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The structure of extrinsic defects in topologically ordered states of matter is host to a rich set of universal
physics. Extrinsic defects in 2 + 1-dimensional topological states include linelike defects, such as boundaries
between topologically distinct states, and pointlike defects, such as junctions between different line defects.
Gapped boundaries in particular can themselves be topologically distinct, and the junctions between them can
localize topologically protected zero modes, giving rise to topological ground-state degeneracies and projective
non-Abelian statistics. In this paper, we develop a general theory of point defects and gapped line defects
in 2 + 1-dimensional Abelian topological states. We derive a classification of topologically distinct gapped
boundaries in terms of certain maximal subgroups of quasiparticles with mutually bosonic statistics, called
Lagrangian subgroups. The junctions between different gapped boundaries provide a general classification of
point defects in topological states, including as a special case the twist defects considered in previous works. We
derive a general formula for the quantum dimension of these point defects and a general understanding of their
localized “parafermion” zero modes and we define a notion of projective non-Abelian statistics for them. The
critical phenomena between topologically distinct gapped boundaries can be understood in terms of a general
class of quantum spin chains or, equivalently, “generalized parafermion” chains. This provides a way of realizing
exotic 1 + 1D generalized parafermion conformal field theories in condensed-matter systems.
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I. INTRODUCTION

One of the most fundamental discoveries in condensed-
matter physics has been the understanding of topologically
ordered states of matter.1,2 Topologically ordered states are
gapped many-body states that possess quasiparticle excitations
with fractional statistics and fractional charges, topology-
dependent ground-state degeneracies, different patterns of
long-range entanglement,3,4 and many other exotic charac-
teristics. The most common topological states seen experi-
mentally are the fractional quantum Hall (FQH) states. There
is also increasing support from numerical simulations and
experiments5–12 that topologically ordered states are found in
frustrated magnets.

Recently, a new direction in the study of topologically
ordered states, called twist defects, or extrinsic defects, has
attracted increasing research interest.13–32 An extrinsic defect
is a pointlike or linelike defect either in a topological state
or on the interface between two topologically distinct states,
which leads to new topological properties that are absent in
the topological state without the defect. A crucial distinction
between extrinsic defects and the more familiar quasiparticle
excitations is that the former are not deconfined excitations of
the system; rather, the energy cost for separating point defects,
for instance, will generally depend either logarithmically or
linearly on their separation.

A simple example of an extrinsic defect is the “genon”
defined in Refs. 13 and 14. As shown in Fig. 1, a branch-cut
line is introduced in a bilayer topological state, across which
the two layers are exchanged.20 The genon in this case is
defined as the branch-cut point where the branch-cut line
ends. From its definition one can see that a bilayer system
with genons is topologically equivalent to a single-layer
system on a Riemann surface.13,20 Using such a mapping,
the topological properties of genons such as quantum di-
mension and (projective) braiding statistics can be studied

systematically.14 Even when the topological state in each layer
is an Abelian theory, the genons have non-Abelian statistics.
This has led to a recent experimental proposal for synthesizing
a wide variety of possible topological qubits using the simplest
Abelian bilayer FQH states.21 It has also been shown that the
braiding statistics of genons can allow for universal topological
quantum computation (TQC) even in cases where the host
topological state without the genons is not by itself universal
for TQC.14

Extrinsic defects with the same type of non-Abelian statis-
tics as some of the genons studied in Refs. 13 and 21 have also
been proposed in other physical systems. These include lattice
defects in certain exactly solvable ZN rotor models,19,22 FQH
states in proximity with superconductivity (SC), and fractional
quantum spin Hall (FQSH) states in proximity with SC and
ferromagnetism (FM).15–17 The latter FQSH proposals are
generalizations of earlier proposals of realizing Majorana zero
modes on the boundary of the quantum spin Hall insulator.33 In
these FQSH realizations, the extrinsic defect is a point on the
boundary of the system where the boundary condition changes,
while the rest of the boundary is in a gapped state. For Abelian
states, the extrinsic defects realized in the superconducting
proximity proposals reviewed above can be mapped to genons
in suitable bilayer Abelian states.14

In this paper, we develop a general theory of extrinsic
defects in Abelian topological states, which generalize the
extrinsic defects reviewed above to the most generic possible
form. For two-dimensional topological states, there are two
general forms of extrinsic defects. These are line defects,
which separate two different or identical topological states,
and point defects, which may live in a topological state (such
as genons) or live on line defects (such as the FM/SC domain
wall on the FQSH edge). We demonstrate that all extrinsic
defects can be mapped to boundary defects, i.e., boundary lines
of topological states with point defects separating different
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FIG. 1. (Color online) Examples of point defects studied previ-
ously in the literature. (a) Genons in bilayer systems.13,14 (b) Domain
walls between ferromagnetic and superconducting backscattering at
the edge of a fractional quantum spin Hall (FQSH) state.15–17 (c)
Lattice dislocations in solvable models of ZN topological order.18,19

boundary regions. Generically, the boundary lines may be
gapped or gapless. The gapped cases are of interest for us
since they support point defects that have nontrivial topological
properties.

We prove a classification of topologically distinct line
defects of general Abelian topological states, extending the
results of previous works.25,28–32,34 In particular, it was proven
recently in Ref. 28 that a gapped boundary in an Abelian
state is determined by a “Lagrangian subgroup” which consists
of certain maximal subsets of topological quasiparticles that
have trivial self and mutual statistics. In this paper, we
prove that every such Lagrangian subgroup corresponds to
a topologically distinct gapped edge and that Lagrangian
subgroups therefore provide a classification of topologically
distinct gapped edges. Assuming that the notion of topological
boundary conditions studied in Ref. 32 is equivalent to gapped
boundaries of local Hamiltonians, this proves the classification
that was conjectured in Ref. 32. Our proof is constructive, in
the sense that given an arbitrary Lagrangian subgroup M , we
show explicitly which local operators to add to the edge theory
to gap the edge in a way that corresponds to M .

We further show that the nontrivial point defects on the
boundary are then classified by the domain wall between
gapped edges corresponding to different Lagrangian sub-
groups. We compute the quantum dimension for generic point
defects, which demonstrates that the point defects are non-
Abelian, and we develop an understanding of the zero modes
that are topologically localized to the point defects. These
“generalized parafermion” zero modes vastly generalize the
well-known Majorana fermion zero modes that are currently
under intense theoretical and experimental investigation.35

Although it is generally not possible to geometrically braid

the point defects that live on the boundary, we demonstrate
that effective “braiding” operations can be realized in general
by quasiparticle tunneling processes between pairs of defects.
Such braiding operations are topologically robust unitary
transformations of the topologically degenerate states. We
show that they can always be mapped to the braiding of genons
in a bilayer system.

We also studied the quantum phase transitions between
different gapped boundary states realized on the same line
defect. Interestingly, the transition between two different
types of boundary states M and M ′, corresponding to two
different Lagrangian subgroups, can be realized by nucleation
of a periodic array of M ′ regions in M . The domain walls
between M and M ′ regions define a periodic array of lattice
defects, each of which supports non-Abelian zero modes. This
approach allows us to describe the quantum phase transition by
a quantum spin chain that characterizes the coupling between
the topological zero modes. Alternatively, the spin chain can
be formulated as a “generalized parafermion chain,” and
we expect that their phase transitions may be described by
generalized parafermion conformal field theories.

We would like to further clarify the relation of our work
with some previous works in the literature. Gapped edges have
been considered in recent years in several works. Reference 30
constructed a set of gapped edges for quantum double models,
which are microscopic models of topologically ordered states
described at low energies by an emergent discrete gauge theory.
These are restricted to time-reversal invariant bosonic systems.
It is not clear whether that construction provides a complete
classification of all possible gapped edges for those models.
Subsequently, Ref. 25 developed a systematic microscopic
analysis of gapped edges for a class of exactly soluble bosonic
lattice models—the Levin-Wen models36—which pertain to
both Abelian and non-Abelian states of time-reversal and
parity symmetric bosonic systems. Reference 32 studied
“topological boundary conditions” of Abelian Chern-Simons
theory for bosonic systems and conjectured that they are
classified by Lagrangian subgroups. As pointed out in Ref. 28,
it is not clear whether topological boundary conditions are
equivalent to gapped boundaries of local Hamiltonians; Ref. 28
further proved that the existence of a Lagrangian subgroup
is a necessary and sufficient condition for when an Abelian
topological phase of bosons or fermions, realized by a local
Hamiltonian, can possibly admit a gapped edge. Reference 27
also studied topological boundary conditions in topological
quantum field theories (TQFTs) from a mathematical point
of view, utilizing the framework of category theory. However,
we would like to emphasize that it is not clear whether the
topological boundary conditions of TQFTs that are classified in
Ref. 27 are equivalent to gapped edges of local Hamiltonians,
which are the focus of this paper and of Ref. 28.

We note that a portion of the results discussed in this paper
were also reported by us in a recent shorter treatment.37

The rest of the paper is organized as follows. In Sec. II,
we briefly review the formalism for characterizing topological
order and the Abelian Chern-Simons theory framework for
characterizing all Abelian topological states. In Sec. III, we
introduce in more detail the notion of extrinsic line and point
defects in topological states and discuss the mapping of all
such defects to boundary defects of topological states. In
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Sec. IV, we discuss gapped boundary defects of topological
states, and prove the classification of line defects in terms
of Lagrangian subgroups referred to above. In Sec. V, we
study the topological properties of point defects as domain
walls between topologically distinct gapped edges. We derive
a general formula for their quantum dimension and a general
understanding of the localized “parafermion” zero modes on
the domain walls, and we discuss their non-Abelian braiding
statistics. In Sec. VI, we discuss the critical phenomena
between topologically distinct gapped edges; we show that
this can be mapped onto the physics of a generalized quantum
spin chain, or, equivalently, a “generalized parafermion” chain.
We conclude with a discussion in Sec. VII.

II. CHARACTERIZATION OF TOPOLOGICAL ORDER

General topologically ordered states in 2 + 1 dimensions
are characterized by the topological properties of a set of
topologically nontrivial quasiparticle excitations, {γi}, for i =
1, . . . ,Nqp, where Nqp is the number of quasiparticles. When
two quasiparticles are observed from far away, they in general
behave like a superposition of single quasiparticle states. This
is described by the fusion rules γi × γj = ∑

k Nk
ij γk . Second,

when two quasiparticles γi , γj wind around each other, a phase

eiθk
ij is obtained, which depends on the fusion channel k. θk

ij is
referred to as the braid statistics of the quasiparticles. When
a particle is spun around itself by 2π , it generically gains a
nontrivial phase eiθi . θi = 0 for bosons and π for fermions.
For a topological phase where the microscopic degrees of
freedom are all bosons, θi is topologically well-defined modulo
2π . In contrast, when the microscopic degrees of freedom
also contain fermions, then θi is topologically well defined
only modulo π . The braiding, fusion rules, and spins must
satisfy some consistency conditions, which we do not review
here.38–40

A topological state is “Abelian” when quasiparticles at fixed
locations do not induce additional topological ground-state
degeneracies. This is equivalent to the condition that Nk

ij = 1
for only one value of k, and Nk

ij = 0 otherwise.
A systematic description of all Abelian topological states

is given by Abelian Chern-Simons (CS) theory,1,41 described
by the Lagrangian density

LCS = 1

4π
KIJ εμνλaI

μ∂νa
J
λ , (1)

where aI for I = 1, . . . ,rank(K) are compact U(1) gauge
fields; K is a nonsingular, integer symmetric matrix; and μ, ν,
λ are 2 + 1-dimensional space-time indices. The topologically
nontrivial quasiparticles are described by integer vectors l ,
where two integer vectors l and l ′ describe topologically
equivalent quasiparticles if l ′ = l + K�, where � is an integer
vector. Therefore, the integer lattice in rank(K) dimensions,
modulo this equivalence relation, defines a discrete group con-
sisting of the quasiparticles, with the number of topologically
distinct quasiparticles given by |DetK|. The exchange statistics
of a quasiparticle labeled by l is given by θl = π lT K−1l ,
and the mutual statistics of two quasiparticles l , l ′ is θl l ′ =
2π lT K−1l ′. θl l ′ is defined modulo 2π , while θl is defined
modulo 2π for a topological phase of bosons, and modulo π if
the microscopic Hamiltonian includes fermions. Vectors K�

describe local particles, which are always bosons or fermions.
If all diagonal elements of K are even integers (referred to
as K being even), then all local particles are bosons, and the
theory describes a topological phase of bosons; otherwise, we
say K is odd, and the microscopic degrees of freedom must
contain fermions (possibly in addition to bosons).

Different K matrices can specify equivalent topological
states if they have the same quasiparticle content. For example,
the transformation K → WT KW , for W an integer matrix
with |DetW | = 1, yields a different K matrix, but describing
the same topological order. Alternatively, consider extending
the K matrix as

K ′ =
(

K 0
0 K0

)
, (2)

where K0 is an even-dimensional matrix with unit determinant
and zero signature (equal number of positive and negative
eigenvalues). Since |DetK0| = 1, extending K to K ′ in this
way does not add any additional topological quasiparticles.
Therefore, K ′ and K also describe the same topological order,
as the group of quasiparticles and their statistics is the same.

