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We have performed extensive density matrix renormalization group (DMRG) studies of the Hubbard model
on a honeycomb ladder. The band structure (with Hubbard U = 0) exhibits an unusual quadratic band touching
at half-filling, which is associated with a quantum Lifshitz transition from a band insulator to a metal. For one
electron per site, nonzero U drives the system into an insulating state in which there is no pair-binding between
added electrons; this implies that superconductivity driven directly by the repulsive electron-electron interactions
is unlikely in the regime of small doping, x � 1. However, the divergent density of states as x → 0, the large
values of the phonon frequencies, and an unusual correlation induced enhancement of the electron-phonon
coupling imply that lightly doped polyacenes, which approximately realize this structure, are good candidates
for high-temperature electron-phonon driven superconductivity.
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I. INTRODUCTION

To obtain high-temperature superconductivity from an
electron-phonon mechanism, one would like to find a material
with a reasonably strong electron-phonon coupling [λ =
N (EF)V eff ∼ 1, where N (EF) is the electronic density of
states per unit cell and V eff is the strength of the induced
attraction], and a large phonon frequency ω0 to produce a
large prefactor for any BCS-like expression for Tc.1 However,
it is also important that h̄ω0/EF � 1, so that the bare repulsive
interactions between electrons are significantly renormalized
(decreased) by electronic fluctuations with energies between
h̄ω0 and EF. Since V eff ∝ 1/K , where K is the phonon
stiffness constant, while ω0 ∝ √

K , there is a general tendency
for large phonon frequencies to be associated with weak
pairing interactions. However, as ω0 ∝ √

1/M , where M is
the nuclear mass, while V eff is independent of M , it is more
likely that a substantial V eff and a large h̄ω0 will be found
in materials with light elements. A substantial λ is also more
likely in systems with a large value of N (EF) but this either
requires a pronounced maximum in N (E) near E = EF, or a
small value of EF; however, a reduced value of EF/h̄ω0 can
eliminate the retardation, which is essential for this mechanism
of superconductivity.

As was suggested by one of us,2 long polyacene polymers
[which, as shown in Fig. 1(a), can be thought of as one-
dimensional graphene] would have many features that are
optimal for high-temperature superconductivity: the band-
widths of conducting polymers are large while the typical
phonon frequencies are comparable to those in diamond, but
still small compared to EF. The electron-phonon coupling,
however, is only moderate. For instance, in polyacetylene,3

EF ≈ 5 eV, h̄ω0 ∼ 0.1 eV, and λ ≈ 0.8. However, a peculiarity
of the band structure of polyacene leads to a predicted2

quadratic band touching at the Fermi energy of undoped
polyacene, leading (the system being one-dimensional) to a
divergent N (EF) ∼ x−1/2, where x is the concentration of
“doped electrons,” or in other words, 1 + x is the density of
electrons per site.

Recently, superconductivity has been reported in various
salts4 of relatively short polyacenelike molecules, ranging
from five to seven fundamental C hexagons, doped with
K. Although the superconductivity in these materials is
currently associated with a small minority phase, making the
identification of the superconducting species difficult, both the
high values of Tc (up to 30 K) and the fact that Tc appears to be
a strongly increasing function of the number of hexagons in the
molecules are encouraging indicators that this is a promising
direction for study.5

Here, we report the results of extensive density matrix
renormalization group (DMRG)6–8 studies of the Hubbard
model on the honeycomb ladder in the thermodynamic limit
(i.e., extrapolated to infinite length). The problem is interesting
in its own right and as a model of the electronic structure of
polyacenes.

Abstractly, the honeycomb ladder is interesting in that for
U → 0 it lies precisely at a Lifshitz quantum critical point.
Figure 1(a) shows a two-leg Hubbard ladder with alternating
hopping matrix elements t and tg along the rungs; for tg = t ,
this is the usual, widely studied two-leg ladder,9 while for tg =
0 it is equivalent to the honeycomb ladder. A schematic ground-
state phase diagram of this system extracted from the present
study is shown in Fig. 2. In the noninteracting limit U = 0
and with density of electrons per site 〈n〉 = 1, the system
undergoes a transition from a two-band metal for tg > 0 to a
band insulator for tg < 0. For U > 0, we find that the system
is insulating [has a charge gap �c, defined in Eq. (12)] for all
values of tg and has no phase transitions as a function of tg .
However, there are distinct regimes with quite different physi-
cal properties separated by crossover lines, as shown in Fig. 2.

