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Efficient Langevin simulation of coupled classical fields and fermions
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We introduce an efficient Langevin method to study bilinear fermionic Hamiltonians interacting with classical
fields. Our approach is orders of magnitude faster than previous methods when applied to very large systems
with high accuracy requirements. To demonstrate the method, we study complex noncoplanar chiral spin textures
on the triangular Kondo lattice model. We also explore nonequilibrium mesoscale physics such as chiral domain
coarsening and Z2 vortex annihilation.
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Lattice models of fermions interacting with classical fields
encompass a wide range of physics. Popular examples in
condensed matter include Kondo lattice (KL) models of itin-
erant electrons interacting with localized magnetic moments,1

Falicov-Kimball models of metal-insulator transitions in rare-
earth materials,2 and Bogoliubov-De Gennes equations for
superconductivity.3 The Hubbard-Stratonovich transformation
is another path to obtaining bilinear fermionic systems coupled
to an auxiliary classical field.4,5 This broad class of models
poses a notoriously difficult numerical challenge: Monte
Carlo (MC) sampling of the classical field requires repeated
diagonalization of the single-particle fermion matrix.

In the context of KL models, several MC methods have
been developed to more efficiently sample the classical field of
local magnetic moments.6–11 These methods have largely been
applied to the ferromagnetic transition at large coupling.12–14

This transition is relatively easy to study using moderate
temperatures and small system sizes.

Recent interest has shifted to exotic spin textures which
occur at small to moderate couplings. Skyrmion lattices
have recently been observed with spatial modulations up to
0.1 μm.15,16 Chiral textures lead to an anomalous Hall effect
associated with huge (∼105 T) effective magnetic fields, as
predicted in the KL model on a triangular lattice17,18 and
experimentally observed in Pr2Ir2O7

19 and UCu5.20 Compared
to ferromagnetism, these spin textures are very challenging to
simulate. High precision and large system sizes are needed to
capture the effective long-range physics at low temperatures.

In this paper we introduce an efficient Langevin method that
updates the entire classical field at a cost that scales linearly
with system size. The core of our method is the estimation
of Langevin forces, which we obtain by a nontrivial gradient
transformation21 of the kernel polynomial method (KPM).22,23

We demonstrate orders of magnitude efficiency gains over
previous methods in applications to very large systems with
high accuracy requirements. In studies of the triangular KL
model, we use our method to find equilibrium phases and
nonequilibrium effects such as chiral domain coarsening and
Z2 vortex dynamics.

Our method applies to a general bilinear fermionic Hamil-
tonian coupled to continuous, classical degrees of freedom φ,

H =
∑
ij

c
†
i Aij [φ]cj , (1)

with sparse matrix A. We work at fixed temperature T (in
units with kB = 1) and chemical potential μ. The partition
function is a trace over classical and fermionic degrees of
freedom, Z = TrφTrc exp[−(H − μ

∑
i c

†
i ci)/T ]. Evaluating

the fermionic trace yields Z = Trφ e−F/T , where

F [φ] =
∫

ρ(ε)f (ε) dε

is the effective energy functional of classical field φ, ρ(ε) =∑
ν δ(ε − εν[φ]) is the density of states of A[φ], and f (ε) =

−T log[1 + e−(ε−μ)/T ]. The fermion mediated effective en-
ergy F [φ] may be long range and many body.

A key difficulty in MC sampling the classical field is
calculating �F in response to changes in φ. KPM begins by
approximating the density of states as a Chebyshev polynomial
series,22–24

ρ(ε) ≈ 1

π
√

1 − ε2

M−1∑
m=0

(2 − δ0,m)gmμmTm(ε).

The expansion is valid when all eigenvalues of A have
magnitude less than one; for typical lattice models, simple
shifting and rescaling of the Hamiltonian is necessary.23

The Chebyshev series can be related to the Fourier cosine
series via the trigonometric representation of Chebyshev
polynomials, Tm(x) = cos(m arccos x). Like a Fourier series,
direct truncation (i.e., setting gm = 1) leads to unwanted
Gibbs oscillations in regions where ρ(ε) rapidly varies. To
optimally eliminate these artifacts, we apply the damping
factors corresponding to the Jackson kernel,23,25,26

gm = (M − m + 1) cos πm
M+1 + sin πm

M+1 cot π
M+1

M + 1
.

