at Ktot = 0. Strictly speaking, this statement becomes exact
only in the absence of K-space hard walls. Examination of the

TABLE II. The edge-state counting in the nonchiral cylinder
geometry. This refers to energy level degeneracy taking into account
all allowed momenta. We have assumed that Fermi and Bose
velocities are equal.

φ + I + ε 1 3 11 28 69 152 NS even
φ + θL,R 2 6 18 44 104 222 NS odd
φ + σ,μ 1 4 12 32 76 168 R even/odd
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FIG. 5. (Color online) (Top) Edge excitation sector for an even
number of electrons Ne = 12. The absolute ground state is at K = 0
and generates the identity plus energy tower of the Ising sector in
addition to the charge excitations. This structure of states repeats
itself for K = ±Ne, ± 2Ne, . . . . This explains only half of the towers.
For K = ±Ne/2, ± 3Ne/2, . . . , we assign the tower structure to the
σ tower of states with the extra charge modes. This is consistent
provided the velocities vn and vc are almost equal. (Bottom) Odd
number case with Ne = 11. Now, the absolute ground state is the
twisted Pfaffian state (33), and it supports the μ tower of states,
which is identical to the σ tower. Next to it, we observe the Majorana
tower of states with charateristic (quasi) doubly degenerate ground
states. Energies are in units of β.

root configuration of these states reveal their translated nature.
They are generated by threading exactly one flux quantum
through the cylinder, according to the standard Laughlin gauge
argument. However, these states do not exhaust the full set
of extremal states. There are also arches terminating right in
between at �Ktot = ±N/2. These states can be generated by
transferring a quasiparticle of charge e/4 from one side of the
cylinder to the other side. This leads to a change of sector
in the sense of the previous section. Indeed, the operation of
quasiparticle transfer is realized by the operator σeiφ/2 in the
CFT formulation. The σ field changes the boundary conditions
of the fermion field while the vertex operator eiφ/2 takes care
of the e/4 charge degree of freedom.19,50 So we expect that
between extremal states with NS-fermion excitations there
should be σ sectors with R-fermion excitations. The conformal
towers on top of these ground states are different. For even
number of particles we have the fully paired Pfaffian and its
translated images. They support bosonic excitations and the
Ising tower involving the identity operator as well the energy
operator.55 By a shift of �Ktot = N/2, we find the tower of
states associated with the spin field σ and again the boson
modes. This scheme is repeated till the droplet is squeezed
against the hard wall we impose in the Fock space. For odd
number of particles, the alternation is different because the
Pfaffian now involves necessarily unpaired fermions. So we
have towers generated by the Majorana fermion field with NS
boundary condition. Again, by transfer of a e/4 quasiparticle,
we switch to the spin μ sector which has the same structure
as the σ sector in the N even case. Our findings are in
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FIG. 6. (Color online) Identification of CFT towers of states in the FQH regime where the cylinder is large enough (left-hand side) and in
the TT limit (right-hand side). The identity + energy tower is displayed in (a) and (d). The σ tower is in (b) and (e). Finally the Majorana tower
is given in (c) and (f). When the cylinder radius is sent to small values, the TT limit, the conformal towers become obvious. In the TT limit, the
numbers are the degeneracies obtained in Table II. Energies are in units of β.

perfect agreement with the CFT scheme for the low-lying
states provided the Bose and Fermi velocities are equal. The
identification of states becomes obvious in the TT limit as can
be seen in Fig. 6. Here, we plot the three distinct conformal
towers on a wide cylinder in the left panel and in the TT
limit in the right panel. The CFT degeneracies are marked
close to each multiplet of states. The counting is in perfect

agreement with the CFT numbers obtained from Table II. In
this TT limit, it is easy to check that the Fermi and Bose
velocities are indeed equal. This raises the question whether
this apparent equality on wide cylinders is a correct feature of
the thermodynamic limit or if it is simply a remnant of the TT
limit. The ED data alone are not enough to answer convincingly
this question because the wide cylinders quickly require too
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many particles. We thus turn to another type of method using
the knowledge of wave functions, which does not have this
limitation.

VI. MEASURING SCALING DIMENSIONS
BY A MONTE-CARLO METHOD

While the conformal tower structure is readily apparent in
ED studies even for a modest number of particles, it is not
easy to derive scaling dimensions within the confines of this
method. In fact, we find that only the global charge Luttinger
parameter can be evaluated reliably. The knowledge of the
Pfaffian CFT Ising × U(1) predict also the scaling dimensions
of all conformal towers including notably the non-Abelian σ

tower with scaling dimension 1/8. We first note that treating
the potential term in first-order perturbation theory is in fact
enough to describe the emergence of conformal towers by
giving nonzero velocities to all low-energy modes. So another
strategy is to use the exact knowledge of wave functions in the
absence of the perturbing potential and to evaluate energies by
taking the expectation value of the potential with respect to
these unperturbed states: this is first-order perturbation theory
with respect to the parabolic potential. The full description of
edge states given in Sec. V is adequate for this purpose.