Equation (1) possesses gapless edge states described by a
1 + 1D chiral Luttinger liquid theory,1

Ledge = KIJ

4π
∂xφI ∂tφJ − VIJ ∂xφI ∂xφJ , (3)

where VIJ is a positive-definite “velocity” matrix. The num-
bers of left- and right-moving bosons, nL and nR , respectively,
are set by the number of positive and negative eigenvalues of
K , respectively. The electron operators 
I and quasiparticle
operators χl on the edge are given by


I = eiKIJ φJ , χ l = eilT φ, (4)

where l is an integer vector describing the quasiparticles. When

I has integer scaling dimension, the “electron” is a boson,
and if it is half integer, it is a fermion.

The Lagrangian (3) is gapless. When an Abelian topological
state admits a gapped edge, it can be obtained by adding
additional backscattering terms in Eq. (3) to generate an energy
gap in the edge theory.

III. LINE AND POINT DEFECTS

A general line defect in a topological state is a one-
dimensional boundary between two topological states, A1 and
A2 (see Fig. 2). In some cases, such as when A1 and A2

have gapless edge states with differing chiral central charges,

A1

A2

A1 A2

0

x

FIG. 2. (Color online) A line defect can be considered to be a
domain wall between two kinds of topological phases, A1 and A2. By
folding one side over onto the other, this can be mapped to an edge
between A1 × Ā2 and the trivial gapped state, which we label “0”.
Under general conditions, the line defect will either host topologically
protected gapless edge states or be fully gapped.
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the boundary possesses topologically protected gapless edge
states. In other cases, assuming certain criteria28,42 that we
review below are met, it is possible for the boundary to
be gapped. In this paper, we only consider line defects that
correspond to gapped boundaries.

The topological phases A1 and A2 do not necessarily have to
be distinct: If A1 = A2 = A, there can still be many different
kinds of line defects. These correspond to situations where
quasiparticles are permuted among themselves as they cross
the boundary, in a way which preserves their topological
quantum numbers.14,25,30 Such line defects are “invisible,” in
the sense that braiding and fusion of quasiparticles on either
side of the line defect yield the same results.

In order to understand the properties of general boundaries,
it is helpful to apply a folding process, which has been
employed previously in Refs. 30 and 32, and which we review
here. In order to understand the boundary between A1 and A2,
for concreteness we can consider A1 and A2 on a sphere or
plane and then fold back A2 onto A1 to obtain a boundary
between the topological phase A1 × Ā2 and the topologically
trivial gapped phase, which we label “0”. Ā2 denotes the parity-
reversed copy of A2, which is necessary since the folding oper-
ation changes the parity of the state that is being folded because
one of the directions is being reversed. Therefore, to study line
defects, it suffices to consider all possible boundaries between
generic topological phases and the trivial gapped phase.

Given the possibility of different kinds of gapped edges
between topological phases, it is also possible to have domain
walls and junctions between them (see Fig. 3). These pointlike
defects can localize exotic topological zero modes, giving rise
to topological ground-state degeneracies, and projective non-
Abelian statistics. In the special case where the line defects
separate the same topological phase on either side, the point
defects are “twist defects”:14 As a quasiparticle encircles the
defect, it gets permuted by a symmetry of the topological
quantum numbers. Various examples of this have been studied
previously in the literature.13,15–19,22 In some of these physical
realizations, such as those in Ref. 13, it is possible that the
ground-state energy of the system in the presence of the defects
depends logarithmically on the separation between them, as

A1

A2

A1 A2

0

x

A1

A2

A3

A1

A2

x A3

x A3

0

A1 A3

0

x x A2 A3x
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FIG. 3. (Color online) (a) A domain wall between two different
kinds of gapped edges separating topological phases A1 and A2. By
folding A2 over, this can be mapped to a domain wall on the boundary
separating A1 × Ā2 and the trivial gapped state, “0”. (b) A junction
where multiple gapped edges meet is also a possible type of point
defect. On an infinite plane, by applying the folding trick multiple
times, this can also be mapped to a domain wall on the boundary
separating a topological phase and 0.

opposed to the more general linear energy cost for separating
generic point defects.

Using the folding process, we can also understand point
defects by mapping them to domain walls between different
gapped edges separating a topological phase and 0 (see Fig. 3).
In the case of junctions where multiple edges meet [Fig. 3(b)],
then we may apply the folding, in conjunction with deforma-
tions of the location of the edges, several times in order to
map the original configuration onto a domain wall between
different gapped edges separating a topological phase and 0.
We note that this folding does not directly apply if the whole
system is on a spatial manifold of arbitrary topology or for
arbitrary configurations of point defects, but it is useful to
understand the topological behavior of each point defect by
considering it in isolation on a plane and then applying the
folding process.

Therefore, in what follows we need only focus on gapped
boundaries between a generic Abelian topological phase and
the trivial phase 0 and domain walls between different such
gapped boundaries.

IV. CLASSIFICATION OF LINE DEFECTS

A. Review of null vectors and Lagrangian subgroups

As a starting point of our discussion, we review the concepts
of null vectors and Lagrangian subgroups discussed in Refs. 28
and 42, which are the basic tools to obtain our new results. We
consider a generic Abelian topological phase, characterized
by an Abelian CS theory with generic K matrix. The edge
theory is described by (3). Backscattering terms can be added
on the edge, with the restriction that they be local operators on
the edge. For systems involving fermions as the microscopic
local degrees of freedom, the backscattering terms must also
conserve fermion number modulo 2, known as the fermion
parity symmetry. Therefore, the allowed backscattering terms
on the edge are of the form

δHb =
∑

i

αi(x) cos
[
�T

i Kφ + θi(x)
]
, (5)

where �i are integer vectors, �T
i K�i is even to ensure that

the cosine terms are bosonic operators (i.e., have integer
scaling dimension), and αi(x) and θi(x) are spatially varying
functions.43 When the number of left and right movers are
unequal, nL �= nR , the edge states cannot be fully gapped.
When nL = nR = N , i.e., there are an equal number of
counterpropagating modes, it is possible but not guaranteed
that the edge be fully gapped, even in the absence of any
symmetry. In fact, it has been shown that (3) can be fully gapped
if and only if there exist N linearly independent vectors {�i}
satisfying28,42

�T
i K�j = 0. (6)

This is a highly nontrivial constraint; for example, as discussed
in Ref. 28, the ν = 2/3 FQH edge, described by the K matrix
K = ( 1 0

0 −3 ) does not admit such null vectors and therefore
the edge cannot be gapped, even when particle number
conservation is broken. On the other hand, the edge of the
ν = 8/9 FQH state described by K = ( 1 0

0 −9 ) can be gapped if
particle number conservation is broken.
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The fact that such a set of null vectors {�i} can cause
an energy gap on the edge can be seen as follows. We
perform a transformation φ = Wφ′, such that φ′ has the
commutation relations of a usual N -channel Luttinger liquid,
[φ′

i(x),φ′
j (y)] = ±δij iπsgn(x − y); φ′

i for i = 1, . . . ,N can
be chosen to be the left movers, while for i = N + 1, . . . 2N

they are the right movers. Under this condition, cos(�T
i Kφ)

becomes a conventional backscattering term cos(φ′
i ± φ′

i+N ).
It follows that the ground states can be characterized by the
classical minima of the cosine terms: �T

i Kφ = 2πni , for
ni ∈ Z.

The gapped boundary induced by the backscattering
terms (5) can be understood as a one-dimensional “conden-
sate” of certain topological particles. The different components
of the integer-valued vector K�i may have common factors.
Denote K�i = cimi with ci ∈ Z and mi the minimal integer
vector with no common factor in its components. Since
�T

i Kφ = 2πni obtains a classical value on the edge, so does
the quasiparticle operator eimT

i φ , which satisfies 〈eimT
i φ〉 =

ei2πni/ci . Therefore, the quasiparticle mi is also condensed
on the boundary line.

Taking this point of view, a gapped boundary can be
generically viewed as a particle condensate. The condensed
quasiparticles form a subgroup M of the group of all particles,
with the group multiplication defined by particle fusion. For
the particle condensate to be defined consistently, the subgroup
M must satisfy the following conditions:

(1) eiθmm′ = 1 for all m, m′ ∈ M , and
(2) eiθlm �= 1 for at least one m ∈ M , if l /∈ M .
For bosonic states (K even), we also have eiθm = 1 for all

m ∈ M . The subgroup M has been referred to as a “Lagrangian
subgroup.”27,28,32

The first condition requires that every two particles in
M are mutually bosonic, so that they can be condensed
simultaneously. The second condition requires that all other
quasiparticles not in M are confined after the condensation
of M . Consequently, the resulting state has no topologically
nontrivial quasiparticle excitations that can propagate along
the edge.

Following the discussion above, one can see that null
vectors in backscattering terms can be related to the conden-
sation of a Lagrangian subgroup on the edge, but the two are
not obviously equivalent. Particles m ∈ M in a Lagrangian
subgroup are not necessarily null vectors. Gapped edges that
correspond to different Lagrangian subgroups M are clearly
topologically distinct; Ref. 28 showed that every gapped edge
corresponds to a choice of M and that every system with
at least one Lagrangian subgroup has at least one type of
gapped edge. Here, we strengthen this result by proving that
every Lagrangian subgroup M corresponds to a gapped edge
that condenses M . This shows that Lagrangian subgroups can
classify gapped edges.

Before presenting the proof of the classification in the next
section, we discuss some other useful properties of Lagrangian
subgroups. The condensation of the quasiparticle set M along
the edge means that a local operator can annihilate the
quasiparticles in M at the boundary, but not in the bulk. As we
show in the following section, this generally also implies that
the operators in the edge theory corresponding to quasiparticles
in M acquire a nonzero expectation value. This condensation

m

Um;a
† Um;b

FIG. 4. (Color online) Depiction of the process Wm(γ ), which
creates a quasiparticle m at location a on the edge with a local
operator. The quasiparticle propagates along a path γ in the bulk,
and is annihilated at b with a local operator.

at the edge introduces a new process (Fig. 4), whereby the
system can start in the ground state, a quasiparticle can be
created at a point on the edge by a local operator, propagate
through the bulk, and then get annihilated by another local
operator at a different point on the edge, no matter how far
apart the two points on the edge are.28 We let this process be
described by a quasiparticle line operator Wm(γ ), where γ is
the path of the quasiparticle m. In the effective field theory,

Wm(γ ) = Um;ae
imT

∫
γ

a·dl
U

†
m;b, (7)

where e
imT

∫
γ

a·dl is the Wilson line operator describing the
propagation of the quasiparticle m through the bulk, while
Uma and U

†
mb are the local operators on the edge that annihi-

late/create the quasiparticle m at points a, b, respectively. This
process leaves the system in its ground state,

Wm(γ )|ψ〉 = |ψ〉, (8)

where |ψ〉 is a ground state of the system. These processes
play a fundamental role in the proof that every gapped edge
condenses a Lagrangian subgroup.28 As we will show, they
similarly play a fundamental role in the analysis of junctions
between different gapped edges.

It is helpful to understand the role of the Lagrangian
subgroup in cases where there is a boundary between two
topological states, A1 and A2. In the previous section, we
discussed the folding process, where we can consider the
boundary between A1 and A2 as a boundary between A1 × Ā2

and the trivial state. A gapped interface between A1 and A2

is folded to a gapped boundary of A1 × Ā2. If the gapped
boundary corresponds to a Lagrangian subgroup M , the
condensed particles m ∈ M live in A1 × Ā2. In other words,
m is a pair of quasiparticles m = (q1,q̄2) with q1 and q̄2
a quasiparticle in A1 and Ā2, respectively. If quasiparticle
(q1,q̄2) is condensed at the boundary, in the unfolded picture
that means q1 and q̄2 can be brought to the boundary and
annihilate each other. Consequently, q1 can cross the boundary
and become q2, the antiparticle of q̄2. Therefore, in this case,
each Lagrangian subgroup M specifies a consistent set of
transmission, reflection, and absorption processes that happens
at the interface.

In the special case of twist defects,14 A1 = A2 = A. A
Lagrangian subgroup of A × Ā contains the pairs (q1,q̄2)
with q1,q2 ∈ A. Therefore, each Lagrangian subgroup defines
a mapping q1 → q2 in theory A. The property that all
(q1,q̄2) in the Lagrangian subgroup are mutually bosonic
is equivalent to the condition that the mapping q1 → q2
preserves the braiding and fusion rules of A. Therefore, we
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correctly reproduced the known fact that twist defects are
are in one-to-one correspondence with the symmetries of the
topological quantum numbers of A.14

B. From Lagrangian subgroups to backscattering terms

In this section, we sketch the proof that there is a one-to-one
correspondence between Lagrangian subgroups M and sets
of null vectors {�i} which can be used to gap the edges
and condense the set M on the boundary. An important
condition for this proof to be valid is that it is allowed to
couple the edge state to topologically trivial one-dimensional
states. This section expands the discussion in Ref. 37 recently
presented by the authors. Since our proof is constructive, our
analysis provides a way to systematically construct the local
backscattering terms in the edge theory that condense any
given Lagrangian subgroup M .