The heart of KPM is efficient estimation of the Chebyshev
moments μm = Tr Tm(A). The trace may be expressed as
an ensemble average μm = 〈r†Tm(A)r〉 over random column
vectors r with elements that satisfy 〈r∗

i rj 〉 = δij . The sin-
gle random vector approximation μm ≈ r†Tm(A)r may be
sufficient.22 A recursive procedure to estimate μm follows from
the definition of Chebyshev polynomials,

Tm(A) =

⎧⎪⎨
⎪⎩

1 m = 0

A m = 1

2ATm−1(A) − Tm−2(A) m > 1

.
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Combining these results, we obtain the complete KPM
procedure to estimate F [φ],

F = ∑M−1
m=0 Cmμm (2)

μm = r† · αm (3)

αm =

⎧⎪⎨
⎪⎩

r m = 0

Ar m = 1

2Aαm−1 − αm−2 m > 1

, (4)

involving only matrix-vector products. When A is a sparse
matrix with O(N ) elements, this recursive procedure requires
only O(MN ) operations. The coefficients

Cm = 1

π
(2 − δ0,m)gm

∫ 1

−1

Tm(ε)f (ε)√
1 − ε2

dε

are independent of A and may be efficiently evaluated using
Chebyshev-Gauss quadrature.23,27 We draw complex elements
ri from the uniform distribution |ri |2 = 1.28

There are two independent sources of error in the KPM
estimate of F [φ]: series truncation at order M − 1, and
stochastic estimation by averaging over finitely many random
vectors r . Both are well controlled and will be discussed.

In this paper we go beyond standard KPM by transforming
it to a procedure more suitable for sampling classical fields {φ}
from the Boltzmann distribution, P [φ] ∝ e−F [φ]/T . We begin
with the overdamped Langevin equation in discretized form

φi(t + �t) − φi(t) = −�t
∂F

∂φi

+
√

2T �tηi(t), (5)

where ηi(t) are uncorrelated Gaussian random variables with
unit variance and t is Langevin time. In this approach
we simultaneously update all components φi . Efficient and
accurate estimation of ∂F/∂φi is crucial. We exclude inertial
terms from the Langevin equation because they would amplify
errors in the gradient estimate.

The technique of automatic differentiation with “reverse
accumulation”21 ensures that, by careful application of
the chain rule, we can transform the KPM procedure to
estimate F , Eqs. (2)–(4), into one that estimates ∂F/∂φi for all
i at the same cost. We perform this transformation analytically
and state only the final recursive procedure, now descending
in the index m,

∂F

∂Aij

= β0;iα0;j + 2
∑M−2

m=1 βm;iαm;j . (6)

βm =
{

0 m � M − 1

Cm+1r
† + 2βm+1A − βm+2 m < M − 1

. (7)

The desired gradient is obtained by the chain rule,

∂F/∂φi =
∑
kl

(∂F/∂Akl)(∂Akl/∂φi).

The sequence of vectors αm is the same as in the original
KPM, but is required here in reverse order. We recalculate
them as needed using αm = 2Aαm+1 − αm+2. The recursion
begins with αM−1 and αM−2, which are available at the end of
the original KPM procedure.

The recursive procedure of Eqs. (6) and (7) to estimate
all Langevin forces ∂F/∂φi is our main result. Like the

TABLE I. Several proposed methods for sampling a classical field
coupled to fermions. In local MC (LMC) methods, a full system
sweep corresponds to a local Metropolis MC update of each spin. In
dynamical methods, a sweep is taken to be one unit of integration
time. See the text for discussion.

Method Sweep cost

LMC with direct diagonalization O(N3 × N )
LMC with low-rank rediagonalization (Ref. 10) O(N 2 × N )
LMC with Green function KPM (Ref. 11) O(NM × N )
LMC with truncated KPM (Refs. 7–9) O(Md+1 × N )
Molecular dynamics with exact KPM (Ref. 29) O(N 2M/�t)

Hybrid MC with “perfect action” (Ref. 6) O( NM̃2Lτ finvfmc
�t

)
Our KPM based Langevin method O(NM/z)

original KPM procedure, only O(M) sparse matrix-vector
multiplications are required per random vector.