(i) For 0 < tg � t , the ground state of the two-leg ladder
can be thought of as a Mott insulating state of Cooper pairs—a
“paired Mott insulator.” It is well known10 that U is only
marginally relevant, so the charge gap vanishes extremely
rapidly, �c ∼ t exp[−1/N (EF)U ], as U/t → 0. Moreover,
the lowest energy state with two added electrons or holes
is a charge 2e spin-zero bound state with a pair-binding
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FIG. 1. (Color online) (a) A honeycomb two-leg ladder with the
same nearest-neighbor hopping amplitude for all sites with magnitude
t and third-neighbor hoping amplitude tg only between the top and the
bottom of each hexagon. This is equivalent to a two-leg ladder with
alternating rung hopping matrix elements t and tg , as shown in (b).

energy, �pb, comparable to the spin gap, �pb ∼ �s [defined
in Eqs. (11) and (10), respectively].

(ii) For tg = 0 and in the noninteracting limit, the hon-
eycomb ladder corresponds to a quantum critical point with
dynamical exponent z = 2. Correspondingly, we find that
�c ∼ U 2/t for small U , as shown in Fig. 3. Moreover, as is
apparent from Fig. 4, for any substantial U/t , the pair-binding
energy vanishes (or becomes extremely small compared to �s)
for tg � 0.3t , so that in this respect, even though the insulating

FIG. 2. (Color online) Schematic phase diagram of the honey-
comb ladder as a function of U and tg . For U = 0, there is a two-band
metal for tg > 0 and a band insulator for tg < 0. For small nonzero U ,
the band insulator evolves into a renormalized semiconductor with
charge and spin gaps, �c ∼ �s , and the effective interaction between
quasiparticles is repulsive (i.e., the pair-binding energy �pb ≈ 0). The
two-band metal, evolves into a ‘‘d-Mott insulator,” in which there is
a tendency for pairing upon dopping (i.e., �pb > 0). Between these
lies a “fan-shaped” intermediate regime, which collapses to the point
tg = 0 in the limit U → 0, which is a Mott insulating state (in the
sense that �c 
 �s) with no pairing tendencies (�pb ≈ 0).
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FIG. 3. (Color online) Charge gap of the undoped honeycomb
ladder calculated with DMRG and extrapolated to the thermodynamic
limit for different U . The red dots are the data points. The green
line is a quadratic fit for the first six data points, a quadratic form
�c ≈ 0.07 U 2/t , while the yellow line is the leading term of the
Hartree-Fock result, �HF = 0.87 U 2/t .

gap is itself a correlation effect, in terms of the character of the
elementary excitations, the system behaves like a conventional
semiconductor. We refer to the regime that fans out from the
point tg = U = 0 as an “unpaired Mott insulator.”

(iii) For tg < 0, �c → |tg| as U → 0, the system is a band
insulator with �c = �s > 0 and �pb = 0.

A good study of the honeycomb spin (Heisenberg) ladder
has been reported.11 It is certainly clear from that study that
there are significant differences between the ordinary two-leg
Heisenberg ladder and the honeycomb Heisenberg ladder, and
that, in particular, the spin-gap tends to be much smaller in the
latter than the former.
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FIG. 4. (Color online) Pair binding enegry �pb calculated with
DMRG and extrapolated to the thermodynamic limit for different U .
There is finite �pb for tg > 0.3t , while for tg < 0.3t�pb is vanishingly
zero within our numerical uncertainty. In this specific calculation, our
numerical accuracy is ±0.01t

224512-2



CORRELATIONS AND RENORMALIZATION OF THE . . . PHYSICAL REVIEW B 88, 224512 (2013)

The paper is organized as follows. In Sec. II, we introduce
the Hubbard model on the honeycomb ladder and discuss its
basic properties such as the quadratic band touching for the
noninteracting limit. In Sec. III, we investigate the half-filled
honeycomb Hubbard ladder using Hartree Fock mean-field
and DMRG approaches. The latter methodology is particularly
useful in Sec. IV where the case away from half-filling is
studied in detail. Section V analyzes how the role of phonon
modes is affected by Hubbard-induced electronic correlations.
Transferring our insights to the specific physics of polyacenes,
we obtain several highly suggestive results that are discussed
in great length in Sec. VI of this paper, which is phrased in
such a way that the reader who wishes to particularly read
this discussion can jump straight to that point. In a more
speculative discussion, which we have moved to Appendix,
we hypothesize two-dimensional graphene and graphite-based
structures, in certain limits of parameters, to be described by
the weakly coupled quasi-1D honeycomb ladders we have
discussed in the paper, and as such to be candidates for
high-temperature phonon-driven superconductors.