We develop the argument for this in two steps. In the
first step, we prove that a Lagrangian subgroup defines a
backscattering term on the boundary if it is generated by a
set of null quasiparticles (defined below). In the second step,
we prove that every Lagrangian subgroup can be generated by
a set of null quasiparticles, as long as it is possible to introduce
purely one-dimensional edge degrees of freedom which couple
to the topological edge state.

1. From null quasiparticles to backscattering terms

Consider a 2N × 2N K matrix with zero signature, and a
Lagrangian subgroup M generated by N linearly independent
2N -component integer vectors {mi}. We assume that mi are
null quasiparticles, which satisfy the condition

mT
i K−1mj = 0, i,j = 1, . . . ,N. (9)

Then, we define

�i = ciK
−1mi , (10)

where ci ∈ Z is the minimal integer such that �i is an integer
vector. The {�i} defined this way satisfy (6), and, therefore,

δH = g

N∑
i=1

cos
(
�T

i Kφ
)

(11)

can generate an energy gap in the edge states, by pinning the
argument of the cosine terms,

�T
i Kφ = cimT

i φ = 2πni, (12)

where ni is an integer. This directly implies that〈
eimT

i φ
〉 = ei2πni/ci �= 0. (13)

Therefore, the edges are gapped and the Lagrangian subgroup
M is condensed on the boundary.

2. From general Lagrangian subgroups to null quasiparticles

Now we need to prove that every Lagrangian subgroup M

can be represented by N linearly independent vectors {mi}
which satisfy (9). Naively, for a given K matrix this is not
true. For example, consider K = ( 0 4

4 0 ), which describes Z4

topological order. This has a Lagrangian subgroup generated
by mT

1 = (2,0), mT
2 = (0,2) which does not satisfy (9). It turns

out the statement that we actually need is the following.

Lemma. Suppose we have a set of vectors {mi}, i =
1, . . . ,NM (where NM is not necessarily equal to N ),
which generate a Lagrangian subgroup: i.e., mT

i K−1mj ∈ Z,
mT

i K−1l /∈ Z∀ l /∈ M , and mT
i K−1mi is even for K even.

Then there exists a K ′ which is topologically equivalent to K ,
such that dim(K ′) = 2N ′, and a set of N ′-component vectors,
{m′

i}, for i = 1, . . . ,N ′, which satisfy m′T
i K ′−1m′

j = 0, and
which generate the same Lagrangian subgroup M .

The proof of this is somewhat technical and is presented in
an Appendix. The main idea is that one can define K ′ of the
form

K ′ =
⎛
⎝K 0 0

0 0 I

0 I 0

⎞
⎠ or

⎛
⎝K 0 0

0 I 0
0 0 −I

⎞
⎠ , (14)

with I an N × N identity matrix. The two forms should be
applied to the K’s describing a boson theory or a fermion
theory, respectively. Since |DetK ′| = |DetK|, the new blocks
do not introduce any new particle types, and K ′ and K are
topologically equivalent. Every generator mi of the Lagrangian
subgroup is mapped to a higher dimensional vector {m′

i}
by simply expanding the K matrix to include additional
counterpropagating topologically trivial edge states. Although
the added topologically trivial degrees of freedom do not
change the topological properties of quasiparticle mi , it can
change the inner product of m′

i . A suitable choice can always
be made to satisfy m′T

i K ′−1m′
j = 0. In the next section, we

discuss a number of explicit examples of this.
The above lemma, taken together with step 1 above, proves

that every Lagrangian subgroup M of an Abelian topological
phase corresponds to a gapped edge where M is condensed.
Therefore, the Lagrangian subgroups provide a topological
classification of gapped edges. Edges corresponding to dif-
ferent Lagrangian subgroups clearly cannot be adiabatically
connected to each other without closing the energy gap in the
edge states.

C. Examples

Let us begin with a simple example. Consider two inde-
pendent time-reversed copies of a 1/m-Laughlin FQH state,

described by the K matrix K = (
m 0

0 −m
). The edge of this state

can be terminated by a charge-conserving backscattering term,

Hb = g

2
(
†

eL
eR + H.c.) = g cos[m(φL + φR)], (15)

or by SC,

Hsc = g

2
(
†

eL

†
eR + H.c.) = g cos[m(φL − φR)]. (16)

In the first case, the Lagrangian subgroup generated by (1,1)
is condensed on the edge; in the second case, the Lagrangian
subgroup generated by (1, − 1) is condensed on the edge.

Now let us consider a more nontrivial example that illus-
trates the necessity of the lemma introduced in the previous
section. Consider K = ( 9 0

0 −9 ). This has a Lagrangian subgroup
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generated by mT
1 = (3,0) and mT

2 = (0,3). Now we define

K ′ =
⎛
⎝K 0 0

0 1 0
0 0 −1

⎞
⎠ , (17)

and m′T
1 = (3,0,0,1) and m′T

2 = (0,3,1,0). Again, in the
absence of any symmetries, K ′ is topologically equivalent
to K and m′T

i K ′−1m′
j = 0. Thus, the backscattering terms

associated with this Lagrangian subgroup are given by∑2
i=1 cos(�T

i K ′φ), with �i = 3K−1m′
i .

Another example is given by the mutual CS theory
describing the Z4 toric code model.44 Let K = ( 0 4

4 0 ), and

mT
1 = (2,0) and mT

2 = (0,2). We define

K ′ =
⎛
⎝K 0 0

0 0 1
0 1 0

⎞
⎠ , (18)

and m′T
1 = (2,0,0,1) and m′T

2 = (0,2,−1,0). Here K ′ is
topologically equivalent to K , and m′T

i K ′−1m′
j = 0. Now the

backscattering terms associated with this Lagrangian subgroup
are given by

∑2
i=1 cos(�T

i K ′φ), with �i = 2K−1m′
i .

Let us now consider more generally the ZN toric code
model, described by K = ( 0 N

N 0 ). For any set of integers r,t

such that rt = N , there is a Lagrangian subgroup generated
by the quasiparticles (r,0) and (0,t). In other words, every
distinct divisor of N yields a different Lagrangian subgroup.
The number of Lagrangian subgroups is therefore equal to
the number of divisors of N . For example, when N is prime,
there are two Lagrangian subgroups, corresponding to whether
the “electric” particles (1,0) are condensed, or whether the
“magnetic” ones (0,1) are condensed.34 When N = ∏

i p
si

i ,
where the pi are all distinct prime numbers and si are their
multiplicities, there are

∏
i(1 + si) Lagrangian subgroups and

therefore
∏

i(1 + si) topologically distinct boundaries.
In the following discussion, we provide a microscopic

lattice model construction of these different gapped edges of
the ZN toric code. We use a specific construction of this phase,
called the ZN plaquette model.19,45,46 The degrees of freedom
consist of N states on each of the sites of a square lattice. The
Hamiltonian with the gapped edge contains two terms:

HTotal = HBulk + HEdge, (19)

where

HBulk = −
∑

p

(Op + H.c.). (20)

The sum is over all plaquettes of the square lattice, and the
plaquette operator Op, as shown in Fig. 5(a), is defined as

Op = T1U2T
†

3 U
†
4 , (21)

where Ti and Ui are N × N matrices satisfying UiTi =
TiUie

i 2π
N and T N

i = UN
i = 1. The N states at each site form

an N -dimensional irreducible representation of this algebra.
Since all the plaquette operators Op commute with each other,
the ground state is the common eigenvector of all Op’s with
the real part of the eigenvalue maximized. If the real part of the
eigenvalue of Op on a red (blue) plaquette is not maximized,

P P

B1

P
1 2

34

C

5

(a) (b)

9

6

10 1211

8

7 14

13

15

B2

FIG. 5. (Color online) (a) Lattice model of ZN toric code with
gapped boundary (red line) that corresponds to the Lagrangian
subgroup generated by (1,0) and (0,N ). The Wilson line (the orange
dash line) shows that the quasiparticle (1,0) and its antiparticle
(−1,0) can be created together from the vacuum and annihilated at
different locations of the boundary. (b) The ZN toric code with gapped
boundary (red line) that corresponds to the Lagrangian subgroup
generated by (r,0) and (0,t). The Wilson line (the green dash line)
shows that the quasiparticle (0,t) and its antiparticle (0,−t) can
be created together from the vacuum and annihilated at different
locations of the boundary.

the state contains an electric (magnetic) quasiparticle at that
plaquette. The choice of gapped edge is set by the nature of
HEdge. For a gapped edge that corresponds to the Lagrangian
subgroup generated by (1,0) and (0,N ), we consider the
physical edge in Fig. 5(a) indicated by the red line, with

HEdge = −
∑
C

(VC + H.c.), (22)

which is a sum over all “corner operators” on the edge
[see Fig. 5(a)]. The corner operator at the corner C is defined
as

VC = U7T
†

6 U
†
5 . (23)

With this definition, all terms in HTotal = HBulk + HEdge

commute with each other. The ground state will be a common
eigenvector of all Op’s and VC’s with the real parts of all the
eigenvalues maximized. By counting the number of constraints
from this and the total number of degrees of freedom, we find
there are only a finite number of ground states with gapped
excitations, which implies a gapped edge. Now we want to
show that the edge indeed corresponds to the Lagrangian
subgroup generated by (1,0) and (0,N ). We can consider the
process in which an electric particle-antiparticle pair is created
in the bulk and then annihilated at different locations on the
edge. An example of this process is described by the Wilson
line operator indicated by the orange dashed line in Fig. 5(a):

We = U7U8T
†

1 U
†
9U

†
10. (24)

Notice that We can be written as a product of plaquette
operators and corner operators. Thus, We leaves the ground
state invariant, which means that the electric particle is
condensed on the edge. Moreover, in this construction, (0,N )
is a trivial particle, and therefore is already “condensed” on
the edge. Thus, the model we write here describes the ZN toric
code with a gapped edge corresponding to the Lagrangian
subgroup generated by (1,0) and (0,N ).

More generally, for the gapped edge that corresponds to the
Lagrangian subgroup generated by (r,0) and (0,t), we consider
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the physical edge in Fig. 5(b) indicated by the red line, with

HEdge = −
∑
B

(RB + H.c.), (25)

which is a sum over all “bond operators” on the edge as shown
in Fig. 5(b). If the bond is the edge of a magnetic plaquette,
say bond B1, we define

RB1 = (T †
12U

†
11)t , (26)

while the bond operator on the edge of an electric plaquette,
say bond B2, is defined as

RB2 = (T †
13U

†
12)r . (27)

Again, all terms in HTotal = HBulk + HEdge commute with each
other. The ground state is a common eigenvector of all Op’s
and RB’s with the real parts of all the eigenvalues maximized.
By a similar analysis as above, the Hamiltonian HTotal produces
a gapped edge. Now we want to show that the particles (r,0)
and (0,t) are condensed on this edge. We consider the process
in which the pair (0,t) and (0,−t) is created from the vacuum,
and then annihilated at different locations on the edge. This
process can, for example, be described by the Wilson line
operator Wtm denoted in Fig. 5(b) by the green dashed line:

Wtm = (U11U15T
†

14U
†
13)t . (28)

Notice that Wtm can be written as a product of plaquette
operators and bond operators. Thus, Wtm leaves the ground
state invariant, which means that the particle (0,t) is condensed
on the edge of the ground state. A parallel analysis can be
performed for the (r,0) particle to show that it also condenses
at the edge. Therefore, this lattice construction corresponds to
the Lagrangian subgroup generated by (r,0) and (0,t).

V. CLASSIFICATION OF POINT DEFECTS

Now let us consider junctions where various gapped edges
meet at a point. As shown in Fig. 3, using the folding process,
on an infinite plane such junctions can always be mapped to
domain walls between two different gapped edges. Therefore,
here we need only to focus on domain walls between two
different gapped edges in order to understand the essential
topological properties of generic point defects.

Thus, consider two kinds of gapped edges associated with
two different Lagrangian subgroups M and M ′. In order to
understand basic properties such as quantum dimension, zero
modes, and non-Abelian statistics, we consider the system
on the disk geometry, with 2n well-separated domain walls
separating the two gapped edges. We refer to the edges where
a Lagrangian subgroup M is condensed as an M edge, and
similarly for edges where M ′ is condensed.