The gradient calculation also inherits the approximation
errors of KPM, controlled by the truncation order M of
the Chebyshev series and the dynamical stochastic error
z ≡ �t/Q, where Q is the number of of KPM random vectors
used per time step. The KPM estimated density of states ρ(ε)
is resolved to order �ε/M , where �ε = εmax − εmin is the
span of extremal eigenvalues. The parameter M should be
large enough to resolve the physically relevant features of
the density of states. The stochastic error z > 0 acts like an
additional noise term in the Langevin dynamics, effectively
adjusting T → T + �Teff . For matrices of the form A(Jφ),
where J � 1, the estimate of the force term �t(∂F/∂φi)
includes a stochastic error that scales as �tJ/

√
Q = √

J 2z�t .
Comparison with Eq. (5) suggests modeling this error as
an additional noise term with a temperature that scales as
�Teff ∼ J 2z. The parameter z should be chosen such that
�Teff � T for the smallest relevant temperature scale T .

Our method remains efficient at high accuracy: The cost to
integrate the Langevin equation one unit of time is O(NM/z).
Table I compares our method to several previous ones. To
compare to Metropolis MC with local updates, we assume that
one unit of Langevin integration time is roughly equivalent to a
full MC sweep in which all N lattice sites are visited. Trial MC
changes �φi are accepted with a probability that depends on
the change in energy �F . Brute force exact diagonalization of
matrix A requires O(N3) operations, and a full MC sweep
costs O(N4). This may be reduced to O(N3) by tracking
the response of the spectrum to low-rank changes in A.10,30

Further acceleration is possible with KPM approximation. A
nonstochastic Green’s function method reduces the cost of a
full MC sweep to O(MN2).11 In an alternative approach, if
A contains only local coupling in d dimensions, a full MC
sweep may be performed at cost O(Md+1N ).8 In simulations
presented below with d = 2, N = 1002, M = 1000, and
z = 0.02, our Langevin approach outperforms these local MC
methods by two orders of magnitude or more.

Other dynamical methods have been proposed which, like
our Langevin approach, update the entire classical field at
each integration time step �t . In atomic simulations, the
tight-binding method may be used to approximate interatomic
forces.31 Cast in the form of Eq. (1), φ represents the
positions of atomic nuclei which evolve classically according
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to Newton’s equations. A nonstochastic version of KPM has
been applied to estimate the tight-binding forces.29 Each
integration time step costsO(N2M).32 Our Langevin approach
is similar to that of Ref. 29, except we use stochastic force
estimation to obtain linear scaling in N , and overdamped
dynamics to prevent the accumulation of stochastic error.

A different strategy is employed by hybrid Monte-Carlo
methods,33,34 where the dynamics of φ is derived from an
approximate action, and corrected with an MC accept/reject
step. The standard field-theoretic approach uses a Suzuki-
Trotter expansion to approximate the fermionic trace as an
integral over Lτ Grassmann variables (with �τ ∼ 1/Lτ the
discretization length in the Trotter direction). The represen-
tation becomes exact in the continuum limit, Lτ → ∞. A
subsequent transformation yields an integral over Lτ complex-
valued pseudofermionic variables. The approximate action and
its derivatives, given as a function of the pseudofermions, can
be used to dynamically sample the classical field φ. Alonso
et al. demonstrated that the path integral representation can be
made exact for any finite Lτ provided that one uses a “perfect”
action based upon exp(A/LτT ), the exponential of the single
particle matrix.6 A Legendre polynomial expansion, truncated
at order M̃ , may be used to estimate the perfect action and
its relevant derivatives. The cost to integrate φ one dynamical
time step scales likeO(NM̃2Lτfinv). The factor finv represents
the cost of solving linear equations involving exp(A/LτT ),
which become increasingly ill conditioned with decreasing
LτT . To optimize overall efficiency, a natural choice may be
Lτ ∼ 1/T when T is small. Finally, following each molecular
dynamics trajectory, there is the MC accept/reject step. The
acceptance probability paccept vanishes rapidly with increasing
N , with decreasing T , and with decreasing accuracy in the
action estimate. The overall cost of the method scales by the
associated factor fmc = 1/paccept. The complexity of hybrid
MC makes direct comparison to our Langevin approach
difficult. Both scale linearly with N (ignoring fmc) but hybrid
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FIG. 1. (Color online) Three competing periodic 2 × 2 spin
textures in the triangular KL model at 3/4 filling. The (a) 1q, (b)
2q, and (c) 3q phases are named according to their number of
reciprocal lattice vectors. The 3q phase maximizes chirality χ =
Si × Sj · Sk = ±4/33/2 averaged over triangular plaquettes [ijk] and
yields a quantum Hall effect at 1/4 and 3/4 fillings. The 1q and 2q

phases break rotational symmetry.

MC appears to be less efficient at low temperatures, when
accuracy requirements are high. Hybrid MC has the advantage
that inertial dynamics may decrease the decorrelation time for
sampling φ.