II. THE MODEL

We study the Hubbard model on the two-leg ladder shown
in Fig. 1(b):

H = −
∑

σ

∑
〈i,j〉

tij (c†iσ cjσ + H.c.) + U
∑

j

nj↑nj↓, (1)

where cjσ creates an electron with spin polarization σ on site
j , njσ = c

†
jσ cjσ , the site index j = (α,n) with α = ±1 labels

the upper and lower legs of the ladder, and n = 1 to L labels the
distance along the ladder. We study ladders in the range L = 32
to 64, and then extrapolate the results to the thermodynamic
limit by plotting various physical quantities as a function
of 1/L. We assume hopping matrix elements only between
pairs of nearest-neighbor sites, where tij = t for all pairs of
nearest-neighbor sites other than every second rung hopping,
for which t(1,2n),(2,2n) = tg with |tg| � t . On the honeycomb
ladder shown in Fig. 1(a), this choice with tg = 0 corresponds
to uniform hopping matrix elements t on all nearest-neighbor
bonds, and tg then is a particular third-neighbor hopping. As
has been noted before,2 including second-neighbor hopping
has no qualitative effect on the band structure,12 so in addition
to allowing us to extrapolate between the uniform two-leg
ladder and the honeycomb ladder, the inclusion of a small tg
allows us to explore the most important aspects of the band
structure of the honeycomb ladder.

The band structure corresponding to the noninteracting part
of the Hamiltonian (shown in Fig. 1) can readily be derived:

Eλ,±(k) = λ(t + tg)

2
±

√(
t − tg

2

)2

+ 4t2 cos2(k), (2)

where −π/2 < k � π/2 is the Bloch wave vector and λ =
±1 is the parity of the state under interchange of the upper
and lower rung. (We chose units such that the width of an
elementary hexagon is 2.) This band structure is particle-hole
symmetric, so for 〈n〉 = 1, all the negative energy states are
occupied and all the positive energy states are empty.

For |tg| � t , the states near the Fermi energy occur near
the Brillouin zone (BZ) edge, k = π/2,

Eλ,λ(k) = −λ
[
tg − 4tq2 + O(tq4) + O

(
t2
g

/
t
)]

, (3)

where q ≡ k − π/2. Thus, for tg > 0, the band structure is
that of a two-band metal, with Fermi surfaces at kF = π/2 ±√

tg/4t . (This situation evolves smoothly to the limit tg = t ,
where kF = π/3,2π/3—here the BZ is twice as large.) For
tg < 0, by contrast, the system is a direct gap semiconductor
with a gap of size 2|tg|. Right at tg = 0, the band structure
exhibits a quadratic band touching, i.e., the honeycomb ladder
is tuned precisely to the point of a Lifshitz transition, where the
quadratic band dispersion relation corresponds to a dynamic
exponent, z = 2.

We will also be interested in the effects of electron-phonon
coupling in this model. Within the so-called frozen phonon
approximation, there are two aspects of this problem that can
be analyzed separately: (1) a given pattern of ionic distortion
produces a change in the parameters in the effective electronic
Hamiltonian and (2) the electronic state responds in a generally
complicated fashion to these changes. The former problem
can be treated empirically, by reference to other similar
problems, for instance, the hopping matrix element between
nearest-neighbor carbons changes for small changes in the
bond length δ	 as tij = t − α(δ	), where in polyacetylene3 (in
which the bond-lengths are generally similar), t ≈ 2.5 eV and
α ≈ 4 eV/Å.

We will explore correlation effects on the latter problem.
Specifically, we will consider the changes in the electronic
states produced by small perturbations of the form

Hel-ph = −
∑
〈i,j〉σ

δtij (c†iσ cjσ + H.c.) +
∑
i,σ

δεiniσ , (4)

where, in turn, δtij and δεj are functions of the ionic distortion
in various phonon states.

III. HALF-FILLED BAND

Figure 2 shows a schematic ground-state phase diagram
of the model in the tg − U plane with a mean density of
one electron per site (〈n〉 = 1), as inferred from the studies
reported below. For U > 0, there appears to be a single phase,
but a sequence of crossovers (shown as dashed lines) mark
the borders of qualitatively different regimes. At small U ,
the intermediate regime can be associated with the quantum
critical fan opening from the noninteracting Lifshitz quantum
critical point at U = tg = 0.

A. Hartree-Fock treatment

To orient our discussion, we begin by studying the insulat-
ing state of the undoped ladder in Hartree-Fock approximation.
For tg � 0, where the noninteracting system is metallic, the
Hartree-Fock ground state is insulating and antiferromagneti-
cally ordered, i.e., it spontaneously breaks both spin rotational
symmetry and symmetry under interchange of the legs. The
sublattice magnetization is of the form as seen in Fig. 5.