We first consider the case of an even number of particles
with the center of mass of the Pfaffian wave function coinciding
with the minimum of the parabolic confining potential. The
spectrum of edge modes for N = 12 in such a configuration
is shown in the top panel of Fig. 5. If we note En(K), the nth
lowest energy at momentum K , one can estimate the velocities
vc and vn inside the identity + energy CFT tower on top of the
Pfaffian state by the following differences:

E1(1) − E1(0) = 2π

L
vc, (24)

E2(0) − E1(0) = 2π

L
vn, (25)

at leading order in the number of particles. Every conformal
tower for fixed number of particles can be indexed by the
current quantum number J = nR − nL (even) that counts
the transfer of fractional charges enL,R/4 between edges,
hence J = 0, ± 2, ± 4, . . . . Ground states of those towers
have momenta K = J N/4, and their relative energies are
given by the Luttinger parameter g, which characterizes
the energy needed to transfer a charge e/4 from one side
to the other of the droplet, and the scaling dimension of the
spin primary field, h̄σ + hσ = 1/8, which gives the cost in
energy to change the boundary conditions of the θ field. More
precisely, if we look at successive conformal towers indexed
by the current quantum number J , the ground-state energies
of each tower are, according to the effective theory explained
in the previous section,

E1

(
1

4
J N

)
− E1(0)

= π

2L
vcgJ 2 + δJ/2,odd

2π

L
vn(h̄σ + hσ ), (26)

where δJ/2,odd is unity if J/2 is odd, zero otherwise. In
particular, we deduce the g parameter from Eqs. (8) and (9)

and the estimation of vc through

E1(N ) − E1(0) = βN = 2π

L
vcg . (27)

We can use exact diagonalizations up to N � 14 to measure
velocities vc and vn from Eqs. (24) and (25). For better
precision for this small number of particles, we also take
into account the next-to-leading order in variation with N in
Eqs. (24) and (25). At fixed L and fixed value of the confining
potential β, the velocities vc and vn scale as N because the
slope of the parabolic confining potential at the position of
the edge grows like N at leading order. We assume the simple
scaling: v = αN + γ + O(1/N), which is true in the TT limit.
To measure the leading term, we first check that N is large
enough such that vc,n(N ) are linear, and then take the slope
obtained with the last two points from the largest values of N .

We observe that vc ≈ vn for L � 15, i.e., when the two
counterpropagating edges are far enough and there is no
interaction between them. From the vc measurement, we are
also able to compute the Luttinger parameter g. We obtain
g ≈ 1/8 as expected in the whole range 0 � L � 15. However,
the practical limit N � 14 does not allow to measure the
conformal dimensions h̄σ + hσ and h̄θ + hθ .

To circumvent the size limit, we use the Metropolis
Monte Carlo algorithm to compute energies of eigenstates
for which we have an exact first quantized expression. Indeed,
as long as the external potential is infinitesimal, we know
the explicit expressions of some of the low-lying states. As
previously mentioned, the highest-density state, which lives
at the bottom of the identity + energy tower is the cylinder
Moore-Read Pfaffian wave function deduced from �MR of
Eq. (17). Then, E1(0) = 〈�MR| ∑i V (xi)|�MR〉, which can be
computed directly in real space through a 2N-dimensional
integration. For N = 50 and O(109) Monte-Carlo steps, we
obtain a relative precision of 10−5 over the energy. Other
energies can be obtained in the same way. The energy E1(1)
is the mean energy of a bosonic excitation of momentum
Ktot = +1 localized at the right edge of the Moore-Read state:

b
R†
1 �MR(Zi) ∝

{∑
i

Zi

}
�MR(Zi). (28)

The state, which corresponds to one pair of Majorana fermion
excitations of momentum ±1/2 at each edge of the droplet can
be written as

�−1/2,+1/2 = A
(

Z−1
1 Z0

2
1

Z3 − Z4
. . .

1

ZN−1 − ZN

)

×
∏
i<j

(Zi − Zj )m, (29)

and its mean energy is E2(0). At the bottom of the σ tower,
we have the twisted Pfaffian wave function

�Twisted = Pf

(
Zi + Zj

Zi − Zj

) ∏
i<j

(Zi − Zj )m (30)

whose mean energy is E1(N/2). From the four energies, E1(0),
E1(1), E2(0), and E1(N/2), we can deduce by Eqs. (24)–(27)
estimates of the velocities vc, vn, the charge Luttinger
parameter g, and the scaling dimension h̄σ + hσ .
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FIG. 7. (Color online) (Left) The ratio of the Bose and Fermi velocities measured by the Monte-Carlo procedure as a function of the
perimeter of the cylinder L for N = 50 particles. The evidence is for the equality of the two velocities in the thermodynamic limit as required
by the interpretation of the conformal towers. We indicate confidence intervals with a width equal to twice the standard deviation. (Right)
Measurements of the Luttinger parameter of the bosonic part of edge modes using the same method. Results are in agreement up to a few
percent with the theoretical value g = 1/8 at the thermodynamic limit (N → +∞ and L → ∞).