To demonstrate our method, we apply it to the triangular
KL model defined by the Hamiltonian

H = −
∑
ijσ

tij c
†
iσ cjσ − J

∑
jμν

Sj · c
†
jμσμνcjν, (8)

where c
†
jσ (cjσ ) is the creation (annihilation) operator of an

electron with spin σ on site j , Sj is a classical Heisenberg spin
with |Sj | = 1, and σμν = (σx

μν,σ
y
μν,σ

z
μν) is a vector of Pauli

matrices. The dimensionless hopping coefficients are tij = 1
if i and j are nearest neighbor sites on the triangular lattice;
tij = 0 otherwise.

By perfect nesting of the Fermi surface, it has been argued
that the chiral 3q configuration [Fig. 1(c)] is the ground state
at 3/4 electron filling fraction with small coupling.17 This
state is of special interest as it exhibits a spontaneous quantum
Hall effect. Variational calculation on the 2 × 2 plaquette also
predicts stability of the 3q state.35 An unconstrained MC study
of this phase at 3/4 filling has not been achieved due to severe
numerical difficulties. Very low temperatures, T � 0.001, and
small couplings, J � 0.3, are required to stabilize 3q. A
numerical method must be very accurate to resolve the small
gap in the density of states (of width ∼J 2). Also, the 3q state
is stabilized by a susceptibility which diverges as (log N )2,
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FIG. 2. (Color online) Phase diagram of the triangular KL model
with J = 0.2 and μ = 1.947, corresponding to filling fraction ∼3/4.
(a) At low temperatures the preferred 3q phase is identified by
〈χ〉 
= 0. System size N = 1002 (circles) is sufficient to stabilize the
3q phase, but N = 602 is not. (b) Spin-spin correlation functions
〈Si · Sj 〉 for three nearest-neighbor orientations. Three first-order
phase transitions are apparent: 3q → 2q at T = 0.0010, 2q → 1q

at T = 0.0017, and 1q → paramagnet at T = 0.0029.
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so large lattice sizes are required (N ≈ 1002). Due to these
challenges, this system offers a demanding test of our method.

We choose J = 0.2, μ = 1.947, and N = 1002. The three
phases in Fig. 1 have similar energy densities: −4.15552,
−4.15550, and −4.15525 for 3q, 2q, and 1q, respectively. The
ferromagnetic energy density, −4.15278, is not competitive.
We use our method with M = 1000 and z = 0.02. At M =
1000, KPM estimates of energy differences are accurate to
order 10−5. With z = 0.02 the effective Langevin temperature
is increased by �Teff ≈ 0.0002.

In Fig. 2(a) we observe melting of the chiral 3q ground state.
The mean chirality χ = Si × Sj · Sk of triangular plaquettes
[ijk] abruptly disappears at a first-order phase transition at
T ≈ 0.0010. This transition is not to a paramagnetic phase.
To distinguish the phases 3q, 2q, and 1q we consider the
(unordered) set of nearest-neighbor spin-spin correlations C =
{〈Sx · Sx+〈1,0〉〉,〈Sx · Sx+〈1,

√
3〉/2〉,〈Sx · Sx+〈−1,

√
3〉/2〉}, averaged

over lattice sites x. Pure 3q, 2q, and 1q phases yield
C3q = {−1/3, −1/3, −1/3}, C2q = {0,0, −1}, and C1q =
{−1, −1,1}. The latter two states break rotational symmetry
of the triangular lattice.

Figure 2(b) shows the three elements of C as a function of
T . At T = 0 we find C = C3q as expected. We observe three

first-order transitions at T = 0.0010, 0.0017, and 0.0029 to
the 2q, 1q, and paramagnetic phases, respectively. The 2q

phase is identified by its correlation set C, which has two zero
elements and one negative element. In the 1q phase, C has
one positive element and two negative (symmetric) elements.
To avoid equilibration issues, we use initial conditions with
explicitly broken chiral symmetry, 〈χ〉 > 0.

We now discuss the dynamical, nonequilibrium process by
which 3q chiral symmetry breaking occurs at low tempera-
tures. We use our method to study the phase ordering kinetics
of chiral domains following a quench from infinite to zero
temperature. In the spirit of time-dependent Ginzburg-Landau
(Model A36) for phase ordering, we expect our overdamped
Langevin dynamics to capture the qualitative large-scale
aspects of chiral domain growth and defect evolution.37

Our Langevin dynamics can be viewed as the overdamped
limit of the Landau-Lifshitz-Gilbert equation (to which our
KPM-based force estimates may also be applied38). We find
interesting features not usually present in Model A systems,
consistent with effective long-range, many-body interactions
in the KL models studied.