〈�S(α,i)〉 = ê m (−1)i+α[1 + δ(−1)i] (5)
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FIG. 5. (Color online) A schematic illustration of the Hartree-
Fock variational ground state. It breaks spin rotation symmetry and
the interchangeability of legs.

and the charge density is of the form

〈n(α,i)〉 = 1 + δ′(−1)i , (6)

where the orientation ê is arbitrary, m, δ, and δ′ are obtained
from solving the self-consistency equations, and as such are
implicit functions of U/t and tg/t . m is a monotonically
increasing function of U/t with m = 0 for U/t = 0 and
m → 1 as U/t → ∞. For any tg �= t , no symmetry is broken
by nonzero values of δ and δ′, and they do not govern
any interesting physics; they are monotonically decreasing
functions of tg/t and vanish in the limit tg/t → 1.

For tg < 0, the noninteracting system is gapped, so for small
enough U/t no broken symmetry state occurs. However, for
U > Uc, the same antiferromagnetic state is recovered. Uc is
a monotonically decreasing function of tg/t , which vanishes
as tg → 0.

Broken continuous symmetries cannot occur in 1D systems,
so the antiferromagnetic order obtained in Hartree-Fock theory
is clearly an artifact of the mean-field theory. Moreover,
because there are an integer number of electrons per unit cell,
the spin-correlations are expected to decay exponentially with
distance at large distances.

However, Hartree-Fock theory often captures the short-
distance physics correctly, and in particular, one might expect
the insulating gap to be understandable from these considera-
tions. For future reference, we define the quasiparticle creation
energy to be half the energy to create a far separated electron
and hole:

�qp(N ) ≡ EL(2L + 1) + EL(2L − 1) − 2EL(2L)

2
, (7)

where EL(N ) is the N electron ground-state energy of the
L site long ladder (which has 2L sites). The quasiparticle gap
is defined by �qp = limN→∞ �qp(N ). In Hartree-Fock theory,
�qp ∼ Um. Thus, �qp → U/2 as U → ∞, independent of tg .
However, for small U , different behaviors are seen depending
on the value of tg . For tg < 0, �qp = |tg| for small enough U .
For tg = 0, and small U , m = A2(U/t),

�qp = A2U 2/t[1 + O(U/t)], (8)

where

A = 3

8π

∫
dk(

√
1 + k4 − k2) ≈ 0.087. (9)

For tg > 0, the usual considerations of 1D band structures
apply, and m ∼ t exp[−1/UN (EF)], where, however, N (EF)
diverges as tg → 0 as N (EF) ∼ 1/

√
t tg .

There is another feature of the Hartree-Fock solution
that one might expect to survive fluctuation effects. Since
in the antiferromagnetic phase there are gapless collective
spin-carrying modes, one would expect that even when the
long-range order is destroyed by quantum fluctuations, the
gap to spin-excitations will be small compared to that to �c.
In particular, we define the spin gap according to

�s(N ) ≡ [EL(2L; S = 1) − EL(2L; S = 0)]

2
, (10)

where EN (M,S) is the ground-state energy of the N site long
ladder with M electrons and total spin S, and again �s =
limN→∞ �s(N ). Now, although we expect that �s > 0 for all
U > 0, we might expect that for t ′ � 0 or for tg < 0 but U 

Uc, that �qp 
 �s , while for tg < 0 and U < Uc, �qp ≈ �s .
(Manifestly, for U = 0, �s = �qp.) All these expected fea-
tures are summarized in the schematic phase diagram in Fig. 2.

B. DMRG results

The ground-state properties of relatively long two-leg
ladders can be reliably and accurately computed using DMRG.
In most cases, these results can be can reliably extrapolated
to the thermodynamic limit. We have performed DMRG in
ladder systems of sizes from 2 × 32 to 2 × 64. As described
in Ref. 13, all the energies and one-point correlation functions
have been extrapolated to zero truncation error, where we have
kept up to 3800 states in doing this for the longest ladders. The
finite size scaling has been carried out using the procedure
described in the Appendix of Ref. 13.

To begin with, we compute the various energy gaps. In
addition to the quasiparticle and spin gaps defined in Eqs. (7)
and (10) above, we also compute the pair-binding energy,

�pb(N ) ≡ 2EL(2L + 1) − EL(2L) − EL(2L + 2)

2
, (11)

and the charge gap,

�c(N ) ≡ EL(2L + 2,S = 0) − EL(2L,S = 0)

2
, (12)

which is the energy per electron charge to add a singlet pair
of electrons. Under a broad range of circumstances, �pb =
�qp − �c.