A. Topological degeneracies: Quantum dimension

The essential feature of the existence of domain walls
between multiple gapped edges is the introduction of novel line
operators, Wm(ai) and Wm′(bi), where m ∈ M and m′ ∈ M ′,
with paths ai and bi that can intersect only once (see Fig. 6).
The definition of these line operators, for the case of a single
gapped edge, is discussed in Sec. IV A and depicted in Fig. 4.

b1a1

1 2 3 4

b b ba

a
a

1 2 3 4 5 6 7 8

FIG. 6. (Color online) (Top panel) A topological phase on a
disk topology, with the trivial gapped state outside of the disk. The
solid blue (dashed red) lines on the edge correspond to an M (M ′)
edge. The black crosses indicate the domain walls between the two
kinds of gapped edges. The existence of the domain walls implies
the possibility of noncommuting Wilson line operators associated
with quasiparticles of the two Lagrangian subgroups M and M ′.
(Bottom panel) The existence of many domain walls between gapped
edges corresponding to Lagrangian subgroups M and M ′ implies the
possibility of many noncommuting Wilson line operators associated
with quasiparticles of M and M ′. A convenient set of paths, {ai} and
{bi}, is shown, which shows that for n pairs of domain walls, there
are n − 1 copies of the algebra (32).

Since m and m′ have fractional mutual statistics, these
operators do not commute with each other,

Wm(ai)Wm′ (bj ) = Wm′(bj )Wm(ai)e
δij 2πimT K−1m′

, (29)

where ai and bi are the paths shown in Fig. 6(b). Since these
line operators leave the system in its ground-state subspace,
the ground states must form a representation of this algebra.
The dimension of the smallest irreducible representation of
this algebra is generally larger than one, from which we can
conclude that the domain walls must introduce topological
ground-state degeneracies into the system.

These Wilson line operators are generalizations of the
Wilson loop operators in the presence of twist defects,13,14,21

where the defects introduce novel noncontractible loops that
lead to a nontrivial loop algebra and therefore a topological
ground-state degeneracy.

In what follows, we provide a general formula for the
ground-state degeneracy, which allows us to obtain the quan-
tum dimension, or effective number of degrees of freedom, of
each domain wall.

1. Calculation of quantum dimension

In the case where we have one pair of point defects,
there is no nontrivial line algebra induced by the defects, and
therefore the defects do not induce any topological degeneracy.
Therefore, we will begin with the case where we have two pairs
of point defects (Fig. 6).

In order to compute the topological ground-state degener-
acy, we must find the dimension of the smallest irreducible
representation of (29). To do this, it is convenient to first write
the quasiparticles in terms of the generators of the Lagrangian
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subgroups M and M ′. That is,

m =
N∑

i=1

qimi , m′ =
N∑

i=1

q ′
im

′
i , (30)

where qi and q ′
i are integers, and {mi}, {m′

i}, for i = 1, . . . ,N

are the generators of M and M ′, respectively. Here we use the
N null vectors described in Sec. IV B for the generators of the
Lagrangian subgroups, where dim(K) = 2N . For simplicity
we relabel the line operators

A	q = W∑
i qi mi

(a1), B 	q ′ = W∑
i q ′

i m
′
i
(b1), (31)

where 	q and 	q ′ above are N -component integer vectors.
In this notation, the line algebra is

A	qB 	q ′ = B 	q ′A	qe2πi 	qT R 	q ′
, (32)

where R is an N × N matrix:

Rij = mT
i K−1m′

j . (33)

The A’s and B’s all commute with each other, and

A	qA 	q ′ = A	q+ 	q ′ , B	qB 	q ′ = B	q+ 	q ′ . (34)

Note also that

A	q = 1, if RT 	q ∈ ZN,
(35)

B 	q ′ = 1, if R 	q ′ ∈ ZN .

This is because such A	q and B 	q ′ will commute with all
operators in the algebra and can therefore be represented as
the identity in the ground-state subspace.

The smallest irreducible representation of this algebra can
be obtained by diagonalizing one set, such as A	q , and having
B 	q ′ act as the ladder operators,

A	q |	α〉 = e2πi 	q·	α|	α〉, B 	q ′ |	α〉 = |	α + R 	q ′〉, (36)

where 	α is an N -component rational-valued vector. The fact
that the eigenvalues must be phases follows from (34), and
the fact that the 	α are rational-valued follows from (35).
Equation (35) also implies

|	α〉 = |	α + R 	q ′〉, if R 	q ′ ∈ ZN . (37)

Therefore, the number of ground states can be obtained by
counting the number of independent possible values of |	α〉.
The ladder operators B	q define states associated with the lattice
RZN , subject to the equivalence (37). Therefore, R can be
viewed as generating a lattice of rational-valued vectors, where
each state corresponds to a point on the lattice, and two states
are equivalent if they differ by an integer-valued vector.

The number of such states can be computed as follows. We
consider the lattice

� = {R 	�′ + 	� : 	�′ ∈ ZN, 	� ∈ ZN }. (38)

� is an N -dimensional lattice, which can be generated by a
matrix:

� = R̃ZN . (39)

Now observe that ZN is itself a sublattice of �. Therefore, the
unit cell ofZN , which has unit volume, must contain an integer
number D of unit cells of �. This implies that the volume of
each unit cell of � is 1/D: |DetR̃| = 1/D. Each unit cell can be

associated with one state, and the inequivalent states all exist
inside the unit sublattice of ZN . Thus, there are D states, so the
dimension of the smallest irreducible representation of (29) is
D. In Sec. V A3, we provide a number of concrete examples
of this calculation.

In the case where we have 2n domain walls, there are n − 1
independent copies of the above algebra [see Fig. 6(b)], and
therefore the ground-state degeneracy is Dn−1. This implies
that the quantum dimension of each defect is

d =
√

D = (|DetR̃|)−1/2. (40)

We note that the topological degeneracy studied above is
exact in the limit that the defects are infinitely far apart. If
the defects are separated by a finite distance �, then these
topologically degenerate states will obtain an energy splitting
proportional to e−�/ξ , where ξ is the correlation length of
either the edge states or the bulk, depending on which one
is larger. This is due to the fact that a finite separation of
the defects allows the instanton processes associated with the
Wilson line operators to appear in the Hamiltonian and thus
to split the energy of the degenerate states. The amplitude for
these terms decays exponentially as e−�/ξ , due to the energy
gap of the system. This is similar to the case of topological
degeneracies of topological states on closed surfaces, where
the finite system size induces exponentially small splittings
among the degenerate ground states.47 This mechanism for
inducing an energy gap among the degenerate ground states
will be important for the discussions of Secs. V D and VI.

2. General discussion of quantum dimension

The quantum dimension and associated ground-state degen-
eracy calculated above is topologically robust and derived from
the fractional statistics of the bulk quasiparticles. Therefore,
it does not include any possible additional topological degen-
eracies that may arise from purely one-dimensional physics.
In the absence of any symmetries, it has been proven that
bosons in one dimension cannot give rise to any topological
degeneracies.48 Therefore, the result above fully captures the
quantum dimension for domain walls in bosonic systems.

In contrast, fermionic systems in one dimension, in
the absence of any symmetry, have a Z2 topological
classification.49–51 There can be domain walls between dif-
ferent gapped 1D fermionic systems that localize Majorana
fermion zero modes, which have a quantum dimension of

√
2.

These Majorana fermion zero modes are protected by fermion
parity symmetry: If the system is coupled to a gapless reservoir
of fermions, the fermion parity symmetry of the edge system
will be broken, and the topological degeneracy associated with
the Majorana modes will be split. Therefore, for topological
states that include at least one fermion species, the quantum
dimension of the defect is

ddefect = d1Ddbulk, (41)

where dbulk is the Wilson line algebra contribution of (40),
and d1D is either

√
2 or 1, depending on whether the purely

one-dimensional fermion physics has an extra Majorana zero
mode, protected by fermion parity. d1D is independent of
the Lagrangian subgroup and depends more precisely on the
backscattering Hamiltonian of the edge theory. It is possible, in
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principle, to compute d1D , although this requires information
beyond just the Lagrangian subgroups M and M ′ and requires
knowledge of the precise Hamiltonian which is generating the
energy gap on the edge.

We conclude that the Lagrangian subgroups can fully clas-
sify gapped edges only “modulo one-dimensional physics.”
For bosonic systems, the Lagrangian subgroups are expected
to provide a full classification, while for fermionic systems,
it is possible that two gapped edges correspond to the same
Lagrangian subgroup, but cannot be adiabatically connected
to each other. If we define the equivalence by allowing
arbitrary one-dimensional degrees of freedom to be added to
the edges, then of course the Lagrangian subgroups provide a
full classification even for fermionic systems.

We note that here we have computed the topological degen-
eracy by studying the representations of the line operators that
begin and end on the edge. This is a generalization to boundary
domain walls of the loop algebra approach to computing
the quantum dimension of twist defects, used in Ref. 14.
An equivalent way to compute the topological degeneracy is
directly within the edge theory, by studying the ground states
of the chiral Luttinger liquid theory (3), with different kinds
of backscattering terms of the form (11). Such an analysis was
presented in special cases in Refs. 13–17. The main idea can
be understood simply as follows. The edge Hamiltonian can
be written as

δHedge = g

N∑
i=1

{
cos

(
cimT

i φ
)

if x ∈ M region,

cos
(
c′
im

′T
i φ

)
if x ∈ M ′ region.

(42)

Recall that {mi} and {m′
i} are the N generators of the

2N -dimensional matrix K , and ci , c′
i are the smallest in-

tegers such that ciK
−1mi , c′

iK
−1m′

i are integer vectors, as
explained in Sec. IV B. The cosine terms in both domains
cannot simultaneously acquire their classical minimum values.
From (11) to (13), we see this would require 〈eimT φ(x)〉 �= 0 for
x in the M-gapped region and 〈eim′T φ(x)〉 �= 0 for x in the
M ′-gapped region, which is not possible, in general, because
these two operators generically do not commute at different
points in space, and therefore they cannot be simultaneously
diagonalized. Picking only the operators in one region to be
fully diagonalized then leads to a topological degeneracy that
grows exponentially with the number of domain walls. Such an
understanding is useful for more detailed computations using
the edge theory.

3. Examples

Here we review some examples, taken from previous
studies,13–20,22 using the general framework developed here
in terms of the Wilson line algebra.

First, let us consider the proposals of Refs. 15–17, which
consider a FQH state with K matrix,

K =
(

N 0
0 −N

)
. (43)

The two Lagrangian subgroups M and M ′ considered are
generated by m1 = (1,1) and m′

1 = (1,−1), respectively.
When these vectors are used as backscattering terms in the edge
theory, the former can be interpreted physically as a normal

(charge-conserving) backscattering between counterpropagat-
ing edge states, while the latter physically corresponds to
superconductivity-induced backscattering. The resulting line
algebra (29) in this special case becomes Wm1 (ai)Wm′

1
(bj ) =

Wm′
1
(bj )Wm1 (ai)eδij 2πi2/N . When N is odd, corresponding

to fermionic FQH states, this gives a quantum dimension
dbulk = √

N , which agrees with the result d = √
2
√

N found
in Refs. 15–17. As discussed in the previous section, the
additional factor of

√
2 originates from the purely one-

dimensional fermionic physics that gives rise to an additional
Majorana fermion zero mode. When N is even, we have dbulk =√

N/2. The result d = √
2N = 2

√
N/2 of Refs. 15–17, for N

even, has an additional factor of 2 relative to dbulk. This is
again due to purely one-dimensional bosonic physics, where
there is an additional boson parity symmetry of the model
that was considered, which leads to additional ground-state
degeneracies. Breaking this boson parity symmetry will lead
to a topologically robust

√
N/2 quantum dimension.

As a second example, let us consider Z2 twist defects of the
state described by13,14,20

K =
(

p q

q p

)
. (44)

The special case p = 0 describes the case studied in Refs. 18
and 19. The twist defects have the property that a quasiparticle
described by the vector (q1,q2) is transformed into (q2,q1) upon
encircling the twist defect. Such twists were shown to have a
quantum dimension

√|p − q|. Through the folding process,
we obtain a matrix

K̃ =
(

K 0
0 −K

)
. (45)

The twist defect then maps to a domain wall between gapped
edges corresponding to two Lagrangian subgroups M and M ′.
M contains quasiparticles that are generated by {m1,m2} =
{(1,0,−1,0)T ,(0,1,0,−1)T } and M ′ contains quasiparticles
that are generated by {m′

1,m
′
2} = {(1,0,0,−1)T ,(0,1,−1,0)T }.

In this basis, the algebra of Wilson line operators is described
by (32), with

R = 1

p − q

(
1 −1

−1 1

)
. (46)

Forming the lattice � = R̃Z2 [see Eq. (38)], we obtain

R̃ = 1

p − q

(
1 0

−1 p − q

)
. (47)

The quantum dimension of the defects is there-
fore

√
|DetR̃|−1 = √|p − q|, in agreement with previous

calculations.13,14,20

Finally, let us consider the boundary of ZN topological
states, described by

K =
(

0 N

N 0

)
. (48)

As discussed in Sec. IV C, two simple kinds of gapped edges
correspond to condensation of either electric or magnetic
particles. These correspond to Lagrangian subgroups M and
M ′ generated by m1 = (1,0)T and m′

1 = (0,1)T , respec-
tively. The resulting Wilson line algebra is Wm1 (ai)Wm′

1
(bj )
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= Wm′
1
(bj )Wm1 (ai)eδij i2π/N . Therefore, the domain wall be-

tween these two kinds of gapped edges has a quantum
dimension

√
N .