Our results for 50 particles and 0 < L � 30 are shown in
Figs. 7 and 8. Each energy is computed with 5 × 109 MC
steps. To estimate the standard deviation of each point, we
use the binning method. Indeed, we separate the process into
M successive bins, average energies onto each bin, obtain
M independent estimations of the quantity to compute, and
estimate the standard deviation from the M binned values. We
choose a bin size of a few 108 steps so that our M estimations
are statistically independent. We find that vc ≈ vn up to 2%–
3% for 0 < L � 25. The imprecision comes both from the MC
fluctuations and the next-to-leading order in variation with N

in Eqs. (24) and (25). This strongly suggests that the two
velocities are equal at the thermodynamic limit. Similarly, we
observe for 0 < L � 25 that the Luttinger parameter g ≈ 1/8
as expected up to a few percent. Estimations of h̄σ + hσ are
in agreement with the expected 1/8 for large enough value
of L. The correct Ising CFT exponent that we obtain for the
non-Abelian sector built upon the σ field is an important check
of the CFT construction.

To measure the conformal dimension h̄θ + hθ of the
Majorana field operator, we compute the energies of states
in the N odd sector. For N odd, there is an odd number of

 0.05
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1/8

h̄
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+
h
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L

FIG. 8. (Color online) The scaling dimension of the σ spin field
computed by the energy of lowest-lying state of the corresponding
conformal tower. It converges towards the expected value 1/8. Note
that we need large values of L to obtain convergence (for N = 50).

Majorana fermions in the untwisted sector. We then use the
three wave functions:

�+1/2 = A
(

Z0
1

1

Z2 − Z3
. . .

1

ZN−1 − ZN

) ∏
i<j

(Zi − Zj )m,

(31)

b
R†
1 �+1/2 =

{ ∑
i

Zi

}
�+1/2 (32)

�odd,Twisted = A
(

Z0
1
Z2 + Z3

Z2 − Z3
. . .

ZN−1 + ZN

ZN−1 − ZN

)

×
∏
i<j

(Zi − Zj )m, (33)

and compute their energies in order to get an estimate of h̄θ +
hθ . We find that h̄θ + hθ = 0.50(3) for L = 25,N = 50, which
is in agreement with the CFT expectation 1/2.

VII. CONCLUSION

We have studied the edge modes of the filling fractions
ν = 1/3 and 5/2 in the QPC geometry by using model wave
functions of Laughlin and Moore-Read type. These functions
are generated numerically by using ED of special hard-core
Hamiltonians. They are believed to capture the physics of
the more realistic Coulomb potential for 2DEGs. In the case
of the ν = 1/3 QPC, we have shown that this geometry is
suited to explore the electron-quasiparticle duality. It allows
measurement of the Luttinger parameter in the case of electron
tunneling in a simple way.

In the Moore-Read Pfaffian case, we have studied in detail
the conformal tower of states that are expected from the 2D
CFT foundations of this universality class of incompressible
quantum fluids. The cylinder geometry allows us to study the
non-Abelian σ sector in a simple way: the corresponding CFT
tower is found by choosing the appropriate total momentum.
There is no need to impose by hand the presence of a e/4
quasiparticle as is the case in the sphere or disk geometry.
The CFT towers become very clear in the TT limit. Extracting
the correct scaling dimensions requires, however, to choose a
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regime with reasonably large circumference L and enough
electrons. While ED is enough to get the global charge
Luttinger exponent, this does not allow the determination of the
other scaling dimensions. For this purpose, we have introduce
a simple Monte-Carlo method based on the exact formulas
for edge modes given in Ref. 51. This Metropolis evaluation
of energies in a perturbing potential leads to estimates of the
scaling of the spin field σ as well as the Majorana field θ that
are in agreement with the Ising CFT values. We emphasize
that this strategy is applicable to models whose relevant
wave functions are given by an analytical formula for which
an efficient metropolis update is feasible. While previous
works56,57 have given evidence for the correct CFT counting of
non-Abelian quasiholes, we have in this paper uncovered the
complete Virasoro structure of the CFT towers. The equality
of Bose and Fermi velocities of the edge modes also implies
as noted in Ref. 51 that the special theory defined by the

three-body hard-core model (7) has a hidden superconformal
N = 2 symmetry at level k = 2. We have found that a similar
symmetry enhancement happens also for the bosonic Pfaffian
at ν = 1, which has Kac-Moody symmetry SU(2) at level
k = 2.

Finally, we stress that the potential added along the cylinder
is by no means limited to the simple parabolic shape we
have explored. It may be modified to explore more complex,
experimentally relevant configurations. Recent work58,59 have
also explored the cylinder geometry with the entanglement
spectrum point of view and offer a complementary view of the
2D CFT-based FQH wave functions.
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