We first consider ∼1/4 filling with J = 3 and μ = −3.2.
Previous work found a robust 3q phase with N � 162.18 We

t = 4τ

(a)

(b)

(c)

Spin sublattice at vortex SO(3) trajectoryt = 48τ

t = 4τ

t = τ

t = 16τ

t = 4τ

t = 64τ

t = 16τ

t = 256τ

t = 64τ

FIG. 3. (Color online) Phase ordering in the 200 × 200 triangular KL model after a quench from T = ∞ to T = 0. The color gradient,
ranging from red to blue, is the local chirality. Langevin time is in units of τ = 1.28 × 104. (a) J = 3, μ = −3.2 (∼1/4 filling). Domain
coarsening with strong anisotropy is observed. Z2 vortices (white dots) rapidly annihilate each other. (b) J = 0.2, μ = 1.947 (∼3/4 filling).
The system is trapped in a complex metastable state. (c) J = 0.2, μ = 1.947, Bz = 8π/

√
3N (∼3/4 filling). An external field breaks chiral

symmetry, and the system rapidly evolves to the 3q ground state. A Z2 vortex is identified by the winding of a Burger’s circuit (green) in SO(3)
space, a filled projective sphere in the axis-angle representation. A Z2 vortex is enlarged in the third panel.
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use our approach to study the ordering dynamics at N = 2002

with M = 500 and z = 0.005. Figure 3(a) shows the evolution
of chirality ranging from red (positive) to blue (negative). The
coarsening of chiral domains is analogous to what is observed
in Model A, but we observe strong anisotropy of domain
walls. The dynamics slows at large times, consistent with a
characteristic length scale that grows as � ∼ t1/2.39

The ordering dynamics for ∼3/4 filling with J = 0.2, μ =
1.947, M = 500, and z = 0.02 is shown in Fig. 3(b). Surpris-
ingly, the system now evolves into a long lived metastable state
with remarkable chiral domain wall patterns. The system can
be annealed to the pure 3q phase by raising temperature, but
experimentally it is easier to explicitly break chiral symmetry
with an applied external magnetic field Bz.19 We introduce
orbital coupling into Eq. (8) by applying a nonuniform phase
θij = Bzẑ · xi × xj /2 to the hopping coefficients tij = e−iθij ,
with xi the position of lattice site i. The smallest magnetic field
consistent with periodic boundaries, Bz = 8π/

√
3N , causes

the system to rapidly reach the uniform chiral 3q phase [see
Fig. 3(c)].

The small white dots visible in Fig. 3(a) are topological
defects associated with Z2 winding of the SO(3) manifold,
and are predicted to have fractional charge.40 A Z2 vortex
is enlarged in Fig. 3(c). One of the four 3q spin sublattices
is shown. We can understand this defect by constructing a
closed Burger’s circuit (in green) that encircles it. The Burger’s
circuit corresponds to a trajectory in SO(3) space which, in

the axis-angle representation, is a filled sphere with antipodal
points identified. This Burger’s circuit has winding number
1 because it wraps SO(3). The vortex is Z2 because the
only homotopically distinct winding numbers are 0 and 1.
Consequently, any pair of Z2 vortices may annihilate. In
the evolution shown in Fig. 3(a), we observe many vortices
annihilating with each other and with domain walls.

In summary, we have introduced a highly accurate and
efficient numerical method to study the broad class of
Hamiltonians that couple fermions to classical degrees of
freedom. Our method enables the study of complex systems
of unprecedented size. In the triangular KL model at 3/4
filling, we required lattice sizes N � 1002 and six digits of
precision to resolve logarithmic divergences that give rise to
an anomalous Hall effect. Large system sizes also allow us
to bridge the gap between quantum and mesoscopic physics.
For N = 2002 we are able to probe chiral domain dynamics,
metastable trapping, and Z2 vortex dynamics that would be
inaccessible with standard approaches.

We thank Ivar Martin and Cristian Batista for useful
discussions. This work was carried out under the auspices
of the NNSA of the U.S. DOE at LANL under Contract No.
DE-AC52-06NA25396 and supported by the LANL/LDRD
Program. The calculations were performed using the CCS-7
Darwin cluster.
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