B. Localized toplogical zero modes

A physical consequence of the existence of the domain
walls is the presence of a topologically robust nonzero density
of states at zero energy for a subgroup L of the quasiparticles
with fractional statistics. This subgroup L is defined as follows:

L = {m + m′|m ∈ M,m′ ∈ M ′}. (49)

The fractional statistics of the quasiparticles in L derives from
the fractional mutual statistics between m and m′. It also is
useful to define the subset of quasiparticles

L̃ ≡ L\(M ∪ M ′)
= {m + m′|m ∈ M,m′ ∈ M ′,m + m′ /∈ M,M ′}. (50)

L̃ simply contains the nontrivial quasiparticles in L that do not
belong to M or M ′. We show that the zero-energy density of
states of the quasiparticles in L̃ is exponentially localized to
the domain wall.

To see this, first recall that the gapped regions introduce
the processes Wm(ai), Wm′(bi) [see Fig. 6(b)], which leave the
system in the ground-state subspace. If we consider bringing
the starting points of the paths near the domain walls, and
pushing the end points out to infinity, we have the process
Wm+m′ (a) = lima±→a Wm(a+)Wm′(a−) (see Fig. 7). a± are the
paths that start infinitesimally to the left/right of the domain
wall and go out to infinity, and a is the limiting path obtained
by fusing a+ and a− together in such a way that they both
start at the domain wall. The quasiparticle l , which consists
of the fusion of m with m′, can therefore be created at the
position of the domain wall, propagate through the bulk, and
be annihilated at a different defect, keeping the system in
the ground-state subspace. Away from the domain wall, l
cannot be absorbed or emitted, as long as l /∈ M,M ′ because it
necessarily includes a nontrivial particle from both Lagrangian
subgroups, and only one Lagrangian subgroup is condensed
on either side of the domain wall. This directly implies that
the anyons of the form l = m + m′ have a nonzero density of
states, at zero energy, localized to the domain walls, as long
as l /∈ M,M ′ (i.e., l ∈ L̃). These zero modes are topologically

a+
a-

l = m + m’

FIG. 7. (Color online) The domain walls between gapped edges
labeled by Lagrangian subgroups M and M ′ allow for a process where
an anyonic quasiparticle labeled l = m + m′, with m ∈ M , m′ ∈ M ′,
can be emitted from one domain wall and be absorbed at another.
Schematically, the m quasiparticle is absorbed/emitted on one side
of the domain wall, while the m′ quasiparticle is absorbed/emitted on
the other side. At the domain wall both of these processes can occur
together, allowing for the anyon l = m + m′ to be absorbed/emitted
at the domain wall. This directly implies that l has a nonzero density
of states at zero energy, localized exponentially to the domain wall.

x = 0

x = L1x = L2

(a)

(b)
x = 0

x = xp

FIG. 8. (Color online) Possible geometries for probing the quasi-
particle zero-energy density of states localized at the domain wall.
(a) There is a gapless edge in the region x ∈ [L1,L2], from which a
quasiparticle can tunnel into the zero mode localized at the domain
wall. (b) There can be a second domain wall at x = xp , where the
two defects at xp and 0 can be arbitrarily far apart along the edge. A
subset of the quasiparticles can be absorbed/emitted at zero energy
between domain walls that are well separated along the edge.

robust, as they are protected by the topological nature of the
gapped edges on either side of the domain wall.

1. The zero mode in quasiparticle density of states

In order to understand this more concretely in the edge
theory let us consider a domain wall at x = 0 between M and
M ′ edges. Furthermore, let us suppose that there is some region
where the edge is gapless, between L1 < x < L2, which we
use to “probe” the defect [Fig. 8(a)]. Equivalently, the gapless
region can be considered to shrink to a point [Fig. 8(b)], in
which case we are considering the tunneling of quasiparticles
from one defect to another.

More concretely, we consider the following backscattering
terms on the edge:

δHedge = g

N∑
i=1

{
cos

(
cimT

i φ
)

for x ∈ [0,L1],
cos

(
c′
im

′T
i φ

)
for x ∈ [xL,0],[L2,xR],

(51)

where xL < 0 and xR > L2. Recall that {mi} and {m′
i} are the

generators of M and M ′, respectively. In the regions x < xL

and x > xR , we do not specify the nature of the edge, except to
assume that it allows topologically degenerate sectors due to
the domain wall at x = 0. For concreteness let us suppose all
of the regions are infinitely long: xL → −∞ and L1,L2,xR →
∞. Furthermore, in the case where L1 < x < L2 is a gapless
region of the edge theory, let us assume |L1 − L2| → ∞ in
order for the edge to not have a finite-size gap in this region.
Alternatively, if |L1 − L2| → 0, we can assume this point is
the location of a second domain wall at x = L1 = L2 ≡ xp

[Fig. 8(b)].
The classical minima in the M-gapped regions are set by

mT
i φ = 2παi/ci for integer αi . The topologically degenerate

sectors therefore can be (partially) labeled by |	α〉, such that
eimT

i φ(x)|	α〉 = ei2παi/ci |	α〉 for 0 < x < L1. Note that in this
basis, we cannot simultaneously diagonalize all of the eim′T φ(x)
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for xL < x < 0, because of the nontrivial commutation rela-
tion between eimT φ(y) and eim′T φ(x) at separate points x, y. Also
note that this is a partial labeling of the states because we have
not specified the nature of the edge for x < xL and x > xR .

Now consider the quasiparticle operator

χl (x) = eilT φ(x), (52)

for l ∈ L̃. That is, for l = m + m′, with m ∈ M and m′ ∈ M ′,
such that l /∈ M,M ′. We also consider m and m′ to be generated
by the null quasiparticle vectors {mi}. Consider the correlation
function

Gl;	α(x,t) = 〈	α|χl (xp,t)χ †
l (x,t)χl (x,0)χ †

l (xp,0)|	α〉, (53)

where |	α〉 labels the different ground states under consider-
ation. We include the operator χ †

l (xp,0), which creates the
quasiparticle l at x = xp, in order to be able to fully describe
the system using only the Hilbert space in the long-wavelength
theory of the edge, without reference to the bulk. χl (x) alone is
not a physical, gauge-invariant process on the edge. The point
xp can be considered to be located in the region of a gapless
edge or at another domain wall.

We can show that, at low frequencies, ω � g, where g is
the scale of the energy gap of the edge states,

Gl;	α(x,ω) =
∫

dtGl;	α(x,t)eiωt ∼ e−|x|/ξ δ(ω), (54)

where ξ ∝ 1/g is the correlation length of the gapped edge
states. This directly implies that the quasiparticles of the form
l = m + m′, such that l /∈ M,M ′, have a nonzero density of
states, at zero energy, exponentially localized to the domain
wall. To see this, we insert a complete set of states,

1 =
∑

a

|a〉〈a| =
∑
	β∈G

| 	β〉〈 	β| +
∑
n∈E

|n〉〈n|, (55)

where we have split the formal sum over all states in the edge
theory into those in the ground-state subspace, labeled G, and
the excited states, labeled E. Thus,

Gl;	α(x,t) =
∑
	β∈G

|〈 	β|χl (x)χ †
l (xp)|	α〉|2 + · · · . (56)

The · · · represents the sum over excited states, which can be
neglected at frequencies much smaller than the energy gap in
the edge states. Now consider the matrix elements

|〈	α|χl (x)χ †
l (xp)| 	β〉| = |〈	α|eim′T (φ(x)−φ(xp))| 	β〉|, (57)

where we have assumed, without loss of generality, that x >

0, so that eimT φ(x) are diagonalized in the 	α basis and thus
simply contribute an unimportant U(1) phase factor to the
matrix elements.

Furthermore, observe that the operators eim′T [φ(0)−φ(xp)], for
m′ ∈ M ′ act as ladder operators that connect the different
ground states |	α〉. To see this explicitly consider the com-
mutation relations for x > 0,

[mT φ(x),m′T [φ(0) − φ(xp)]] = i2πmT K−1m′, (58)

which implies that

eim′T [φ(0)−φ(xp)]|	α〉 = | 	γ 〉, (59)

where γi = αi + m′T (ciK
−1mi). Therefore, we can write

|	α〉 = e−im′T [φ(0)−φ(xp)]| 	γ 〉. (60)

Equation (57) thus simplifies to

|〈	α|χl (x)χ †
l (xp)| 	β〉| = |〈 	γ |e−im′T φ(0)eim′T φ(x)| 	β〉|. (61)

The operators inside the expectation value simply introduce
a kink in the uniform boson configuration at position x. It
is clear that this equal-time correlation function must decay
exponentially,

|〈 	γ |e−im′T φ(0)eim′T φ(x)| 	β〉| ∝ δ 	γ 	βe−x/ξ , x > 0, (62)

because the edge states are gapped for x > 0 and x < 0, with
a correlation length ξ ∝ 1/g. The Kronecker δ, δ 	γ 	β , arises
because the M edge extends to infinity, while the kink is created
at a finite distance x away from the location of the domain wall.

We can repeat a slightly modified argument to obtain an
exponential decay for x < 0 as well. This proves (54) and
therefore that the quasiparticles in L̃ have a nonzero density
of states at zero energy, exponentially localized to the domain
wall.

We see that the physical origin of this nonzero density
of states is simply that χl (0)χ †

l (xp) can take one degenerate
ground state to another: The domain wall can absorb/emit
quasiparticles of the form l = m + m′, while staying in the
ground-state subspace. The δ(ω) arises because, aside from
the degenerate ground-state subspace, there is a gap of order
g to any other states, and therefore for ω � g there will be no
spectral weight aside from the δ function at ω = 0.

While the χl for l ∈ L̃ have a nonzero density of states
at zero energy localized to the domain wall, the zero-energy
density of states is not localized if l ∈ M or M ′. In contrast, if
l /∈ L, then there will be a vanishing density of states at zero
energy everywhere, because such quasiparticle operators do
not act in the degenerate ground-state subspace, even when
applied at the domain wall.

In the fermionic case, where K has at least one odd element
along the diagonal, there is an additional subtlety. As stated in
Sec. IV B, we can always pick a choice of K and a basis {mi}
for the Lagrangian subgroup M , such that mT

i K−1mj = 0.
While mi and mi + K�, for � an integer vector, describe
the same topological quasiparticle, they may differ in fermion
parity: One may be a boson while the other is a fermion. In
this case, χl (x) has a robust zero-energy density of states only
if l = m + m′, with m, m′ both bosons. Otherwise, creating
the quasiparticle l on the edge will require also adding an
additional local fermion, which will not be guaranteed to have
a nonzero density of states at zero energy, unless there happens
to be an additional Majorana fermion zero mode due to purely
one-dimensional physics, as discussed in Sec. V A2. Indeed,
the above analysis assumed explicitly that one can choose a
basis where either eimT φ(x) or eim′T φ(x) can acquire nonzero
expectation values for x > 0 and x < 0, respectively, which is
only possible for bosonic operators.

2. Generalized parafermion zero-mode algebra

Now let us consider a set of domain walls between the M

and M ′-gapped regions, at the positions xi . Based on the above
analysis, the quasiparticle operators χl (x) have a nonzero local
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density of states at zero energy at xi for quasiparticles l ∈ L.
We define the zero-mode operators (see Fig. 7),

γli = lim
ε→0+

eimT φ(xi+ε)eim′T φ(xi−ε), (63)

for l = m + m′, if xi + ε is an M-gapped region and xi − ε is
an M ′-gapped region. For the reverse scenario, the roles of m
and m′ are interchanged above. This regularization is important
in order to properly define the commutation relations between
different γli on the same domain wall.

Note that the operators γli are zero-mode operators in
the sense that they can be created/absorbed at the domain
walls at zero energy, as long as they are correspondingly
absorbed/created somewhere else. That is, γ

†
liγlj always keep

the edge in its ground-state subspace and therefore commute
with the Hamiltonian:

[Hedge,γ
†
liγlj ] = 0. (64)

In general, the γli individually either commute or anticommute
with Hedge, since they are mutually local.

The zero modes γl;i satisfy the following algebra:

γl;iγl̃;j = γl̃;j γl;ie
iπ lT K−1 l̃sgn(i−j ), i �= j, (65)

γl;iγl̃;i = γl+l̃;ie
±iπm′K−1m̃

= γl̃;iγl;ie
±iπ(m′T K−1m̃−mK−1m̃′), (66)

where l = m + m′ and l̃ = m̃ + m̃′, with m,m̃ ∈ M and
m′,m̃′ ∈ M ′. The ± sign in the latter equation depends on
whether the domain wall has an M edge to the left and an M ′
edge to the right, or vice versa, and can be obtained using the
point-splitting regularization defined in Eq. (63). Each operator
γl;i has a finite order: γnl l will commute with the whole algebra
for some integer nl and therefore can be represented in the
algebra by the identity operator.