For a band insulator, �pb = 0 and �s = �qp = �c, while
for a singlet superconductor, �c = 0 and �s = �pb = �min,
where �min is the minimum of the (in general anisotropic)
superconducting gap on the Fermi surface. For the two-leg
ladder in the large U limit �c ≈ �qp 
 �s and �pb ∼ �s ,
although the latter can depend on details of the model,
for example, adding a nearest-neighbor repulsion to the
model, U 
 V 
 t2/U , results in �pb = 0. We will use the
occurrence of a nonvanishing (positive) pair binding energy as
a crude diagnostic of a tendency to superconductivity. We will
refer to a state with �c 
 �s as a Mott insulator, since the
insulating character manifestly arises primarily from the strong
repulsive interactions between electrons. We refer to it as a
“paired Mott insulator” if �pb ∼ �s , and an “unpaired Mott
insulator” if �pb = 0 (or, more pragmatically, if �pb � �s).
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FIG. 6. (Color online) Spin gap in the thermodynamic limit as
a function of U/t for tg = 0 at half-filling. There is a pronounced
maximum for U = 3.5t , which is roughly the same as the maximum
spin gap for the regular two-leg ladder (tg = 0), namely of the size
0.1t .

1. Honeycomb ladder

Let us first focus on the honeycomb ladder, tg = 0. In
Figs. 3 and 6, we show the charge and spin gaps as a function
of U . As expected, �c ∼ N (EF)U 2 for small U . In fact, it
is not far from the value predicted by Hartree-Fock theory
(dashed line). The spin gap is generally much smaller than
the charge gap. We have not been able to extend the DMRG
results to values of U/t < 1, as convergence issues arise. For
the smallest U ’s we have studied, it appears that �s ∼ U , but
we suspect that this is simply an intermediate asymptotic of
some sort. The spin-gap has a broad maximum at U = 3t ,
where it reaches �s = 0.1t , a value comparable to the
largest spin-gaps found in the two-leg ladder. However, the
pair-binding energy extrapolated to the thermodynamic limit
is indistinguishable from zero. Thus the honeycomb ladder
has an unpaired Mott insulating ground state.

Further information can be derived from the finite size
scaling of various quantities. The leading finite size correction
to �qp,

�qp(L) = �qp + W

2
L−2 + O(L−3), (13)

is determined by the quasiparticle effective mass, W ∝
h̄2/m�, with a proportionality constant that depends on the
boundary conditions. In the limit U → 0, for t = 2.5 eV and
a = 2.8 Å, the value of the effective mass is m� = h̄2/(8t) =
19.5%me where me is the mass of the electron. We have found
by explicit calculation that W/t does not vary greatly as a
function of U over the range of U we have explored. (A value
of m� = 10–20%me has been reported for bilayer graphene,14

comparable to the U = 0 value we have obtained.) However,
the exact relation between W and the effective mass of the
electrons m� depends on the boundary conditions.

The interaction between two quasiparticles can be estimated
as well. If the interaction is relatively weakly repulsive, then
there is an intermediate asymptotic satisfied in the perturbative

0.01 0.05
1/L

-0.05

-0.04

-0.03

-0.02

-0.01

0

Δ pb
  in

 u
ni

ts
 o

f t

U=5t
U=10t

Pair Binding energy vs 1/L

FIG. 7. (Color online) Length dependence of the pair binding
energy for U = 5t and 10t for L up to 64. U eff is obtained from the
quadratic fit to the results for L > 30.

regime 1 � N < N�, in which

�pb(L) = −3U effL−1 + O(L−2), (14)

followed by a long-distance regime, L > L� ∼ W/U eff in
which

�pb(L) = −(3W/2)L−2 + O(L−3). (15)

Independent estimates of U eff can, in principle, be obtained
from studies of systems shorter than L� and from the value
of L� at which a crossover in the scaling behavior occurs. As
shown in Fig. 7 for U = 5t and 10t , the length dependence of
�pb can be accurately reproduced by a fit of the form given in
Eq. (14) over the range of L we have explored. The values
of U eff inferred are U eff ≈ 0.1 for U = 5t and U eff ≈ 0.2
for U = 10t . Since these estimates imply L� ∼ 100, which
is comparable to or longer than the longest systems we have
studied, our analysis is at least self-consistent.

We thus infer an effective model for dilute quasiparticles in
the honeycomb ladder:

H eff =
∑
kσ

Eeff(k)ψ†
kσψkσ + U eff

∑
R



†
R↑


†
R↓
R↓
R↑,

(16)

where 
 is the Fourier transform of ψ , Eeff(k) = �qp +
h̄2k2/2m� + . . . with m� ∼ me, U eff ∼ 0.1t is negligibly
small, and R labels the unit cells of the honeycomb ladder.