Equations (65) and (66) define a generalized parafermion
algebra. The simplest version of this algebra, which consists of
a single parafermion generator,52–54 appears for the zero modes
localized to the topological defects considered in Refs. 13–17,
19, and 21–23.

C. Mapping to genons

The Wilson line algebra (29) induced by the defects is
similar to the Wilson loop algebra of an Abelian CS theory on
a high genus surface. In the latter case, the Wilson loop algebra
describes the quasiparticle propagation along noncontractible
cycles of the high genus surface. Here we show that (29) is
exactly equivalent to the Wilson loop algebra of some Abelian
CS theory on a high genus surface. Consequently, we refer to
such boundary defects as genons in the sense of topological
equivalence.

Let us begin by considering the following algebra for the
Wilson lines,

A	qB 	q ′ = B 	q ′A	qei2π 	qT R̃ 	q ′
, (67)

where recall that 	q and 	q ′ are N -component integer vectors.
From the definition of R̃ [see Eq. (38) and subsequent
discussion], we can see that this algebra is equivalent to

the original algebra (32) up to a possible relabeling of the
operators.

Here we would like to show that one can always choose a
basis of the Lagrangian subgroups M and M ′ so that R̃−1 is a
diagonal integer matrix. To see that it is integer, observe that
the lattice � includes every integer vector 	� ∈ ZN . Therefore,
∀ 	� ∈ ZN ; there must exist 	�′ ∈ ZN such that R̃ 	�′ = 	�. In
other words, for every 	� ∈ ZN , R̃−1 	� is an integer vector,
which implies that R̃−1 must be integer.

To see that R̃−1 can be diagonal, we use the following
theorem of linear algebra. If A is an integer N × N matrix,
then there exist integer matrices S and T with unit determinant
such that A′ = SAT is a diagonal integer matrix. A′ is known
as the Smith normal form of A.55 Applying this to R̃ implies
that one can always find a basis of Lagrangian subgroups for
M and M ′ such that R̃ will be diagonal.

Therefore, if we define K̃ ≡ R̃−1, then (67) can be
interpreted as the Wilson loop algebra of a U(1)N CS theory
on a torus, characterized by the matrix K̃ , where A	q and B	q
are represented as

A	q = eiqI

∮
a
aI ·dl, B	q = eiqI

∮
b
aI ·dl . (68)

Here aI are the U(1) gauge fields of this U(1)N CS theory, a

and b are the noncontractible loops on the torus, and a + b is
the noncontractible loop that encircles both a and b once.

As is well known, such a theory has a topological degen-
eracy given by |Det K̃| = |Det R̃|−1 = D. Therefore, with 2n

domain walls, there are n − 1 copies of the above algebra, and
therefore the algebra corresponds to the Wilson loop algebra
of the associated U(1)N CS theory with matrix K̃ on a genus
g = n − 1 surface.

We show in Sec. V D that one can also define a notion of
braiding of these domain walls, which correspond to modular
transformations, or Dehn twists, of the corresponding Abelian
CS theory on the genus g = n − 1 surface. This dramatically
generalizes earlier results about twist defects.14 Since the
ground-state degeneracy and braiding of the defects in these
cases can be understood in terms of the properties of an Abelian
CS theory on a high genus surface, we refer to these defects
as genons.

We would also like to note that the defect and antidefect
are topologically equivalent. In the basis in which R̃ is
symmetric, the Lagrangian subgroups M and M ′ can be
mapped to each other, with a quasiparticle m = qimi ∈ M

being mapped to m′ = qim′
i ∈ M ′. Using this mapping, the on-

site commutation relations of the parafermion zero modes (66)
are the same for defects and antidefects. This is consistent with
the case of Z2 twist defects studied previously,14 where defects
and antidefects are equivalent to each other.

D. Projective non-Abelian statistics

We have seen that the domain walls of the gapped edge
states localize topologically protected zero modes and give
rise to topological degeneracies. This raises the question of
whether it is possible to “braid” these defects, that is, to
carry out topologically protected unitary transformations in
the degenerate subspace.

Since the defects generally exist as domain walls on
the boundary of a topological phase, it is not possible to
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geometrically braid the defects and return to the original
configuration of the system. However, it has been shown that
in some cases it is possible to define a notion of braiding
through a different approach that involves tuning the tunneling
of quasiparticles between the domain walls.14–16,56,57

In particular, let us consider bringing the edges close
together, in order to induce quasiparticle tunneling between
either the domain walls or the gapped domains. This leads to a
Hamiltonian that acts on the degenerate ground-state subspace,
opening the possibility of finding a closed path in Hamiltonian
space that successfully carries out an adiabatic non-Abelian
Berry phase on the ground-state subspace. Such non-Abelian
Berry phases can, under certain conditions, be topologically
protected up to an overall phase. This yields the possibility of
defining a notion of projective non-Abelian statistics for the
defects.

In what follows, we show that it is, in general, possible
to generate the following topologically protected transforma-
tions. Consider an array of point defects, labeled 1, . . . ,2n,
separating M and M ′ edges. Pick any neighboring pair of
defects, such as 1 and 2 for convenience, and define the loops
{ai} and {bi}, as shown in Fig. 6(b). Without loss of generality,
we suppose that defect 1 has an M-gapped edge to the left and
an M ′-gapped edge to the right, and vice versa for defect 2.

We show that we can generate a topologically protected
braiding transformation B12, which is a unitary transformation
in the Hilbert space of topologically degenerate states, and has
the following action on the Wilson line operators {Wm(ai)}
and {Wm′ (bi)},

B12 : Wm(a1) → eiθmWm(a1),

Wm′(b1) → eiθ ′
mW †

m(a1)Wm′ (b1), (69)

while the rest of the Wilson line operators are left invariant.
The phases eiθm and eiθ ′

m are defined below, in Eq. (81).
Equation (69) requires a canonical pairing between quasipar-
ticles m ∈ M and m′ ∈ M ′, which we explain below. In the
mapping to the high genus surface (see Sec. V C), the above
braiding transformations can simply be understood as Dehn
twists, or modular transformations, of the genus g surface.
This generalizes the result found in Ref. 14 in the context of
twist defects to a more general class of point defects of an
Abelian topological phase.

In order to derive the above result, we first define the
following zero-mode Hamiltonian:

Hab =
N∑

i=1

(
tl i γ

†
l i ;a

γl i ;b + H.c.
)
. (70)

Here the quasiparticle l i is defined by

l i = mi + m′
i , i = 1, . . . ,N, (71)

where {mi} and {m′
i} for i = 1, . . . ,N are the generators of M

and M ′, in the basis defined by Eq. (67) with R̃ diagonal. Note
that this basis pairs every generator mi of M with a generator
m′

i of M ′ and therefore induces a natural pairing between
every m ∈ M and m′ ∈ M ′. In the notation of (67), this is the
statement that for every N -dimensional vector 	q, we define
an operator A	q ≡ W∑

i qi mi
(a1), which is associated to Wilson

lines of particles in M , and an operator B	q ≡ W∑
i qi m′

i
(b1),

which is associated with Wilson lines of particles in M ′. Recall

1 2

1’ 2’ 3 4

1

2
1’

2’

3 4

FIG. 9. (Color online) (a) Bringing different gapped edges to-
gether can induce tunneling of quasiparticles associated with the
corresponding Lagrangian subgroups. H12 can, for example, be
realized using the geometry shown, with the double arrows indicated
tunneling of an m ∈ M quasiparticle between M-gapped edges (blue
solid lines). (b) Bringing different defects (such as 2 and 2′) in close
proximity can induce tunneling of quasiparticles with zero modes
localized to the defects. Double arrows indicate tunneling of zero
modes between defects.

that N is half the dimension of the K matrix: dim(K) = 2N ,
and, following the discussion of Sec. IV B, we are picking
N generators {mi} of M , and similarly for M ′. Note that the
individual terms in the sum, γ †

l i ;a
γl i ;b, commute with each other.

When a and b are nearest neighbors, e.g., b = a + 1, the
sum in Ha,a+1 effectively runs over all possible zero modes.
This is equivalent to a sum over all Wilson line operators that
connect the gapped region to the left of the defect at xa and the
region to the right of the defect at xa+1. Physically, this can be
achieved by bringing the edges in close physical proximity, as
in Fig. 9(a).

In contrast, when a and b are not nearest neighbors, then we
see that Hab only sums over a restricted set of zero modes. For
the braiding we define below to be topologically robust, it is
crucial that the only terms which appear in the sum consist of
quasiparticles generated by those of the form l i = mi + m′

i .
Couplings of any other zero modes must be exponentially
suppressed. In general, zero modes at xa and xb can be coupled
by bringing the point defects at xa and xb in close proximity
in order to induce the relevant quasiparticle tunneling [see
Fig. 9(b)]. However, in order to suppress the tunneling of
quasiparticles that are not generated by {l i}, there may need to
be additional geometric or energetic constraints. An example
of such a geometric constraint occurs in the examples studied
in Refs. 15 and 16, where physically the system is not folded
(in the sense of Sec. III), and bringing well-separated, non-
neighboring defects together will only allow a subset of the
zero modes to tunnel with appreciable amplitude from one
defect to another through the bulk.

In order to braid the defects 1 and 2, we introduce another
pair of domain walls, 1′ and 2′ (see Fig. 10), which are
initially coupled via H1′2′ and therefore do not contribute to
the initial ground-state degeneracy. Subsequently, we consider
the following path in Hamiltonian space:

H (τ ) =
{

H2→1′ = (1 − τ )H1′2′ + τH22′ , τ ∈ [0,1],

H2→1′ = (2 − τ )H22′ + (τ − 1)H12, τ ∈ [1,2].

(72)
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1 2 1’ 2’ 3 4 5 6

FIG. 10. (Color online) For the braiding between defects 1 and 2,
we introduce another ancillary pair of defects 1′ and 2′. The degrees
of freedom at 1 can then first be transferred to 2′, and then those at
2 can be transferred to 1′. After the process, 1 and 2 are coupled and
can be annihilated, and 1′ and 2′ are relabeled 1 and 2, respectively.
This effectively exchanges the degrees of freedom at 1 and 2.

Focusing on the D2-dimensional Hilbert space associated with
the defects 1, 2, 1′, and 2′ (see Sec. V A for a definition of D),
we can show that H1′2′ , H22′ , and H12 will have a ground-state
degeneracy of D, with a gap to the next excited states, assuming
certain special values of the hopping coefficients tl i

are avoided
(see Appendix B for a detailed explanation). Therefore, H (τ )
will typically have D ground states throughout the process; if
there are any additional accidental degeneracies along the way,
it is possible to choose a slightly different path in Hamiltonian
space that avoids them without modifying H (0), H (1), and
H (2). Therefore, the system is in the D-dimensional ground-
state subspace throughout the entire adiabatic process.

The first process H2→1′ can be thought of as transferring
the zero modes from 2 to 1′, while the second process H1→2′

can be thought of as transferring the zero modes from 1 to 2′.
After the process is over, we again have two uncoupled domain
walls, 1′ and 2′. Therefore, 1′, 2′ after the process play the role
of 1, 2 before the process. Therefore, if we rename 1′ and 2′
to be the new 1 and 2, we can see that 1 and 2 are effectively
exchanged.

To be more explicit, we define the following physical
operators:14–16

Ol;1 = γl;2γ
†
l;1′γl;2′γ

†
l;∞, Ol;2 = γ

†
l;1γl;2γ

†
l;2′γl;∞. (73)

Here we have included the operator γl;∞, which represents a
quasiparticle operator at some reference defect (or, alterna-
tively, infinitely far away), which is necessary to ensure that
Ol;1 and Ol ;2 are physical operators that act on the Hilbert
space of the edge theory.

The action of H (τ ) on the ground-state subspace can be
understood by noticing that these operators commute with the
two processes:

[
H2→1′ ,Ol i ;1

] = 0,
[
H1→2′ ,Ol i ;2

] = 0, (74)

for l i , i = 1, . . . ,N , of the form described in Eq. (71).
The ground states of Hab have definite eigenvalues for the

operators γ
†
l i ;a

γl i ;b. For (a,b) = (1,2),(1′,2′),(2,2′), we have

γ
†
l i ;a

γl i ;b|k; 	αab〉 = ei2π(	αab)i |k; 	αab〉. (75)

k = 1, . . . ,D parametrize the D ground states of Hab, while
	αab, which depend on k, characterize the eigenvalues of
γ
†
l i ;a

γl i ;b.

Defining P(τ ) to be the projection onto the ground-state
subspace of H (τ ), we find:

P(0)Ol i ;1P(0) = ei2π(	α1′2′ )i γl i ;2γ
†
l i ;∞,

(76)
P(1)Ol i ;1P(1) = e−i2π(	α22′ )i eiπ lT

i K−1 l i γl i ;2′γ
†
l i ;1′γl i ;2′γ

†
l i ;∞.

This implies that after the first process, τ = 0 → 1,
the zero mode γl i ;2 transforms into e−2πi[(	α1′2′ )i+(	α22′ )i ]

eiπ lT
i K−1 l i γl i ;2′γ

†
l i ;1′γl i ;2′ .

Similarly,

P(1)Ol i ;2P(1) = e−i2π(	α22′ )i eiπ lT
i K−1 l i γ

†
l i ;1

γl i ;∞,
(77)

P(2)Ol i ;2P(2) = ei2π(	α12)i γ
†
l i ;2′γl i ;∞,

which implies that after the second process, τ = 1 → 2,
γ
†
l i ;1

→ e−iπ lT
i K−1 l i ei2π[(	α12)i+(	α22′ )i ]γ

†
l i ;2′ . Also, we note that

[
γl i ;2′γ

†
l i ;1′γl i ;2′γ

†
l i ;∞,H1→2′

] = 0, (78)

so that the result of the first process is not affected by the
second process.

At the beginning of this process, we had the zero modes
at x1 and x2 while the ones at x ′

1 and x ′
2 were coupled and

therefore did contribute to the ground-state degeneracy. At the
end of the process, we ended up with the zero modes at x ′

1 and
x ′

2 while the ones at x1 and x2 are coupled. The final system
is equivalent to the original system, and so we can just relabel
γl i ;1′ and γl i ;2′ as γl i ;1 and γl i ;2, respectively.

The above results imply that the braiding B12 has the
following action on the zero-mode operators:

B
†
12γl i ;2B12 = e−2πi[(	α1′2′ )i+(	α22′ )i ]eiπ lT

i K−1 l i γl i ;2γ
†
l i ;1

γl i ;2,
(79)

B
†
12γl i ;1B12 = e−i2π[(	α12)i+(	α22′ )i ]eiπ lT

i K−1 l i γl i ;2.

In terms of the Wilson lines,

Wmi
(a1) = γ

†
l i ;1

γl i ;2, Wm′
i
(b1) = γ

†
l i ;2

γl i ;3, (80)

we obtain the result (69) for the action of B12, with the phases

eiθm = e2πi 	q·(	α12−	α1′2′ ), eiθ ′
m = e2πi 	q·(	α1′2′+	α22′ ), (81)

where the N -component integer vector 	q is defined by
m = ∑N

i=1 qimi .
Using these results, we can explicitly derive the braid

matrix, in a given basis. As explained in Sec. V A, we can
label the ground states associated with the defects 1, 2 in terms
of eigenvalues 	α of A	q ≡ W∑

i qimi
(a1): A	q |	α〉 = e2πi 	q·	α|	α〉. In

this basis, B	q ≡ W∑
i qim

′
i
(b1) act as ladder operators, so that

|	α〉 = B	q |0〉, (82)

where

	α = R̃	q (83)

[see Eq. (38) for a definition of R̃]. Therefore, the braid matrix
is

B
†
12|	α〉 = B

†
12B	q |0〉 = eiφB

†
12B	qB12|0〉

= eiφ+iθ ′
mA

†
	qB	q |0〉 = eiφ+θ ′

me−i2π 	qT R̃	q |α〉. (84)

Here eiφ is an undetermined phase, associated with the
eigenvalue B

†
12|0〉, and m is defined by 	q: m = ∑

i qimi .
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Therefore, in this basis,

(B†
12)	q 	q ′ = δ	q 	q ′e

iφei2πi 	q·(	α1′2′+	α22′ )e−i2π 	qT R̃	q, (85)

where 	q and 	q ′ are related to the eigenvalues 	α and 	α′ via R̃,
as shown in Eq. (83).

The above sequence of Hamiltonians can be thought of as
inducing interactions between the defects, which leads to the
quasiparticle tunneling between the defects. As discussed in
Ref. 57, adiabatically tuning such interactions is equivalent to
performing a sequence of pairwise projections on the subspace
associated with different pairs of defects. Various sequences of
such projections can lead to a nontrivial unitary transformation
on the original space of ground states and effectively carries
out a braiding process. Since the time-dependent Hamiltonian
simply realizes these projection operators, it is clear that small
deformations of the path in Hamiltonian space will not affect
the result except up to an overall phase, as long as H (τ ), when
considered in the Hilbert space of the defects 1, 2, 1′, 2′, has a
D-dimensional ground-state degeneracy throughout entire the
process, with a finite gap to other excited states. Therefore, the
resulting non-Abelian Berry phase is topologically protected.
Since the overall phase is not topological, we refer to this
as a projective realization of non-Abelian statistics. That the
braiding operations indeed satisfy projectively the defining
relations of the braid group follows from the fact that we
have shown they can be mapped to modular transformations
of an Abelian CS theory on a high genus surface, which
are known to form a projective representation of the braid
group.

VI. CRITICAL PHENOMENA BETWEEN
GAPPED EDGE STATES

A defining property of topologically distinct gapped edges
is that it is not possible to adiabatically tune from one to
the other without closing the energy gap on the edge. This
raises the question of whether we can understand the critical
phenomena between different gapped edges in terms of the
topological properties of the different gapped edges.

Let us focus on the transition between two different kinds
of gapped edges, labeled by Lagrangian subgroups M and M ′.
One way to understand a transition between the M edge and
the M ′ edge is as follows. Consider starting with the M edge
and nucleating N pairs of point defects that enclose the M ′
edge, as shown in Fig. 11. Next, the size of the M ′ regions
is increased, until the M regions shrink to zero. This process
can be described by the following Hamiltonian, which acts in
the topologically degenerate subspace of the N pairs of point
defects,

Hedge =
N∑

i=1

(Ai + Bi),

Ai =
∑
m∈M

tmWm(c2i−1) + H.c., (86)

Bi =
∑

m′∈M ′
t̃m′Wm′(c2i) + H.c.,

1
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FIG. 11. (Color online) Starting with a gapped edge correspond-
ing to a Lagrangian subgroup M , we can nucleate pairs of domain
walls enclosing gapped regions corresponding to a Lagrangian
subgroup M ′, separate them, and reannihilate them in pairs, leaving
the M ′ gapped edge. In the M phase, the dominant quasiparticle
tunnelings are along the c2i−1 paths enclosing the M ′ regions. In the
M ′ phase, the dominant quasiparticle tunnelings are along the c2i

paths enclosing the M regions.

where i = 2N + 1 and i = 1 label the same domain wall. The
paths ci are defined to enclose the defects i and i + 1, as shown
in Fig. 11.

Here we have included only Wilson lines that enclose one
pair of defects to obtain a model Hamiltonian that can describe
the transitions between different edge states. A Hamiltonian
that is more physically realistic for a given microscopic setup
may also include longer-range tunneling terms.

In the limit where the first sum dominates, tm � tm′ ∀ m ∈
M,m′ ∈ M ′, the degeneracy is lifted due to m quasiparticles
tunneling around the M ′ domains, which corresponds to the
case where the M ′ regions are small and the edge is in the
M phase. On the other hand, in the limit where the second
sum dominates, t̃m′ � tm, the degeneracy is lifted due to
m′ quasiparticles tunneling around the M domains, which
corresponds to the case where the M regions are small and
the edge is in the M ′ phase.

Hedge above simply describes a 1D generalized quantum
spin chain. One way to define this mapping to a spin chain
is as follows. Every “site” i of the quantum spin chain
can be associated with a pair (2i,2i + 1) of neighboring
defects. Furthermore, each site i of the spin chain is assigned
a D-dimensional Hilbert space, associated with the finite-
dimensional representation of the algebra

Wm(ai)Wm′ (bi) = Wm′(bi)Wm(ai)e
2πimT K−1m′

, (87)

which we studied in Sec. V A [see Fig. 6(b) for a definition
of the paths {ai}, {bi}]. Note that the operators Wm′(c2i) =
Wm′ (bi) [see Figs. 6(b) and 11]. Also note that for the disk
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topology shown in Fig. 11, only N − 1 pairs of defects are
independent, due to the relations Wm′(c2N ) = ∏N−1

i=1 Wm′(c2i)
and Wm(c2N−1) = ∏N−1

i=1 Wm(c2i−1).
The Ai and Bi in Eq. (86) satisfy

[Ai,Aj ] = [Bi,Bj ] = 0,

[Ai,Bj ] = 0 if j �= i,i − 1, (88)

[Ai,Bj ] �= 0 if j = i,i − 1.

The latter nonvanishing commutation relation can be found by
using the algebra of the Wilson line operators Wm(c2i−1) and
Wm′(c2i). The {Ai} can be viewed as the nearest-neighbor spin
exchange interactions of a spin chain, while the {Bi} act in
analogy to transverse fields.

Alternatively, since the Wilson line operators are repre-
sented in the edge theory as bilinears in the parafermion zero
modes γl;i , it is also possible to write the above Hamiltonian
as a “generalized parafermion chain.” Specifically, in the edge
theory,

Wm(ci) = γ
†
m+m′;iγm+m′;i+1

= 1

|M ′|
∑

m′∈M ′
γ
†
m+m′;iγm+m′;i+1, (89)

for i odd. Here |M| and |M ′| denote the number of elements
in the Lagrangian subgroups M and M ′, respectively. The first
line above holds for any m′ ∈ M ′, justifying the sum in the
second line. Similarly,

Wm′(ci) = γ
†
m+m′;iγm+m′;i+1

= 1

|M|
∑
m∈M

γ
†
m+m′;iγm+m′;i+1, (90)

for i even. Therefore,

Ai =
∑
m∈M

m′∈M′

t̄mγ
†
m+m′;2i−1γm+m′;2i + H.c.,

(91)
Bi =

∑
m′∈M′
m∈M

t̄m′γ
†
m+m′;2iγm+m′;2i+1 + H.c.,

where t̄m = tm/|M| and t̄m′ = tm′/|M ′|. The algebra of the
“parafermion” operators γli was given in Eqs. (65) and (66).

As we noted previously, the commutation relations of zero
modes on defects and “antidefects” (i.e., the defects labeled 2i

and 2i + 1) are equivalent. Therefore, the above Hamiltonian
has an enhanced symmetry, associated with translating by
one defect site, γl,i → γl,i+1, and replacing t̄m ↔ t̄m′ . Such
self-duality can lead to powerful constraints on the phase
diagram of the parafermion chains. In some simple cases,14–16

the properties of such parafermion chains54,58,59 are well
understood, and the critical points can, for example, give rise to
parafermion conformal field theories (CFTs).53 For example,
for the simple case of the FM/SC domain wall at the fractional
quantum spin Hall edge,15,16 the edge theory (86) describes
Zm parafermions.54 For m = 2,3, we know that there is only
one phase transition which occurs at the self-dual point of the
model, so that the self-dual Hamiltonian t̄m = t̄m′ must be at
the critical point.

We note that another way of studying the critical phe-
nomena associated with different gapped edges is simply to

consider the theory obtained by uniformly and simultaneously
adding both sets of backscattering terms associated with M

and M ′ edges:

δHedge =
N∑

i=1

[
λ cos

(
cimT

i φ
) + λ′ cos

(
c′
im

′T
i φ

)]
. (92)

When λ � λ′ � 1, the edge will condense the Lagrangian
subgroup M , and when λ′ � λ � 1 it will condense the
Lagrangian subgroup M ′. The critical phenomena associated
with the intermediate regime will generally be described by
exotic conformal field theories. In some simple cases, the
behavior of such competing backscattering terms are known,60

and give rise to parafermion CFTs, just as predicted by starting
with the parafermion chains described above.

It would be interesting to develop a more general un-
derstanding of the possible critical phenomena of both the
generalized parafermion chains and the competing backscat-
tering terms in Eq. (92). Based on the simplest examples, it is
natural to expect that the critical phenomena will generally be
described by a suitable class of generalized parafermion CFTs,
possibly including those described in Refs. 53, 61, and 62.

We note that the arguments given above also imply that
as long as the domain wall between two kinds of gapped
edges does not localize a topological zero mode, then this
process of nucleating and reannihilating domain walls to go
from one kind of edge to the other never closes the edge energy
gap. Therefore, two gapped edges can always be adiabatically
connected if the domain wall between them does not localize
a topological zero mode. This suggests that Lagrangian
subgroups provide a complete topological classification of
gapped edges in the absence of any symmetries, modulo
any additional purely one-dimensional topological physics in
fermionic systems.

VII. CONCLUSION

In this paper, we have studied gapped boundaries between
Abelian topological states, and the point defects arising from
junctions among different gapped edges, vastly generalizing
the twist defects studied in previous works.13–20,22–24 Using
the folding process, we argued that line defects can always be
mapped to gapped boundaries between a generic topological
state and the trivial gapped state, while junctions between
different line defects can be understood in terms of domain
walls between different classes of gapped edges separating a
generic topological state and the trivial gapped state.