2. Nonzero tg

To see how these results fit in the generalized phase diagram
of Fig. 2, we have carried out similar, although less extensive
studies of the model as a function of U and tg . In Fig. 8, we
show �s as a contour map. Note that there are two distinct
regimes in which the spin-gap is large—one for tg ≈ t and
U ∼ 8t , which has been identified in previous studies13 as
the optimal regime for unconventional pairing in the two-leg
ladder, and the other for tg � t and U ∼ 4t , which includes
the honeycomb ladder. It is clear from this figure that the two
regimes are distinct, and that the physics behind the spin-
gap formation is likely not the same in the two regimes. In
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FIG. 8. (Color online) Spin gap as a function of tg/t and U/t . The
two regions where the spin gap has a local maximum are physically
distinct: the upper right side (including the regular two-leg ladder
with tg = t) lies in the “paired-Mott insulating regime” in which
�pb ∼ �s , while the region on the lower left side (including the pure
honeycomb ladder with tg = 0) lies in the “unpaired Mott insulating
regime” where �pb ≈ 0.

Fig. 4, we show �pb as a function of tg/t for various values of
U/t . Again, it is clear that there are two distinct regimes—for
tg comparable to t , there is a substantial value of �pb, of
order �s , while for tg � 0.3t , �pb approaches 0. (Given the
limits on system sizes accessible to us, we are not confident
that we can distinguish the difference between �pb < 0.01t

and �pb = 0.) These results are consistent with expectations
based on the schematic phase diagram. Note the honeycomb
ladder spin gap regime at U ∼ 4t fits with recent studies on
a suspected exotic magnetically disordered insulating state
regime in the two-dimensional honeycomb Hubbard model.15

Even though this claim turned out to be disproved by more
accurate procedures,16,17 it is intuitive that we find such a spin
gap in our quasi-1D honeycomb ladder scenario.

IV. DMRG RESULTS FOR THE LIGHTLY DOPED
HONEYCOMB LADDER

H eff in Eq. (16) encodes the properties of one or two
electrons added to the undoped honeycomb ladder. It is
typical that the properties of the lightly doped system can be
inferred from this kind of information, but there is always the
chance that the behavior of a small concentration x of doped
electrons is different from that of a small number. Consider, for
instance, the spin gap and the pair-binding energy as a function
of doped electron concentration: �pb(x) ≡ limL→∞ �pb(L,x)
and �s(x) ≡ limL→∞ �s(L,x), where (with the constraint that
2Lx is an even integer)

�pb(L,x) ≡ (1/2)[2EL(2L + 2Lx + 1)

− EL(2L + 2Lx + 2) − EL(2L + 2Lx)], (17)

�s(L,x) ≡ (1/2)[2EL(2L + 2Lx,S = 1)

− EL(2L + 2Lx + 2,S = 0)]. (18)
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FIG. 9. (Color online) Spin gap of the honeycomb ladder for
various values of U/t in the presence of two doped electrons (x =
1/L), extrapolated to the thermodynamic limit L → ∞. For tg <

0.3t , the value of �s is substantially reduced from its value at x = 0
and zero within our numerical uncertainty. By contrast, for tg ≈ t ,
the value of �s is comparable to its value for x = 0.

While we did not carry these calculations out as extensively
as for the undoped system, we have verified that for the
honeycomb ladder, �pb and �s both vanish (within our
numerical uncertainty) for any small but nonzero x. For
example, in the presence of two doped electrons (x = 1/L),
the inferred values of �s are only slightly smaller than for
x = 0 when tg = t , but are reduced to values which are
indistinguishable from 0 for tg < 0.3t , as shown in Fig. 9. This
is consistent with the notion that the lightly doped honeycomb
ladder is describable in terms of dilute quasiparticles with the
quantum numbers of an electron and with residual repulsive
interactions. This, in turn, is consistent with the effective
Hamiltonian in Eq. (16).

V. RENORMALIZATION OF THE
ELECTRON-PHONON COUPLING

The electron-phonon vertex, in general, is renormalized
in complex ways by electron-electron interactions resulting
in a complicated function of the incoming electron and
phonon momenta, which depends on the both the phonon
and the electron band indices. However, since the electron-
phonon coupling is still typically rather local, we will study
renormalization effects by explicitly computing the coupling
to k = 0 optical phonons for which δt and δε are periodic
functions on the honeycomb lattice. Operationally, what this
means is that we will compute changes in the electronic states
of the system to linear order in these distortions as a function of
U . Moreover, as we are interested in the case of lightly doped
ladders, we are only concerned with how a phonon interacts
with a doped electron or hole, i.e., how a phonon affects the
quasiparticle energy, �qp. We thus define the dimensionless
electron phonon couplings:

βij = N
∂�qp

∂δtij
and βj = N

∂�qp

∂δεj

. (19)
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There are five distinct nearest-neighbor bonds (ij ) per unit cell,
but many of these are related by symmetry. As a consequence,
it is easy to see that there are only two distinct values of βij :
βrung, which is the response of the system to a change in the
hopping matrix, δtij , on the nearest-neighbor bond along a
rung, and βleg for δtij on one of the four bonds along the legs
of the ladder. Similarly, there are four distinct sites per unit
cell, but the corresponding sites on the upper and lower leg
of the ladder are related by symmetry, leaving two distinct
coupling constants, βeven and βodd corresponding to δεj with
j = (α,n) and n even (i.e., corresponding to a site at the apex
of the elementary hexagon) or n odd. A uniform change in all
site energies simply results in an additive contribution to �qp,
from which it follows that

βeven + βodd = 1. (20)

This leaves us with three dimensionless couplings to
compute. For U = 0, it is easy to see that βrung = βleg =
βodd = 0 and βeven = 1. The reason the first three couplings
vanish for U = 0 derives from the same special feature of
the electronic structure responsible for the quadratic band
touching in the honeycomb ladder. Specifically, it is easily
verified that at k = π/2, the Bloch states have a particularly
simple structure: two bands are localized entirely on odd
numbered sites and have energies E(π/2) = −λt and the
other two are localized entirely on the even numbered sites
and have energies E(π/2) = −λtg , where λ = ±1 labels the
parity of the state under exchange of the legs. For tg → 0,
the latter two states constitute the degenerate points of the
quadratic band touching. Because these states are localized on
the even numbered sites, they are (to first order) insensitive
to any changes in hopping matrix elements (other than
the third-neighbor coupling tg , if we had included it), and,
moreover, to changes in the site energies on the odd-numbered
sites.

For nonzero U/t , we compute the various couplings using
DMRG by introducing an appropriate set small changes δtij
or δεi in each unit cell, computing the change in �qp and
dividing by δt or δε. By doing this for a couple of different
magnitudes of the change, we confirm that we are obtaining
the derivative. The results for βleg and βrung as a function of
U/t are shown in Figs. 10 and 11, respectively. Notice that in
the presence of reasonable values of U/t , βleg and βrung are
substantial; there is, in this sense, an infinite renormalization
of the electron-phonon coupling produced by the interactions.

Experience with other conducting polymers, such as
polyacetylene, suggests that the dominant electron-phonon
coupling is associated with modulation of the hopping matrix
elements in response to changes in the bond lengths. This dom-
inant form of coupling vanishes identically in the honeycomb
ladder with U = 0. This is why the renormalization due to U is
so important—it produces nonzero coupling to the important
phonons. In terms of the quasiparticle creation operators that
appear in Eq. (16), the effective electron-phonon coupling can
be expressed as

H eff
el-ph =

∑
R

[
βrungδt

(rung)
R + βlegδt

(leg)
R

+βevenδε
(even)
R + βoddδε

(odd)
R

]
ρ(R), (21)
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FIG. 10. (Color online) Electron-phonon coupling on the legs:
plotted is the discrete derivative βrung = δ�qp/δtleg for two values of
δtleg. Note that βleg → 0 in the noninteracting limit U → 0.

where ρ(R) = ∑
σ 


†
Rσ
Rσ , δt

(leg)
R is defined to be the sum

over all four legwise bonds in unit cell R of δtij and similarly
for the remaining terms, where implicitly δε

(a)
R and δt

(a)
F are

functions of the phonon coordinates.
We have not attempted to treat the full electron-phonon

problem, as there are many modes and, moreover, the phonon
dispersion would certainly depend on details of the solid state
environment in any physical world realization of the present
model. We thus simply estimate the strength of the resulting
effective attraction as

V eff ≈ 5β2α2/K ≈ β24 eV, (22)

where β is an appropriate average of βrung and βleg, α is
an appropriate average of αij ≡ ∂tij /∂uij , where uij is the
length of the bond (ij ), K is an average spring constant
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FIG. 11. (Color online) Electron-phonon coupling on the rungs:
plotted is the discrete derivative βrung = δ�qp/δtrung for two values of
δtrung. Note that βrung → 0 in the noninteracting limit U → 0.
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and the factor of 5 comes from the number of bonds per
unit cell; the second equality uses empirical estimates of the
corresponding quantities in polyacetylene, α = 3.6 eV Å−1

and K = 16 eV Å−2.18

VI. DISCUSSION: SUPERCONDUCTIVITY IN LIGHTLY
DOPED POLYACENES

The interactions in any polyacene-based material are
certainly more complex than in the honeycomb Hubbard
ladder. Nonetheless, we feel that the basic results from our
studies are sufficiently robust in that they should apply to
long enough polymers in the solid state. Specifically, (1) the
undoped polymer is expected to be a robust Mott insulator,
with a spin-gap small compared to its charge gap, even
for relatively weak interactions. (2) Despite the presence of
low-energy spin fluctuations, the lightly doped polymer will
not exhibit unconventional superconductivity mediated by spin
fluctuations, due to the absence of pair binding energy, even
in the lightly doped polymers. (Pair-binding has been found
robustly in a large variety of ladder systems, so its absence in
the honeycomb ladder is somewhat notable.)