Using Abelian CS theory and its associated edge theory,
we have proven, for topological phases of both fermions and
bosons, that every Lagrangian subgroup M corresponds to a
gapped edge where M is condensed. Edges corresponding to
different Lagrangian subgroups are topologically distinct, in
the sense that there is no way to adiabatically tune from one
to the other without closing the energy gap on the edge. The
physical meaning of M is to determine how quasiparticles
are transmitted/reflected at the line defect. When the line
defect separates two identical topological phases, M simply
determines how quasiparticles are permuted by a symmetry of
the topological order as they cross the line defect.
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For a special class of topologically ordered states, the
ZN toric code models, we found that the gapped boundary
conditions correspond to different factorizations of N . We
also provided an explicit microscopic lattice model realization
of each boundary condition.

We proposed a topological classification of point defects,
which are domain walls between different gapped edges and
are characterized by two Lagrangian subgroups, M and M ′,
associated with the groups of quasiparticles that are condensed
on either side of the domain wall. We have shown that the point
defects necessarily localize topologically robust zero modes
and give rise to topological ground-state degeneracies. We
have derived a formula for the quantum dimension of such
point defects by studying the algebra of line operators that end
on the edges. We also showed that the localized zero modes
are associated with a nonzero density of states at zero energy,
localized to the domain wall, for subsets of quasiparticles of
the form l = m + m′, where m ∈ M , m ∈ M ′, l /∈ M,M ′.

We found that the defects can all be mapped to genons.
This is defined by the property that the Wilson line algebra
that determines their topological ground-state degeneracy is
equivalent to the Wilson loop algebra of some Abelian CS
theory on a high genus surface, with the genus proportional
to the number of defects. This vastly generalizes the kinds of
defects that can be understood as genons, from certain classes
of twist defects14 to more general point defects.

While the domain walls cannot be braided geometrically
because they exist on a line defect, we found that we can
define a notion of projective non-Abelian braiding statistics.
The interactions between the edges and domain walls can be
used to realize topologically protected unitary transformations
on the ground-state subspace. The overall phase of these
transformations is not topologically protected, which is why
it is referred to as projective non-Abelian braiding statistics.
By studying the action of this braiding on the Wilson line
operators that define the ground-state subspace, we found
that the projective non-Abelian statistics can be understood
in terms of Dehn twists, or modular transformations, of the
corresponding Abelian CS theory on the high genus surface,
generalizing earlier results.14

For bosonic topologically ordered states, the topological
zero modes occur only at domain walls between gapped edges
associated with different Lagrangian subgroups. Therefore,
for bosons, in the absence of any symmetries, Lagrangian
subgroups fully classify the topologically distinct gapped
edges.

For fermionic states, due to the possibility of Majorana
zero modes protected by fermion parity symmetry in one
dimension, two gapped edges can be topologically distinct
even if they correspond to the same Lagrangian subgroup.
Therefore, the Lagrangian subgroups classify gapped edges
of fermionic systems, up to this additional Z2 topological
classification arising from purely one-dimensional physics.

Finally, we pointed out that the critical phenomena between
topologically distinct gapped edges can be understood in
terms of a generalized quantum spin chain or, equivalently, a
generalized parafermion chain. The properties of such chains
are understood only in the simplest cases.

The study here raises many interesting questions for future
research. These include understanding how to extend these

results to non-Abelian topological states, developing a deeper
understanding of the critical phenomena between different
edge states, studying the interplay of this purely topological
physics with global symmetries,63 understanding the collective
phenomena of the non-Abelian point defects,59 and extending
results to higher dimensional topological states.

Another interesting direction is to develop a theory where
the extrinsic defects are dynamical degrees of freedom rather
than static defects. In the simpler cases of twist defects,14 it was
shown that the defects can become deconfined non-Abelian
excitations of a non-Abelian topological phase if the symmetry
associated with the twist defect is gauged, and the topological
properties of the resulting non-Abelian state were studied in
some simple cases.14,20,64,65 A systematic generalization of
these results may also clarify the relation between extrinsic
defects and intrinsic quasiparticle excitations.

Noted added in proof. Recently, we became aware that the
result that every Lagrangian subgroup M can correspond to a
gapped edge where M is condensed was independently found
by Levin and included in an updated version of Ref. 28; our
work uses results from an early version of Ref. 28.
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APPENDIX A: PROOF OF LEMMA

Here we prove the lemma presented in Sec. IV B. To prove
this, we focus on two cases independently. In the first case,
K has only even entries along the diagonals, which describes
topological phases where the microscopic degrees of freedom
only consist of bosons. In the second case, K can have odd
entries along the diagonals, which is appropriate when the
microscopic degrees of freedom have at least one species of
fermions.

We note that the proof below was also presented by us
recently in a shorter treatment in Ref. 37; it is included here to
make the paper self-contained. Our proof closely follows and
builds upon the argument in Appendix A1 of Ref. 28 (as our
work was being completed, we became aware that a similar
improved result was included in a revised draft of Ref. 28 in
Appendix A3).

1. Proof for K even

Let us first consider the case where K is an even matrix,
meaning that its diagonal entries are all even. Note that K is
also an integer symmetric nonsingular matrix with vanishing
signature. Consider the lattice

� = {m + K� : m ∈ M,� ∈ Z2N }. (A1)

� is a 2N -dimensional integer lattice and can be written as � =
UZ2N , where U is a 2N -dimensional integer matrix. Define

P = UT K−1U. (A2)
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P is an even integer symmetric matrix with unit determinant
and nonvanishing signature.28 The fact that it is an even
integer matrix follows because the columns of U generate the
Lagrangian subgroup M , and these all have bosonic mutual
and self-statistics by definition. The fact that it is symmetric
and has vanishing signature follows from the fact that K is
symmetric and has vanishing signature. Finally, P has unit
determinant for the following reason. Consider any integer
vector � ∈ Z2N and any noninteger 2N -component vector,
x. By definition of the Lagrangian subgroup, �T P x must be
noninteger, which implies that P x must be noninteger. This
then implies that if P x is integer for any 2N -component vector
x, then x must be integer, which in turn implies that P −1 is
integer. P and P −1 can both be integer if and only if P has
unit determinant.

Since P is an even symmetric integer matrix with vanishing
signature and unit determinant, it follows from a mathematical
theorem66 that it is always possible to find a SL(2N ;Z)
transformation W such that

WT PW =
(

0 I

I 0

)
, (A3)

where I is an N × N identity matrix. Thus, we consider a
transformed theory:

Ũ = WT UW,

K̃ = WT KW, (A4)

P̃ = WT PW =
(

0 I

I 0

)
.

Since W ∈ SL(2N ;Z), K̃ and K describe topologically
equivalent theories. Clearly, the columns of Ũ generate the
Lagrangian subgroup M . Let ũi denote the ith column of Ũ .
Let us extend K̃ to a 4N × 4N matrix K ′, which is composed
of K̃ and N copies of τx = ( 0 1

1 0 ) along the block diagonal
entries,

K ′ =

⎛
⎜⎜⎜⎜⎝

K̃

τx

τx

. . .

⎞
⎟⎟⎟⎟⎠ , (A5)

where the rest of the entries are zero. Again, K ′ describes the
same topological order as K . Now we define

m′T
1 = (

ũT
1 ,0,1,0,0, . . . ,0,0

)
,

m′T
2 = (

ũT
N+1,−1,0,0,0, . . . ,0,0

)
,

m′T
3 = (

ũT
2 ,0,0,0,1, . . . ,0,0

)
,

m′T
4 = (

ũT
N+2,0,0,−1,0, . . . ,0,0

)
, (A6)

...

m′T
2N−1 = (

ũT
N ,0,0, . . . ,0,1

)
,

m′T
2N = (

ũT
2N,0,0, . . . , − 1,0

)
.

Since the additional components added in K ′ are all trivial
degrees of freedom, the 2N vectors {m′

i} still generate the
same Lagrangian subgroup M . It is easy to see that

m′T
i K ′−1m′

j = 0. (A7)

This proves the lemma for K even. In practice, in most cases
of interest it is easy to find N columns of Ũ that generate M

and that satisfy ũT
i K−1ũj = 0, so the above extension to a

4N -dimensional K matrix will not be necessary.

2. Proof for K odd

Let us now consider the case where K is odd (i.e., it
has at least one odd element along the diagonal). As before,
we define the matrix U , and P = UT K−1U . Now, P is an
integer symmetric, nonsingular matrix with unit determinant,
nonvanishing signature, and at least one odd element along the
diagonal. Under these conditions, it is always possible to find
W ∈ SL(2N ;Z) such that66

WT PW =
(
I 0
0 −I

)
, (A8)

where I is an N × N identity matrix. Thus, we consider a
transformed theory:

Ũ = WT UW,

K̃ = WT KW, (A9)

P̃ = WT PW =
(
I 0
0 −I

)
.

Again, the original Lagrangian subgroup is generated by the
columns of Ũ .

Let ũi denote the ith column of Ũ , and ũi± = ũi ± ũN+i ,
for i = 1, . . . ,N .

Now, as in the case where K is even, let us extend the K

matrix to a 4N × 4N matrix K ′, which is composed of K and
now with N copies of τz = ( 1 0

0 −1 ) along the block diagonal
entries,

K ′ =

⎛
⎜⎜⎜⎜⎝

K̃

τz

τz

. . .

⎞
⎟⎟⎟⎟⎠ , (A10)

where the rest of the entries are zero. In the absence of any
symmetries, K ′ describes the same topological order as K .
Now we define

m′T
1 = (

ũT
1+,1,1,0,0, . . . ,0,0

)
,

m′T
2 = (

ũT
1−,−1,1,0,0, . . . ,0,0

)
,

m′T
3 = (

ũT
2+,0,0,1,1, . . . ,0,0

)
,

m′T
4 = (

ũT
2−,0,0,−1,1, . . . ,0,0

)
, (A11)

...

m′T
2N−1 = (

ũT
N+,0,0, . . . ,1,1

)
,

m′T
2N = (

ũT
N−,0,0, . . . , − 1,1

)
.

Since the additional components added to K ′ are all trivial
degrees of freedom, the 2N vectors {m′

i} still generate the
same Lagrangian subgroup M . It is easy to see that

m′T
i K ′−1m′

j = 0. (A12)

This proves the lemma for K odd.
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APPENDIX B: GROUND-STATE DEGENERACY
OF DEFECT-COUPLING HAMILTONIANS Hab

Here we explain the claim made in Sec. V D, that the
Hamitonians H12, H1′2′ , and H22′ , defined in Eq. (70), have
D degenerate ground states in the Hilbert space defined by
defects 1,2,1′, 2′ (see Fig. 10).

First, we observe that the Hilbert space defined by the
defects 1,2,1′, 2′ is D2-dimensional, and forms a representation
of the following Wilson line algebra:

Wm(ai)Wm′(bi) = Wm′(bi)Wm(ai)e
δij i2πmT K−1m′

, (B1)

for i,j = 1,2,1′,2′, and m ∈ M , m′ ∈ M ′. This forms two
independent copies of the same algebra, studied in Sec. V A,
each with a D-dimensional irreducible representation. The D2

states can each be labeled by the eigenvalues of Wm(bi):

Wm(bi)|	α1 	α2〉 = e2πi 	q·	αi |	α1 	α2〉, (B2)

where m = ∑N
i=1 qimi and 	αi is a rational-valued N -

component vector.
Let us begin by considering

H12 =
N∑

i=1

tiγ
†
l i ;1

γl i ;2 + H.c.

=
N∑

i=1

tiWmi
(b1) + H.c. (B3)

H12 is therefore diagonal in the basis of (B2) and given by

H12|	α1 	α2〉 =
N∑

i=1

2|ti | cos[2π (	α1)i + φi]|	α1 	α2〉, (B4)

where ti = |ti |eiφi . We see that H12 is independent of the
D distinct eigenvalues 	α2. Furthermore, unless there are

accidental degeneracies, generic choices of φi will give distinct
energies to the different eigenvalues 	α1, and there will be a
unique choice of 	α1 that minimizes the energy. Therefore, H12

generically has D distinct ground states.
The analysis for H1′2′ is identical, except now there will

be a unique choice of 	α2 which minimizes the energy, while
there are D degenerate states associated with the possible
values of 	α1.

Now let us consider Hamiltonians of the form H11′ and
H22′ . First consider H11′ :

H11′ =
N∑

i=1

tiγ
†
li ;1

γli ;1′ + H.c.

=
N∑

i=1

tiWmi
(a1)Wmi

(b1) + H.c. (B5)

Let us define the operators

W m(a1) ≡ Wm(a1)Wm′(b1),

W m(a2) ≡ Wm(a2), (B6)

W m′(bi) ≡ Wm′(bi).

These operators satisfy the same algebra as in (B1):

W m(ai)W m′(bi) = W m′(bi)W m(ai)e
δij i2πmT K−1m′

. (B7)

In terms of these operators, H11′ becomes

H11′ =
N∑

i=1

tiW mi
(a1) + H.c. (B8)

Now we can directly take over the analysis of H12 to find that
H11′ also generically has D ground states. By symmetry, the
result follows for H22′ as well.
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