(3) Lightly doped polymeric solids, however, are prime
candidates for high-temperature conventional superconductiv-
ity. The dominant phonons in this are likely to be those that
modulate the hopping matrix elements, tij , which couple to the
quasiparticles through an interaction-induced coupling. Our
estimates suggest that the phonon-induced effective attraction,
V eff ∼ 1eV for a characteristic value19 of U = 4t , is greater
than the residual effective repulsion, U eff ∼ 0.1eV, and thus
that a mean-field superconducting transition is indicated.

(4) We have discovered significant correlation enhance-
ments of the electron-phonon couplings: for U = 0, the
majority of phonons do not couple linearly to the band edge
states. However, as shown in Figs. 11 and 10, these couplings
grow in proportion to N (EF)U 2. This novel correlation effect,
combined with the characteristic 1D divergence of the density
of states at low doping, N (EF) ∼ |x|−1/2, implies that λ is
substantial in relatively lightly doped polyacenes.

(5) The lower the doping concentration, the higher the
density of states, which is conducive to a higher pairing scale.
However, at very low doping, phase fluctuations—always a
significant issue in quasi 1D systems—are likely to suppress
Tc. Thus optimal doping concentration for superconductivity
is likely to occur when EF � h̄ω0, i.e., when x = xmax �√

h̄ω0/4π2t .

ACKNOWLEDGMENTS

We acknowledge helpful discussions with E. Berg, L. Forro,
and R. C. Haddon. This work was supported in part by DOE
grant No. AC02-76SF00515 at Stanford (G.K. and S.A.K.)
and by DFG-SPP 1458 and ERC-StG-2013-336012 (R.T.).

APPENDIX: GRAPHENE RIBBONS
AND MODIFIED GRAPHITE

The unique aspects of the electronic structure of the
honeycomb ladder depend on its geometry rather than details
of orbital chemistry. Thus aspects of the physics we have

FIG. 12. (Color online) (a) Graphene strips support zero-energy
edge states, represented by the positions in which the sign of the wave
function alternates (blue dots for + and yellow for − for the wave
function associated with the upper end, red dots for + and yellow
for − in the case of the lower end.) (b) In this configuration, we
suggest every third zigzag chain (horizontal orientation) to exhibit
different on site energies (purple dots), and as a consequence, to
exhibit quasi-1D ladder behavior in between.

explored here may be relevant to a broader range of structures.
Here, we discuss a few representative generalized structures.

Firstly, we consider the case of a broader graphene strip,
as shown schematically in Fig. 12(a), and for simplicity, we
discuss the case in which there are nonzero hopping matrix
elements only between nearest-neighbor sites. Notably, this
system also has a quadratic band touching as can be seen
by the following analysis. (1) At zero energy, there are two
degenerate states with k = π/2. One is a state that lives on the
upper row of sites and alternates in sign along the stripe, as
represented by the white and blue spheres in the Fig. 12(a).
Of course, there is also a corresponding zero mode on the
lower edge, as represented by the alternating white and red
spheres in Fig. 12. In a graphene strip of large width, these
states would be part of nondispersing edge states, which, for
a range of π/3 < k < 2π/3, are confined within a distance
λk = −1/ ln |2 cos(k)| of the edge, and which mix with the
bulk nodal states when k = π/3 or −2π/3. For a finite width
strip, the mixing of these states produces a higher-order band
touching k = π/2.

If the strip is much wider than the ladders we have
considered, the coupling between the edge states, and with
it their dispersion, is negligible. Such flat bands will more
likely lead to some form of ferromagnetic order rather than to
superconductivity. However, a more promising possibility is
to consider a decorated version of graphene (or graphite) with
a structure such as that shown schematically in Fig. 12(b).
There, we have imagined that in every third zigzag row of the
honeycomb lattice, there is a modification to the site which to a
large part removes it from the electronic structure. For instance,
one might imagine (if such a material could be made) that on
these sites, the C atoms are replaced with N atoms, with one
extra electron and a larger ionic charge. Such a material would
have an electronic structure near the Fermi energy which can be
thought of as arising from weak coupling between an oriented
array of honeycomb ladders. Undoped, on the basis of our
ladder results, such a material would be expected to form a
narrow gap quasi-1D semiconductor. When doped, if luck is
with us, it could be a high-temperature electron-phonon driven
superconductor.
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